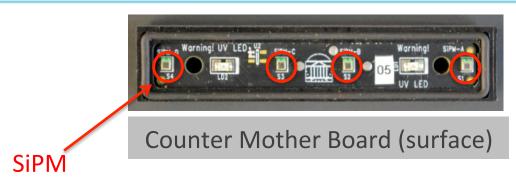


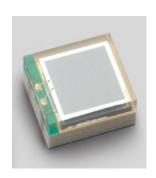
Mu2e CD-2 Review 8.5 CRV Photodetectors

Julie Whitmore
Mu2e CRV Deputy L2 & SiPMs L3
7/8/2014

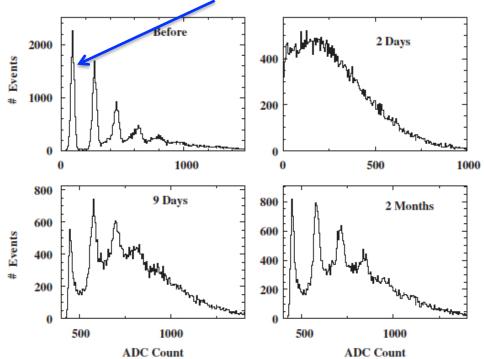

SiPM Requirements

- 1. The photodetector must operate in a magnetic field of 0.1T.
- 2. Nominal photosensitive size must be greater than the 1.4mm diameter fiber size with a minimum additional 0.25mm to allow for easy alignment to the fiber.
- 3. Device must have a PDE at least as high as 100μm device (Hamamatsu S10362-11-100P) used in test beam (>30%).
- 4. SiPM must have a gain of $>10^5$.
- 5. The number of pixels must be sufficient to cover a dynamic range up to 200 PE with a well understood response.
- 6. The device must operate after exposure to 1×10¹⁰ n/cm² @1 MeV neq. S/N for single photoelectron must be distinguishable in order to maintain the in-situ calibration of the devices. Any degradation after 3yrs of operation must not compromise the efficiency requirement of the CRV.
- 7. SiPM must produce an intrinsic dark current hit rate <50kHz (3PE threshold). Any after-pulsing must not cause excessive detector deadtime.
- 8. The device must be packaged in a small form factor/low profile package that allows tight direct coupling of the SiPM to the fiber.

SiPMs in the CRV


Counter Motherboard

- 5,152 counters, each with 2 fibers
- Each counter read out on both ends (with exception of those in the TS region)
- 18,944 photodetectors: SiPMs (read out both ends, except CRV-U and CRV-T, CRV-cryo)
- Surface mount SiPMs large enough to mate to 1.4mm diameter fiber.
- 1 Counter motherboard per di-counter.
- SiPMs must couple tightly to the 4 fibers on the di-counter without mechanical damage to the SiPMs.
- Alignment of the SiPMs must be maintained during reflow soldering
 - "Oversized" SiPMs that self-register during reflow or by using template
- Gasket hood over motherboard to maintain light-tightness

