

Recent neutron irradiation experiments on HTS coated conductors and Nb₃Sn wires

> M. Eisterer Atominstitut, TU Wien Stadionallee 2, 1020 Vienna, Austria

Outline

- Neutron Irradiation
 - TRIGA reactor
 - Neutron induced damage
- HTS coated conductor for fusion magnets
 - EUROFUSION
- Nb₃Sn for accelerator magnets
 - LHC Upgrade (collaboration with CERN)
- Comparison: Coated conductors and Nb₃Sn
- Conclusions

Acknowledgments

Rainer Prokopec

Thomas Baumgartner

David Fischer

Harald Weber

Former PhD students: Johann Emhofer, Michal Chudy Samples provided by AMSC, SuperPower, SuNam Funding: EFDA/EUROFUSION, CERN

NEUTRON IRRADIATION AND RESULTING DEFECT STRUCTURE

TRIGA MARK II Reactor

Neutron flux determination in 1985: Thermal (<0.55 eV) / fast (>0.1 MeV) flux density: $6.1/7.6 \times 10^{16} \text{ m}^{-2}\text{s}^{-1} \gamma$ - radiation: ~ 1MGy/h

Core renewed in 2012: fast neutron flux density of ~ 4.1× 10¹⁶ m⁻²s⁻¹

Nickel monitor is used in each irradiation!

Neutron energy distribution

Neutron Irradiation: Created Defects (Cuprates)

Direct collisions (high energy (fast) neutrons E>0.1 MeV)

Largest defects: collision cascades $\emptyset \sim 5 \text{ nm}$ Density $5 \cdot 10^{22} \text{ m}^{-3}$ at a fluence of 10^{22} m^{-2} $(d_{av} \sim 27 \text{ nm}, B_{\phi} \sim 3 \text{ T})$

Clusters of point defects

Defect structure YBCO: small defects

Positron annihilation lifetime spectroscopy (PALS) Slovak University of Technology: Cu-O di-vacancies

Veterníková et al., J. Fusion Energy 31 (2012) 89

Table 1 Typical lifetime for bulk and defects [22-24]

Defect structure YBCO: small defects

Positron annihilation lifetime spectroscopy (PALS): Cu-O di-vacancies

Veterníková et al., J. Fusion Energy 31 (2012) 89

Cu-O di-vacancy concentration: highly non-linear with fluence!

Neutron Irradiation: Created Defects

Neutron capture reactions (low energy neutrons)

 $^{157}Gd + n \rightarrow {}^{158}Gd + \gamma \ (\sigma \sim 2x10^5 \ b) \\ Recoil energy: \sim 30 \ eV \rightarrow single displaced atom$

Shielding of thermal neutrons

Irradiation inside Cd-foil: Removes the low energy neutrons (E<0.55 eV) Better simulation of a fusion spectrum

HTS COATED CONDUCTORS FOR FUSION MAGNETS

Production of 14 MeV neutrons – deposition of energy in the "first wall" \rightarrow substantial material problems (~1 MW/m²)!

At the magnet location: Attenuation by a factor of ~ 10⁶. Scattering processes lead to a "thermalization" of the neutrons!

Neutron Energy Distribution

Samples

AMSC 344C Amperium (ASC-40)

- RABiTS template
- REBCO by MOD Y:Dy:Ba:Cu=1:0.5:2:3 (1.2 μm)
- Brass laminated
- SuperPower SCS4050/SCS4050-AP
 - Hastelloy MgO-IBAD Template
 - GdBCO by MOD (1 μm)
 - BZO nano-particles (SCS4050-AP)
- SuNam
 - SS MgO-IBAD Template
 - GdBCO by RCE-DR (1.35 µm)

Decrease in Transition Temperature

Decrease in T_c : ~2.5 K at a fluence of 10²² m⁻² (2.7%)

Critical currents of 344C (AMSC old)

H||ab @ 50 K

- Small I_c enhancement at high fields after irradiation to 0.6·10²² m⁻²
- Strong I_c reduction at higher fluences

Critical currents of 344C

H||c @ 64 K and 40 K

- Temperature dependent I_c enhancement
- Degradation starts after irradiation to 1.0·10²² m⁻² at 64 K and after 2.9·10²² m⁻² at 40 K.

Normalized Critical Currents

Maximum at low fluence.

Maximum at around 2.3·10²² m⁻². Lower temperatures: Slower degradation.

