
Managing LIGO Workflows on

OSG with Pegasus

Karan Vahi

USC Information Sciences Institute

vahi@isi.edu

Pegasus: Planning for

Execution in Grids

Abstract Workflows - Pegasus input workflow description

workflow “high-level language”

only identifies the computations that a user wants to do

devoid of resource descriptions

devoid of data locations

Pegasus

a workflow “compiler”

target language - DAGMan’s DAG and Condor submit files

transforms the workflow for performance and reliability

automatically locates physical locations for both workflow components
and data

finds appropriate resources to execute the components

provides runtime provenance

Condor Queue
LOCAL SUBMIT HOST

(Community resource)

DAGMan
Abstract Workflow

(Resource -independent)

Executable
Workflow

(Resources
Identified)

Ready Tasks

Pegasus

National

CyberInfrastructure

jobs

information

Typical Pegasus Deployment

Pegasus and DAGMan are client tools

No special requirements on the infrastructure

Basic Workflow Mapping

Select where to run the computations

Change task nodes into nodes with executable

descriptions

Execution location

Environment variables initializes

Appropriate command-line parameters set

Select which data to access

Add stage-in nodes to move data to computations

Add stage-out nodes to transfer data out of remote sites to

storage

Add data transfer nodes between computation nodes that

execute on different resources

Basic Workflow Mapping

Add nodes that register the newly-created

data products

Add nodes to create an execution directory

on a remote site

Write out the workflow in a form

understandable by a workflow engine

Include provenance capture steps

Pegasus Workflow Mapping

Original workflow: 15 compute nodes

devoid of resource assignment

41

85

10

9

13

12

15

Resulting workflow mapped onto

3 Grid sites:

13 data stage-in nodes

11 compute nodes (4 reduced

based on available intermediate

data)

8 inter-site data transfers

14 data stage-out nodes to long-

term storage

14 data registration nodes (data

cataloging)

9

4

83
7

10

13

12

15

60 tasks

Catalogs used for discovery

To execute on the OSG Pegasus needs to discover

Data (the input data that is required by the LIGO
workflows)

Executables (Are there any LIGO executables
installed before hand)

Site Layout (What are the services running on an
OSG site)

Discovery of Data

Replica Catalog stores mappings between logical files and their target
locations.

 LIGO tracks it’s data through LDR (based on Globus RLS). Pegasus
queries LDR

discover input files for the workflow

track data products created

data reuse

Pegasus also interfaces with a variety of replica catalogs

File based Replica Catalog

 useful for small datasets

 cannot be shared across users.

Database based Replica Catalog

useful for medium sized datasets.

can be used across users.

How to: A single client rc-client to interface with all type of replica catalogs

Discovery of Site Layout

Pegasus queries a site catalog to discover site layout

Installed job-managers for different types of schedulers

Installed GridFTP servers

Local Replica Catalogs where data residing in that site has to be

catalogued

Site Wide Profiles like environment variables

Work and storage directories

For the OSG, Pegasus interfaces with VORS (Virtual

Organization Resource Selector) to generate a site catalog for

OSG

How to: A single client pegasus-get-sites to generate site catalog for OSG,

Teragrid

Discovery of Executables

Transformation Catalog maps logical transformations to their

physical locations

Used to

discover application codes installed on the grid sites

discover statically compiled codes, that can be deployed at grid

sites on demand

LIGO Workflows

Do not rely on preinstalled application executables

These executables are staged by Pegasus, at runtime to the remote

OSG sites.

How to: A single client tc-client to interface with all type of transformation

catalogs

Simple Steps to run on OSG

1. Specify your computation in terms of DAX
Write a simple DAX (abstract workflow)generator

Java based API provided with Pegasus

Details on http://pegasus.isi.edu/doc.php

2. Set up your catalogs
Use pegasus-get-sites to generate site catalog and
transformation catalog for OSG

Record the locations of your input files in a replica client using
rc-client

3. Plan your workflow
Use pegasus-plan to generate your executable workflow that is
mapped to OSG

4. Submit your workflow
Use pegasus-run to submit your workflow

5. Monitor your workflow
Use pegasus-status to monitor the execution of your workflow

Workflow Reduction (Data Reuse)

How to: Files need to be cataloged in replica catalog at runtime. The

registration flags for these files need to be set in the DAX

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

B C

D E

F

A

f.a f.a

f.ip

f.b f.c

f.d f.e

f.out

C

E

F

A

f.a

f.ip

f.c

f.d f.e

f.out

 Abstract Workflow
File f.d exists somewhere.

Reuse it.