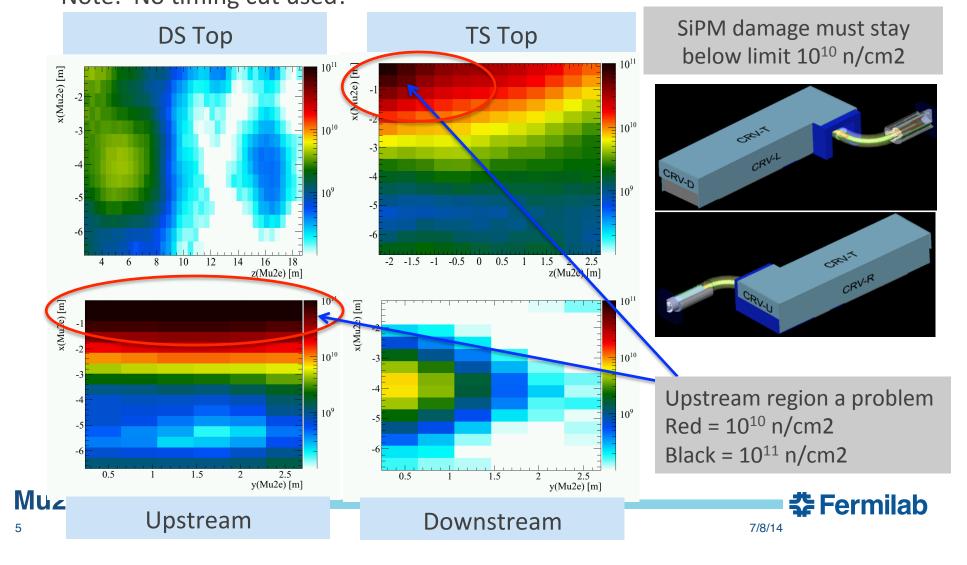


Radiation Damage

Sufficient Shielding is needed to mitigate radiation damage to CRV electronics.

Integrated flux to SiPMs is required to be kept below 1x10¹⁰ n/cm². (1 MeV neutron equivalent) Single PE Nakamura, NimA 610 (2009), 110-113

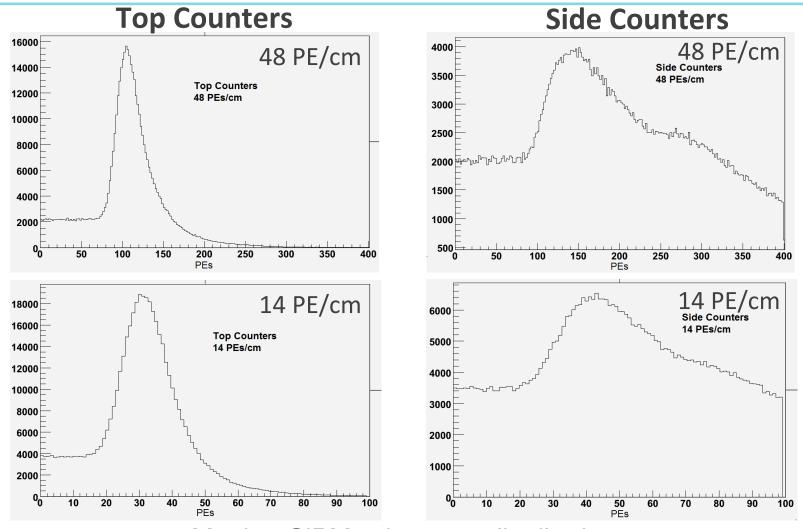
SiPM – Irradiated with $2x10^{10}$ n/cm². Dark count before and after irradiation, And after 2 days, 9 days, and 2 months of annealing.



Simulations: Neutron Radiation Damage

Fold rates and spectrum into 1 MeV equivalent damage curve

Note: No timing cut used!



SiPM Operation Plan

- Operational model similar to T2K (T2K has ~60,000 devices operating for 3 years).
 - No temperature stabilization for SiPMs in T2K
 - No special temperature control for SiPM beyond standard building HVAC.
 - Monitor single PE peak to track gain. Periodically adjust operating voltage (period to be determined) to align single PE across CRV.
 - Correct bias voltage for temperature changes.
 - Monitor dark count rate. PE spectrum, temperature, SiPM response (via LED flasher system).
 - Ability to measure I-V curve in-situ (not during operation).
 - Ability to monitor cosmic ray spectrum in modules.

Monitoring SiPM Calibration

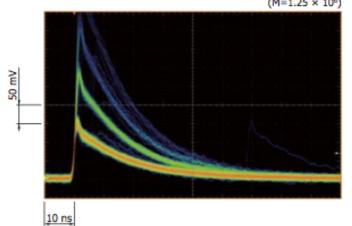
Monitor SiPMs via muon distributions.

Device dynamic range: up to 200 PE

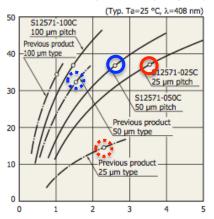
Changes since CD-1

- No significant changes to Mu2e photodetector requirements
 - Better understanding of our backgrounds and required light yield
- Major changes since CD-1 are significant improvements in SiPMs
 - More vendors are developing lower noise, higher PDE devices that are intrinsically more radiation hard

Value Engineering since CD-1 (1)


- Benefited from US CMS SiPM R&D with vendors
 - Multiple vendors fabricating radiation hard SiPMs
 - Improved performance (PDE and noise), wider dynamic range, lower cost
 - Quite likely current commercially available SiPMs will meet our requirements
- Benefited from T2K Experience
 - T2K has operated 60,000 devices for several years.
 - Extensively characterized SiPMs
 - Key parameters to measure are understood.
 - Mu2e only needs to test a subsample of devices.
 - Operational experience applicable to Mu2e (with one exception...)
 - T2K SiPMs are not in a radiation zone → device characteristics are stable over time.

