

Mu2e CD-2 Calorimeter 475.07.04 Photosensors

Frank Porter Caltech Calorimeter L3 manager, calibration July 9, 2014

Requirements I – Calorimeter Photosensors

- Energy resolution at 100 MeV 5% (FWHM/2.35)
 - Driven by PID and trigger requirement, maintaining electron efficiency
 - Quantum efficiency
 - Light collection (photosensitive area and coupling to crystal)
 - Gain and noise
- Response variation correctable to 0.5%
 - Driven by 1% overall calibration requirement, negligible contribution to energy resolution
 - Temperature variation
 - Gain variation due to voltage instability
- Timing resolution better than approximately 0.5 ns
 - Enables suppression of energy deposits from backgrounds
 - Enables matching energy deposits in time with tracker
 - Determine direction of particle (cosmic ray background suppression)

2

F. Porter - Director CD-2 Review - Calorimeter Photosensors

July 8, 2014

🛠 Fermilab

Requirements II – Calorimeter Photosensors

- Works in 1 Tesla magnetic field
- Radiation hardness
 - 50 Gy/yr
- Insensitive to nuclear counter effect
 - 2x10⁹ n(1 MeV equivalent)/cm²/year*
- Bias HV interlock with vacuum to prevent Crooke's tube breakdown

*New evaluation in progress

- Requirement to operate in a magnetic field, plus affordability, leads to use of solid state technology for photosensor
- Baseline choice is large area APD readout
- Two APDs/crystal
 - Greater light collection
 - Mitigate nuclear counter
- Challenges:

Mu₂e

- High QE at 220 nm
- Solar-blindness to longer wavelengths
- Large area for light collection

RMD 9x9 mm² APD

- BaF2 emission spectrum:
 - Fast (0.9 ns decay time) short wavelength (220 nm) component,
 4.1% of Nal
 - Slow (650 ns) longer wavelength (300 nm) component, 36% of Nal

- Quantum efficiency at 220 nm
 - Silicon absorption length < 10 nm at 220 nm
 - Protective epoxy coating on off-the-shelf devices has strong effect
 - Sensitive region must be very close to surface

Mu₂e

- High QE in UV achievable by
 - removing protective layer
 - Delta doping
 - Antireflection coating
- Proven technology with CCDs
- Design antireflection coating to bandpass UV, creating solar blind device, using atomic layer deposition (ALD)
- Developing large area solarblind APDs for mu2e (Caltech/ JPL/RMD)

"Atomically precise surface engineering of silicon CCDs for enhanced UV quantum efficiency"

F. Greer, et al., *J. Vac. Sci. Technol.*, A 31, 01A103 (2013)

S. Nikzad, "Ultrastable and uniform EUV and UV detectors," *SPIE Proc.*, Vol. 4139, pp. 250-258 (2000).

7 F. Porter - Director CD-2 Review - Calorimeter Photosensors

Mu2e

7 Fermilab

- Quantum efficiency nearly 70% possible at 220 nm for five layer coating (Al₂O₃/Al)
- 3 and 5 layer devices have been fabricated, encouraging results (no delta-doping yet)

Mu2e

8 F. Porter - Director CD-2 Review - Calorimeter Photosensors

July 8, 2014

🛟 Fermilab

- APD gain depends strongly on temperature and bias voltage •
 - Operating voltage ~ 1800 V for gain ~ 500
 - Thermal contact via metallic cooling fingers
 - Monitor and correct for temperature variation
 - Stabilized and Monitored HV

- Two large area (9x9 mm²) APDs per crystal
 - Maximize light collection
 - Robustness against nuclear counter effect in presence of neutron flux
 - Operate at gain ~ 500
 - Thinning before ALD improves timing

Changes since CD-1

- Crystal has been changed from LYSO to BaF2 due to the high cost of LYSO
 - This has implied redesign of the photosensor readout, from an off-the-shelf large area APD to development of a high QE solarblind large area APD

Value Engineering since CD-1

- Crystal has been changed from LYSO to BaF2 due to the high cost of LYSO
 - Impacts photosensor
 - Small cost impact
 - Introduction of some risk

