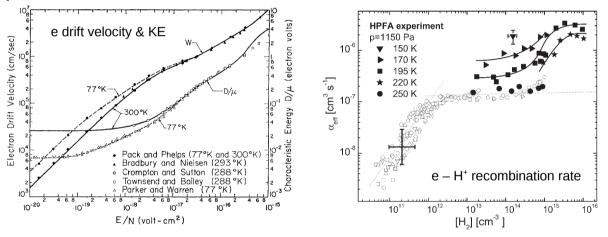
Low Temperature Operation Discsussion


B. Freemire
IIT
VCC/HCC Common Interest Meeting
July 1, 2014

Foreword

- I have not investigated this matter with any depth
 - There will be very few numbers in these slides
- My goal is to stimulate conversation and ideas about how the operating temperature affects both the vacuum and helical channels
 - What is unique?
 - What is common?
 - What needs to be addressed?

Of Interest to the HCC

- Colder operation improves virtually every aspect of plasma dynamics associated with an HPRF cavity
- Keep in mind we have RF, not DC: beneficial processes accelerate when E → 0

- H⁺ mobility

 293 K

 294 C

 295 K

 295 K

 296 C

 297 C

 298 C

 2
- e⁻ drift velocity and KE smaller (top left)
- Ion mobility smaller, i.e. less plasma loading (left)

- Larger H⁺ clusters form & recombination with e⁻ faster (left)
- e⁻ attachment rate to O₂ higher / lifetime smaller (bellow)

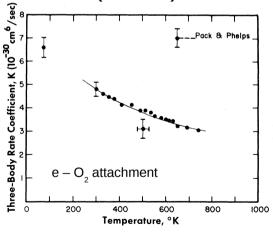


FIG. 6. Temperature dependence of the peak at 0.09 eV in the rate constant K for production of O_2 in pure O_2 , in comparison with the experiment of Pack and Phelps. The present data are normalized to those of Pack and Phelps at $300\,^{\circ}\text{K}$.

Considerations for Both

- Power consumption:
 - Resistivity of copper decreases with temperature → higher Q
- Windows:
 - Thermal conductivity of both copper and beryllium increases with decreasing temperature → better cooling of RF windows / less thermal expansion → less frequency detuning
- Cavity length / Number of cavities:
 - This does not intrinsically depend on operating temperature
 - However, there is a trade-off game one can play with cavity length vs # of cavities vs E gradient that can be alleviated somewhat through operating temperature

Of Interest to the VCC

- I scratched my head, but could not come up with any issues related to temperature that would be a challenge only for the VCC
 - Unless the HCC ends up not using RF windows
- Perhaps some ideas from the experts...?

Engineering / Cost Considerations

- Is it feasible to operate both channels at LN₃ temperature?
 - There is not a lot of room in the HCC, perhaps more in VCC (but not by much?)
 - Where would the cryostat go?
 - Where would ports for LN₂ feedthroughs fit?
- Would the cryo system cost outweigh the power consumption saved?

Discussion

- Have I missed anything?
- Is there any feeling about how big an impact the previously mentioned would make?
- Who is currently putting in actual numbers?
 - And what have been the results?
- Collaboration between groups should cut the required effort in half