Value Engineering since CD-1 (2)


- Benefited from NIU/FNAL/Delhi Proton Computed Tomography (pCT) Scanner Project
 - Developed test procedures and infrastructure for pCT project (3000 SiPMs)
 - Mu2e NIU and FNAL experimenters involved in pCT project
 - SiPM expertise: FNAL Eng Phys (Paul Rubinov), NIU physicists and students
 - Experienced in handling large number of devices
 - Mu2e will leverage pCT software and hardware development

SiPM Procurement

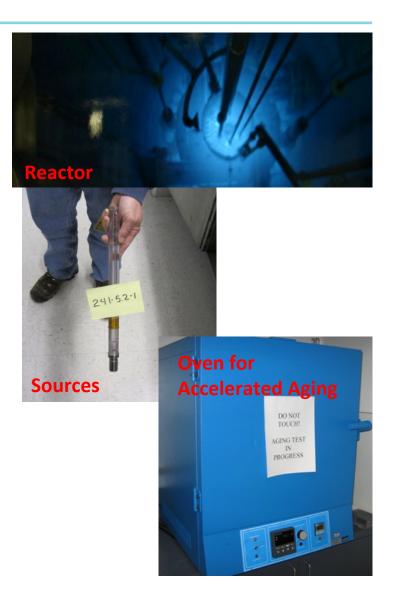
Improved Afterpulsing

PDE: New vs Old

TSV-Thinner epoxy coating than SMD (100 μm vs 300 μm)

- Rapid improvements to device processes
 - Higher PDE
 - Better process allows for higher over-voltage operation
 - Lower x-talk and after-pulsing
 - Better temperature coefficient
- Many vendors with new candidate devices
 - Hamamatsu and KETEK have 2mm x 2mm COTS SiPMs
 - Hamamatsu has Through Silicon Via (TSV) and surface mount packaging.
 KETEK will have TSV by end of 2014.
 - FBK/AdvanSiD has new SiPM with trenching (custom size available)

Mu2e - SENSL has 1mm x 1mm or 3mm x 3mm (no custom size)

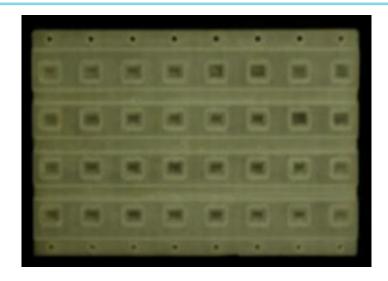

SiPM Testing

Radiation Qualification

- Reactor neutrons
 - UC Davis reactor (Energy 1-10 MeV)
 - Sources (Fermilab)
 - AmBe
 - Energy 2-10 MeV
 - 2.1E5 n/s
 - Cf-252
 - Energy 2 MeV
 - 2.7E4 n/s

