

Mu2e Tracker Straws

Chiho Wang Straws L3 Manager 7/9/2014

Outline

- Straw requirements
- Straw property measurements
- Straw assembly components and procedures
- Cost

Straw requirements

- 5mm ID metalized Mylar tube cathode.
- Minimal material
 - 6 μm Mylar + 3 μm adhesive + 6 μm Mylar double helical wrap
 - Inner wall coating: 500Å AI + 200Å Au
 - Outer wall coating: 500Å AI
- Operates in vacuum
 - Sustains > 1 atm pressure difference
 - Leak rate < 7 ccm / detector volume</p>
- Stability
 - Straw straightness: max. transverse deviation/sagging < 300 µm for HV stability.
 - Longitudinal tension is applied to keep straw straight.
 - Initial tension need to be higher to counter for material relaxation over time (creep).
 - Sustains radiation over the life time of operation.

Se Fermilab

Straw properties

- Destructive tests:
 - Pressure: sustained 60 psi (10 min.). Destroyed \geq 70 psi
 - Stretch: sustained 1.6 kg (2 yrs.). Destroyed ≥ 2.9kg
- Mechanical:
 - Linear density: 0.34 ± 0.01 g/100cm
 - Wall thickness: 15µm
 - Derived from linear density, assuming Mylar density 1.39g/cm³, and same for the polyester based adhesive.
 - Spring constant: 0.891cm/kg/100cm
- Electrical:
 - Cathode resistance: $120\Omega/100cm$

Mu2e

Straw leak measurement 1

Straw leak measurement 1

- N_2 leak rate = 0.095 ± 0.026 psi/day
- CO_2 leak rate = 0.36 ± 0.06 psi/day
- Assume Ar leak rate similar to N₂, and straw volume ~ 0.3 m³, estimated Ar(80%)CO(20%) leak rate ~ 2ccm / tracker volume

🚰 Fermilab

Straw leak measurement 2

Fill straw with ArCO₂ and place in vacuum, Measure pressure rise Gas inlet

Feed through

- Tested 10x 129cm straws
- Averaged leak rate = 3.6x10⁻⁴ccm/straw
- ~ 4 ccm / tracker volume

7/9/14

🛟 Fermilab

Straw straightness measurement

To determine the required straw tension

Horizontal Traveling Microscope (X)

Straw deviation measured for different straw length and tension.

Straw straightness measurement

Straw creep measurement

- Glue straws on a support frame (120cm) with tensions: 300gm, 400gm, 500gm, 600gm.
- Measure straw tension by resonant frequency as a function of time.

Straw creep measurement

Straw creep measurement

Μ

Radiation aging study

- A single straw detector, constructed with relevant components, was operated under Sr-90 irradiation.
- Expected total dose (including beam flash) of 0.9 C/cm was irradiated.
- Gain change monitored by Fe55 peak amplitude.
- Observed no measurable degradation in gain or cathode resistivity

Fractional gain change over 3 irradiation periods. Measured at 3 locations from downstream. Referenced to un-irradiated point at 110cm:

			Gain(x)/Gain(110cm)			
Period	Charge (mC/cm)	Current (nA/cm)	p1 (7cm)	p2 (37cm)	p3 (67cm)	
1	120	18	0.979	0.982	0.994	
2	120	36	1.010	1.009	1.002	
3	670	70	0.994	0.990	0.983	
Total	910			±2%		

- Gas flow rate = 2 vol/hr/m
- $20\pm0.02\%$ CO₂ with balanced Ar
- Airgas "primary standard" grade. Purity 99.99% with individual impurities below:

Contaminant	Max. Concentration (ppm)
Carbon Monoxide	10
Hydrogen	10
Nitrogen	20
Oxygen	10
Total Halogens	10
Total Hydrocarbons	10
Water	10

Mu2e

Straw property summary

- Straw is robust and has no problem operating in vacuum. The burst pressure exceeds 60 psi and is well above 14psi.
- Straw leak rate of ~<4ccm is within acceptable range of 7ccm
- 700 gm initial tension is needed to keep straw tension above 250 gm after 6 years, which is needed to keep straw straightness within ±0.3mm for HV stability.
- Straw can sustain tension > 1.6Kg and is well above the needed 700 gm initial tension.
- No measurable degradation in gain after expected dosage of radiation.

1126

🌫 Fermilab

Straw assembly

- After a straw is received from manufacturer it needs to go through QC procedures and get assembled into a straw subassembly. These procedures include:
 - Visual inspection
 - Continuity check (measure resistance)
 - Leak test

C. Wang - CD-2 Review

112e

15

- Cut to length
- Assemble/Attach end pieces
- A QA/QC data base is being developed to track/link component data.

🔁 Fermilab

Straw cutter

Straw sub-assembly

Assembly jigs for assembling end pieces

Assembly jigs for gluing end pieces to straw

• Orient end pieces on both end of the straw to the same direction and glue to straw with conductive glue.

A 2x4 prototype

Front end electronics attached

Mu2e

20 C. Wang - CD-2 Review

QA/QC data base

- RDBMS
 - Open source
 - Multimaster replication
 - Input programming language independence
 - →MariaDB

(formerly MySQL)

These would

Straw assembly summary

- Straw end components had been manufactured and tested.
- Assembly tools and test equipment for straw assembly procedures were developed and functional.
- Using the material and tools developed, a 2x4 prototype is completed with front end electronics attached.
- A QA/QC data base is being implemented for production process.

Cost Distribution by L4

Base Cost by L4 (AY \$k)

475.06.02 Straws Actuals
 475.06.02.01 Straw Tubes
 475.06.02.03 Wire Stringing

Cost Distribution by Resource Type

Quality of Estimate

Base Cost by Estimate Type (AY\$k)

L1 Actual / M1 Existing P.O.
L3 / M3 Advanced
L4 / M4 Preliminary
L5 / M5 Conceptual

25 C. Wang - CD-2 Review

Labor Resources

26 C. Wang - CD-2 Review

6/8/14

Cost Table

Costs are fully burdened in AY \$k

	Base Cost (AY \$)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.06 Tracker						
475.06.02 Straws						
475.06.02 Straws	75	49	124			124
475.06.02.01 Straw Tubes	1,262	16	1,277	486	38%	1,763
475.06.02.03 Wire Stringing	18		18	3	15%	20
Grand Total	1,354	65	1,419	488	38%	1,908

Conclusion

- Detecting elements of the tracker: straws and straw-end components are manufactured and tested.
- Straw tube is robust and leak tight, and exceeds the requirements to operate in vacuum for 6 years.
- Assembly procedures and assembly tooling are realized and exercised.
- A QA/QC data base is being implemented.
- Cost is better estimated.