I_c-Anisotropy

344C @ 64 K / 2 T

- ab-peak heavily suppressed after first irradiation step
- Local minimums are found close to main field orientations

I_c-Anisotropy

ASC-40 @ 60 K / 5 T

- ab-peak heavily suppressed after irradiation
- Peaks in pristine tape turns into minimums after irradiation

I_c-Anisotropy

SuNam @ 5 T / 64 K

WHICH DEFECTS ARE RESPONSIBLE FOR FLUX PINNING/DEGRADATION?

Large vs. small defects

Density of collision cascades differ by a factor of about 5!

Displaced atoms

1) Without Cd-screen (fast/thermal neutron fluence: 6/5.10²¹ m⁻²)

n- γ : 5·10²¹ m⁻² · 61 kbarn · 0.145 (Gd-155) · 1/13 = 3 ·10⁻⁴ dpa n- γ : 5·10²¹ m⁻² · 254 kbarn · 0.157 (Gd-157) · 1/13 = 1.5 ·10⁻³ dpa Cacscades: 3·10²² m⁻³ · 500 / 2.7·10²⁸ m⁻³ = 5.5 ·10⁻⁴ dpa **Total: 2.3 ·10⁻³ dpa**

2) With Cd-screen (fast neutron fluence: 2.9.10²² m⁻²)

Cacscades: 1.45.10²³ m⁻³ · 500 / 2.7.10²⁸ m⁻³ = **2.6** ·10⁻³ dpa

Large vs. small defects (melt textured YBCO)

Linear scaling with total (cascades+di-vacancies+original) defect density! Different "stable dpa" similar J_c .

NB₃SN FOR ACCELERATOR MAGNETS

5 types of state-of-the-art Nb₃Sn wires

- Ta-alloyed RRP (restack-rod process), 54 sub-elements
- Ti-alloyed RRP, 108 sub-elements
- Binary IT (internal tin), 246 sub-elements
- Ta-alloyed PIT (powder-in-tube), 192 sub-elements
- Ta-alloyed PIT, 114 sub-elements

Decrease in Transition Temperature: Nb₃Sn

Decrease in T_c: ~0.35 K at a fluence of 10^{22} m⁻² (2%)

Critical Current: Nb₃Sn

Maximum of J_c at a fluence of about 2.5.10²² m⁻²

Pinning Mechanism

- Possible contributions of other pinning mechanisms¹ were investigated to explain the observed shift in the pinning function
- $f(b) = \alpha b^{p_1} (1-b)^{q_1} + \beta b^{p_2} (1-b)^{q_2}$
- p_1 and q_1 correspond to the unirradiated state, $\alpha + \beta = 1$
- Shift can be explained with a point-pinning contribution² ($p_2 = 1, q_2 = 2$) which increases with fluence

¹ D. Dew-Hughes: *Phil. Mag.* **30**, 293–305, 1974 ² T. Baumgartner et al.: *Supercond. Sci. Technol.* **27**, 015005, 2014

Point Pinning

- Possible contributions of other pinning mechanisms¹ were investigated to explain the observed shift in the pinning function
- $f(b) = \alpha b^{p_1} (1-b)^{q_1} + \beta b^{p_2} (1-b)^{q_2}$
- p_1 and q_1 correspond to the unirradiated state, $\alpha + \beta = 1$
- Shift can be explained with a point-pinning contribution² ($p_2 = 1, q_2 = 2$) which increases with fluence

¹ D. Dew-Hughes: *Phil. Mag.* **30**, 293–305, 1974 ² T. Baumgartner et al.: *Supercond. Sci. Technol.* **27**, 015005, 2014

Point Pinning

- Point-pinning contribution was evaluated as a function of fast neutron fluence for all examined wires
- Same trend for all wire types
- Steep increase at low fluences, followed by saturation behavior

Critical Currents: Comparison YBCO – Nb₃Sn

H∥c 15 T

Which compound is more robust against radiaton?

Conclusions

- The defect structure relevant for the change of J_c following neutron irradiation has to be identified and related to the damage mechanism in order to make reliable predictions of the conductor life-time in accelerator magnets.
 - Microstructural investigations
 - Comparison of different irradiation experiments
 - Modelling of stable defects
 - Annealing?
- The radiation resistance decreases at higher temperatures. Restriction to low temperatures (LH₂?).
- Similar radiation hardness for coated conductors and Nb₃Sn at low temperatures.