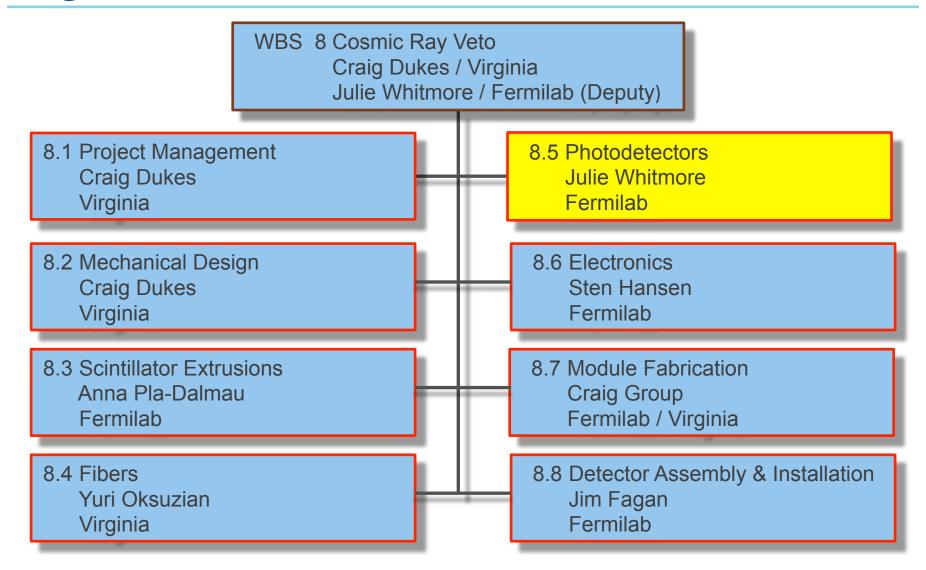
Accelerated Aging Test

- Arrhenius equation
 - Counter Motherboard temperature: ~25 °C
 - Mu2e running (3 yrs)
- Device oven test:
 - 70 °C for 48.4 days

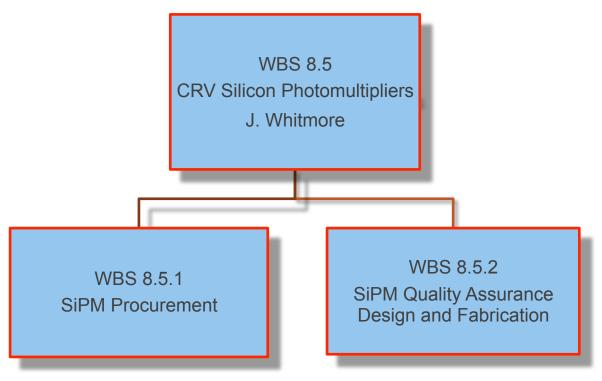


SiPM QA Tester

- QA Testing
 - Need to test many devices in parallel
 - Testing design for I-V tester with a simple scheme for providing bias
 - Need to do both I-V and pulse mode testing on a small number of devices
 - Longevity/Radiation testing for batch validation


Remaining work before CD-3

- Device selection
 - Identify candidate SiPMs and validate they meet requirements
 - SiPM characterization (dark count rate, V_{BR}, gain, temp dependence, etc.)
 - Radiation and Longevity Testing
 - Determine whether COTS SiPM will work. If not, custom size device will be needed.
 - We don't expect any surprises since these devices will be relatively mature (1-2yrs old) by the time of production purchase
- Finish prototype QA Tester
 - 3d printed device holder must be designed/fabricated to match the specific SiPM being tested.



Organizational Breakdown

Organizational Breakdown

- Identify SiPM device(s) that meets requirements (Rad & Longevity testing)
- Procure Devices
- •_Characterization/Testing
- Value engineering

- Fabricate QA tester for large scale testing
- Test critical parameters to validate vendor batches
- Value engineering

Quality Assurance

- Mu2e needs to validate quality of the SiPMs
 - Learn from T2K experience (T2K INGRID 18,000 devices)
 - T2K extensively tested all devices at various temps
 - Found only a few key parameters were needed for operation (dark count, V_{BR}, temp dependence of gain)
 - Need to track properties in-situ (monitor single PE, dark count, gain)
 - Temperature dependence is specific to the process
 - Need to test a few to fully characterize
 - Plans for QA testing of SiPMs
 - Test a small subset (10%) of SiPMs to validate the vendor batches
 - Destructive Radiation and Longevity tests on a smaller subset of devices (.5%)

Risks

Risk ID	Docdb #	Туре	Title	Date	Probability	Point Estimate (cost k\$)	Point Estimate (prob)	Expectation Value (cost k\$)
VETO-158	4257	Threat	Custom SiPM size is needed	FY15	Low	\$50	10%	\$10

- Dark count rate in COTS 2mm x 2mm SiPM too high → Smaller SiPM required (e.g. 1.6mm diameter active area)
 - Strategy: measure performance on prototype counters
 - Cost is ~\$50k. No serious schedule impact.

ES&H

- SiPM operation
 - SiPM operating voltages vary by vendor (KETEK ~ 30V, Hamamatsu ~ 80V, etc.)
 - Operation of SiPMs will follow Fermilab ES&H Manual (FESHM) standards for electrical equipment operation.
- QA SiPM testing jig
 - Hazards are minimum (Soldering, epoxy, etc.)