Mark Jobs D and B to delete
Delete Job D and Job B

Pegasus: Efficient Space Usage

Similar order of intermediate/output files

Not enough space-failures occur

Solution:

Determine which data are no longer needed and when

Add nodes to the workflow do cleanup data along the way

Benefits: can significantly decrease the amount of space

needed to run a workflow

 Input data is staged dynamically, new data

products are generated during execution

 For large workflows 10,000+ input files

 Next steps: Work on a Storage-Aware Scheduling Algorithm

How to: Dynamic cleanup by default is on. To turn it off, pass --nocleanup to

pegasus-plan

Job clustering

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

cluster _2cluster _1

B B

D

A

B B

C C C C

B B

D

A

B B

C C C C

Useful for small granularity jobs

Level-based

clustering

Vertical clustering Arbitrary

clustering

How to: To turn job clustering on, pass --cluster to pegasus-plan

Montage application

~7,000 compute jobs in

instance

~10,000 nodes in the

executable workflow

same number of clusters as

processors

speedup of ~15 on 32

processors

Small 1,200 Montage Workflow

Performance optimization through workflow restructuring

Ewa Deelman, deelman@isi.edu www.isi.edu/~deelman pegasus.isi.edu

PW A

PW B

PW C

Original Abstract

Workflow
A Particular Partitioning

New Abstract

Worfklow

Managing execution environment

changes through partitioning

How to: 1) Partition the workflow into smaller partitions at runtime using

partitiondax tool.

 2) Pass the partitioned dax to pegasus-plan using the --pdax option.

Provides reliability—can replan at partition-level

Provides scalability—can handle portions of the workflow at a time

Reliability

Job Level Retry

Leverages DAGMAN retry capabilities.

Allows us to overcome transient grid failures.

Re-planning

Partitions can be re-planned in case of errors.

Only happens after retries have been exhausted.

Try alternative data sources for staging data

Provide a rescue-DAG when all else fails

Clustering of data transfers and execution tasks, alleviates:

GridFTP server overloads

High load on head node.

Helping to meet LIGO/OSG milestones

Work done by Kent

Blackburn, David Meyers,

Michael Samidi, Caltech

1st Milestone (month

4): Run at UCSD with

DC of 25 slots for one

week

2nd Milestone (month

8): Run on OSG with

DC of 100 slots for one

week

Future OSG-focused Developments

Working towards 3rd Milestone: (month 12): reach

1000 slots peak in MonaLisa on OSG

Limit use of shared file systems / job manager fork / total

number of jobs.

Use of node clustering techniques

Support for the placement of the data and jobs in

temporary OSG directories.

Support for local disk I/O and vertical clustering of jobs

SRM/dcache support for Pegasus workflows

What does Pegasus do for an

application?
Provides an OSG-aware workflow management tool

Queries OSG services (like VORS) to get information about sites in the OSG

Deploys user executables as part of the workflow.

Reduced Storage footprint. Data is also cleaned as the workflow progresses.

Data Management within the workflow
Interfaces with the variety of Replica Catalog’s (including RLS) to discover data

Does replica selection to select replicas.

Manages data transfer by interfacing to various transfer services like RFT, Stork and clients
like globus-url-copy.

No need to stage-in data before hand. We do it within the workflow as and when it is
required.

Improves application performance and execution
Job clustering

Support for condor glidein’s

Techniques exist to minimize load on remote Grid resources during large scale execution of
workflows .

Data Reuse

Avoids duplicate computations

Can reuse data that has been generated earlier.

Pegasus developments in the next 2

years

New releases will continue to be included in VDT

Continued improvements in documentation

Development of accounting capabilitities

Improvements in the monitoring capabilities
Providing command-line and gui tools to view the progress of the
workflow

Development of new debugging and diagnostic tools
Debugging across Pegasus/DAGMan/Grid

Research areas:
Management of multiple workflows

Automatic resource provisioning

Welcome community input on future developments:
pegasus@isi.edu

Relevant Links
Pegasus: http://pegasus.isi.edu

Distributed as part of VDT (Standalone version in VDT 1.7 and later)

Can be downloaded directly from

http://pegasus.isi.edu/code.php

Interested in trying out Pegasus
Do the tutorial

http://pegasus.isi.edu/tutorial/tg07/index.html
Send email to pegasus@isi.edu, to do tutorial on ISI cluster.

Quickstart Guide

Available at http://pegasus.isi.edu/doc.php
More detailed documentation appearing soon.

Relevant Papers

http://pegasus.isi.edu/publications.php

Support lists
pegasus-support@mailman.isi.edu

We are looking for new applications and developers interested
in using our tools