Performance

- Resolution
 - 30 pe/MeV \rightarrow small contribution to overall resolution
 - Gain ~ 500 \rightarrow ENE ~ 330 keV
 - Light yield decrease by 30-40% after > 10 Gy dose
 - \rightarrow ENE ~ 550 keV
- Timing and rate capability
 - Thinned APD very fast < 1 ns rise time
 - Good match to fast component of BaF2
 - Reduces pileup contribution to resolution to acceptable level
 - Useable in higher rate experiment (mu2e-2)

13

F. Porter - Director CD-2 Review - Calorimeter Photosensors

🛟 Fermilab

Remaining work before CD-3

- Demonstration of large area solar-blind APD with high QE meeting requirements
- Characterization of radiation hardness (leakage current), gain dependence on voltage and temperature
- Vendor quote for production device
- Internal technology choice review
 - Spring 2015
 - Compare baseline with backup (pure CsI/MPPC)
- QA stations

14 F. Porter - Director CD-2 Review - Calorimeter Photosensors

Organizational Breakdown - Calorimeter

Quality Assurance – Calorimeter Photosensors

- Prototype devices are being made and will be tested
 - Iterations as needed
- Production acceptance testing
 - Leakage current
 - Gain, including temperature and bias voltage dependence
 - Operating margin

娄 Fermilab

Quality Assurance – Calorimeter Photosensors

- Accepted APDs will be mounted on crystals and tested as a unit with readout electronics
 - Source calibration will be performed
- Calorimeter assembled and tested prior to installation in solenoid
 - Cosmic rays
 - 6 MeV source calibration

Risks

- Development risk (risk register CAL-148)
 - Unexpected problems could arise in device development
 - Each of the features is not new, but the combination is
 - Mitigation
 - Use of conventional APDs (impact on timing and high rate capability), use La doping to reduce long component in BaF2 (presently factor of ~4)
 - Also looking at Hamamatsu Photonics/MEG UV-sensitive MPPCs (12x12 mm²)
 - Parallel R&D on CsI/SiPMs provides an alternative
 - Cost estimate is based on existing Hamamatsu devices, conservative based on informal vendor communication
 - Contingency (42% overall) reflects development stage of this item

18

F. Porter - Director CD-2 Review - Calorimeter Photosensors

July 8, 2014

🚰 Fermilab

ES&H

- Bias is high voltage (1850 V)
 - Limited to non-lethal currents
 - At photosensor location, HV is inaccessible
- Toxic materials
 - Epoxy may be used to attach APDs to crystals
- Hazards discussed in the Mu2e Hazard Analysis document (Mu2e-doc-675)

Photosensors: resource type

Photosensors: Quality of estimate

Photosensors: labor resources

Mu₂e

Photosensors: labor/material profile

Major Milestones

1.	47507.5.001320 Final Design of FEE complete	13 Feb 2015
2.	47507.2.001860 Readiness Review for production crystals	2 Sept 2015
3.	47507.2.011990 PO issued for production crystals	26 Jan 2016
4.	47507.4.000700 PO issued for production photo-sensors	1 Mar 2016
5.	47507.6.001510 PO issued for source system material	3 Jan 2017
6.	47507.4.000790 QC of all photo-sensors complete	13 Jul 2017
7.	47507.5.001590 Assembly of full readout chain	1 Mar 2018
8.	47507.2.092145 QC of all crystals complete	23 Apr 2018
9.	47507.8.002410 Ready for cosmic ray system test	19 Jul 2020

Mu2e

Schedule

25

Summary

- BaF2 fast component at 220 nm, ~ 1 ns decay time
 - Excellent timing, pileup rejection
- Development of large area photosensor to match in progress
 - Speed achieved with thinning
 - QE achieved with delta doping and ALD layers
 - Slow BaF2 component suppressed with ALD layers
 - All features are individually proven, need to be combined in one device and tested
- Demonstration required for beginning 2015 internal technology review, on track to meet this schedule