Cost Table

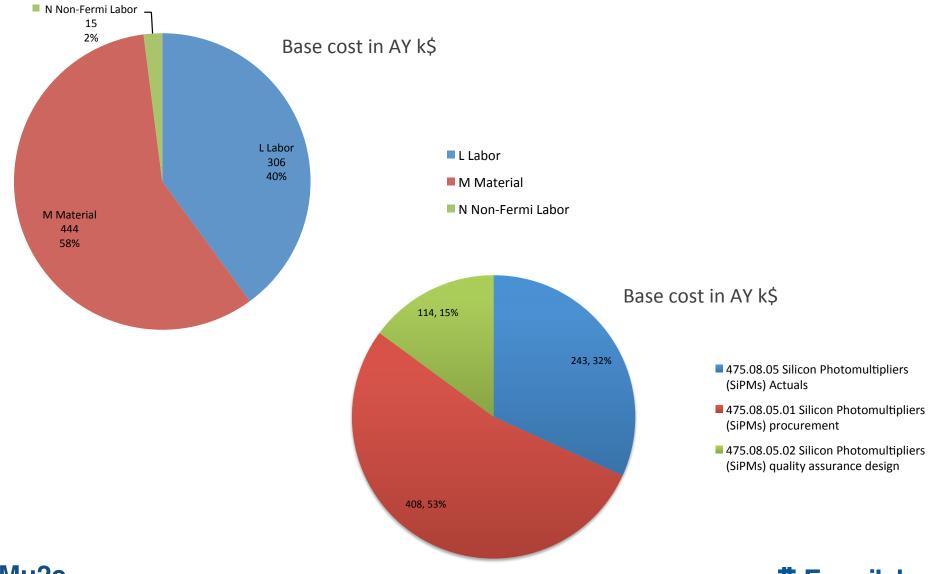
Cosmic Ray Veto 475.08

Cost in AY k\$

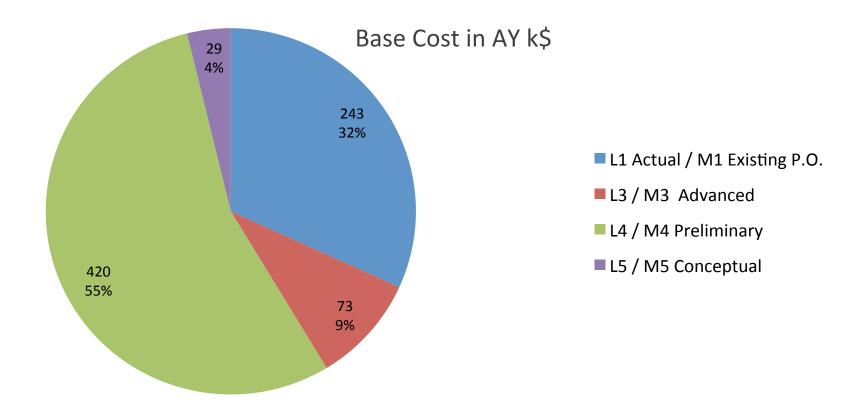
	M&S	Labor	Base Cost	Estimate Uncertainty	% Contingency on ETC	Total
475.08.01 Project Management	273	178	452	75	20%	526
475.08.02 Mechanical Design	136	3	139	24	29%	163
475.08.03 Scintillator extrusions	559	457	1,015	206	22%	1,221
475.08.04 Fibers	455		455	105	24%	559
475.08.05 Silicon Photomultipliers (SiPMs)	460	306	766	188	36%	954
475.08.06 Electronics	1,312	406	1,718	509	32%	2,227
475.08.07 Module Fabrication	1,460	16	1,476	462	34%	1,938
475.08.08 Detector assembly and installation	124	80	204	63	35%	267
475.08.09 Cosmic Ray Veto Conceptual Design/R&D	258	252	511	0	0%	511
Risk Based Contingency				323		323
Total	5,036	1,698	6,735	1,955	36%	8,690

