

Mu2e Cosmic Ray Veto 8.4 Fibers

Yuri Oksuzian Level 3 Manager July 8, 2014

Organizational Breakdown

Mu2e

🚰 Fermilab

Organizational Breakdown

3 CD-2/3a Review Cosmic Ray Veto: 8.4 Fibers

Mu_{2e}

WBS Dictionary for 8.4

- **475.08.04.01 Wavelength shifting Fiber (WF) Procurement:** This task covers the specification, selection, procurement, and testing of wavelength shifting fibers for the prototypes and production counters.
- 475.08.04.02 Wavelength shifting Fiber Quality Assurance Design and Fabrication: The purpose of this task is to develop the quality control testing procedures, and to design and fabricate the equipment for testing the wavelength shifting fiber.

Requirements

- Wavelength shifting (WLS) fiber collects the light from scintillator and transports the light to the photo-multiplier
- High performance and quality control
- Absorbs the blue light from scintillator and re-emits in green region
- Sufficient light yield, high trapping efficiency and long attenuation length
- Ionizing radiation damage levels have to be lower than 1kGy

Design

- Wavelength shifting (WLS) fiber collects the light from scintillator and transports the light to the photo-multiplier
- High performance and quality control
 - Kuraray
- Absorbs the blue light from scintillator and re-emits in green region
 Y11
- Sufficient light yield, high trapping efficiency and long attenuation length
 - 1.4 mmD, non-S, multi-clad fiber with 175 ppm fluorescent compound
- Ionizing radiation damage levels have to be lower than 1kGy
 - The radiation levels are lower than 10 Gy

Design

7

- The fiber is glued to the fiber guide bar and loose along the counter
- The fiber guide bar is fly cut
- The total amount of WLS fiber needed:
 - 760 (320) m of 1.4 (1.8) mmD fiber for prototypes _
 - 1,600 m for 2 medium sized pre-production modules
 - 63,000 m for production modules, including spares and wastage

Changes since CD-1

- The baseline fiber thickness was 1.0 mmD at CD-1
- The latest test beam results with di-counter prototypes suggest we need 1.4 mmD fiber to reach required light yield
- The QA test jig design has been modified to accommodate thicker fiber

Remaining work before CD-3

- Select the fiber size, using the measurement with prototypes:
 - 1.4 and 1.8 mmD fiber
 - 5x2 cm² di-counter prototypes
 - 2x2 mm² SiPM
- Produce fiber QA test jig
 - Evaluate the prototype fiber

Quality Assurance

- Former MSU technician will design the fiber test jig which can test fibers up to ~2.5 mm diameter
- Extract up to 25 meters of fiber from a factory supply spool
- Stimulate the fiber with a blue LED light source during the extraction
- Measure light output by two different readout devices:
 - Spectrophotometer (spectral attenuation)
 - Large-area photodiode (absolute scale and attenuation)

🛠 Fermilab

Risks

- Light yield is not sufficient
 - Increase the diameter of the fiber
- Kuraray goes off the market
 - Switch to Saint-Gobain fiber

	Base Cost (AY k\$)					
	M&S	Labor*	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.08 Cosmic Ray Veto						
475.08.04 Fibers						
475.08.04 Fibers Actuals	15		15			15
475.08.04.01 Waveshifting fiber (WF) procurement	425		425	103	24%	528
475.08.04.02 WF quality Assurance design and fabrication	14		14	1	10%	16
Grand Total	455		455	105	24%	559

*Fermilab labor only

12 CD-2/3a Review Cosmic Ray Veto: 8.4 Fibers

Cost Breakdown

Quality of Estimate

Labor Resources by FY

Mu2e

🛟 Fermilab

Schedule

Summary

- The requirements and the design for WLS fibers are well understood
- The baseline fiber: Kuraray, 1.4 mmD, 175 ppm, non-S type
- We plan to produce the prototype to select the final fiber size
 Fiber for prototypes has been ordered
- The risk associated with the larger fiber diameter is implemented
- The QA test jig will be produced this Fall. The QA procedures are well understood

Μιι2e