Cost Table

Silicon Photomultiplier (SiPM) 475.08.05

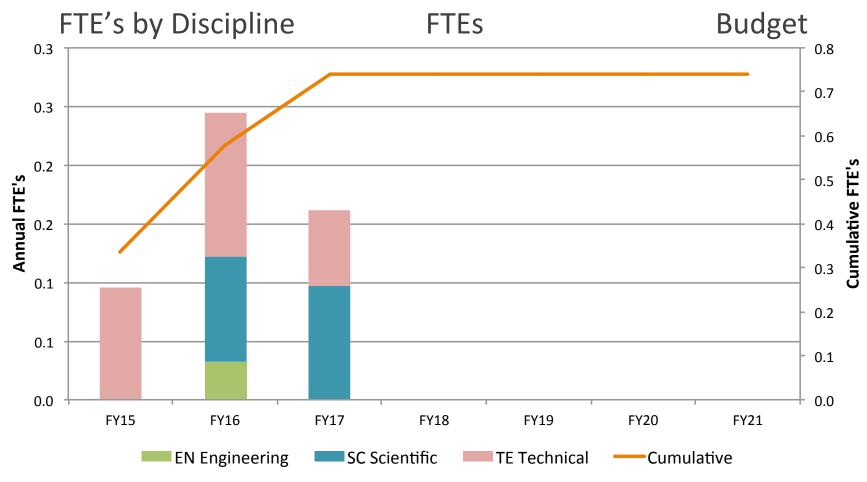

	Base Cost (AY k\$)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.08 Cosmic Ray Veto						
475.08.05 Silicon Photomultipliers (SiPMs)						
475.08.05 SiPMs Actuals	31	213	243			243
475.08.05.01 SiPMs procurement	375	33	408	147	36%	555
475.08.05.02 SiPMs quality assurance design	54	60	114	42	37%	156
Grand Total	460	306	766	188	36%	954

Labor in table is Fermilab Labor only

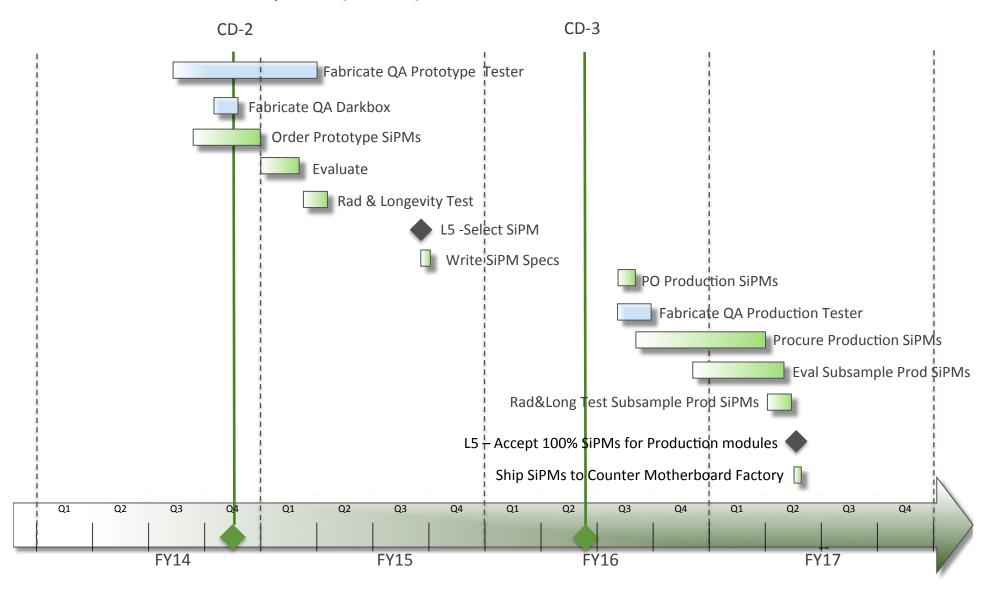


Cost Breakdown

Quality of Estimate



Labor Resources by FY


475.08.05 Silicon Photomultipliers (SiPMs)

Schedule

Silicon Photomultiplier (SiPM) 475.08.05

Summary

- Overall requirements are well understood
- SiPM requirements can be achieved with commercially available devices
 - May need custom mask to reduce active area and assoc. dark count noise, but SiPM process will be from standard catalog
 - Prototype devices have been ordered
 - Radiation and Longevity testing to begin in late summer 2014
 - Prototype counters should be available for study in Fall 2014
 - QA prototype tester fabrication is underway
 - Hardware is being fabricated and software is being developed.
- SiPM cost and schedule are well understood.
 - SiPM development is not on the critical path.

