

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Energy dependence of DPA damage in SC coils and figure of merit for Mu2e @ PIP-II

Vitaly Pronskikh RESMM'15, FRIB, East Lansing, Michigan 12 May 2015

Mu2e@PIP-II upgrade plans

Performance Parameter	PIP	PIP-II		111
Linac Beam Energy	400	800	MeV	mannanda
Linac Beam Current	25	2	mA	3
Linac Beam Pulse Length	0.03	0.5	msec	
Linac Pulse Repetition Rate	15	15	Hz	
Linac Beam Power to Booster	4	13	kW	
Linac Beam Power Capability (@>10% Duty Factor)	4	~200	kW	•
Mu2e Upgrade Potential (800 MeV)	NA	>100	kW	•
Booster Protons per Pulse	4.2×10 ¹²	6.4×10 ¹²		
Booster Pulse Repetition Rate	15	15	Hz	
Booster Beam Power @ 8 GeV	80	120	kW	•
Beam Power to 8 GeV Program (max)	32	40	kW]
Main Injector Cycle Time @ 120 GeV	1.33	1.2	sec	
LBNF Beam Power @ 120 GeV*	0.7	1.2	MW]
LBNF Upgrade Potential @ 60-120 GeV	NA	>2	MW	•

Table from S.Holmes, Neutrino Summit, 2014

2

- Early next decade
- 250 meter linac
- 800 MeV proton beam (2 mA)
 - -> Booster -> 8 GeV (120 kW)
 - -> Main Injector/Recycler
 - ->120 GeV (1.2 MW)

Baseline Mu2e and MARS15 simulations

cm

DPA and power density vs beam energy vs HRS material Muon yield/stopping rate vs beam energy

Figure of merit (stopping rate per DPA)

- 8 GeV 8 kW proton beam
- Au target L=16 cm D=0.6 cm (beam σ=0.1 cm)
- Bronze HRS (tungsten considered for upgrade)
- PS, TS, DS (17-foil Al stopping target)
- In MARS15 simulations: LAQGSM, thresholds: 1E-12 GeV for neutrons, 100 keV for charged h., muons, photons

DPA limit and model

DPA model: NRT (below 20 (150) MeV **ENDFB-VII/NJOY** based cross section library FermiDPA 1.0) is used. NbTi coils DPA limits incorporate KUR measured data 4-6E-5 DPA

500

5/11/2015

HRS thickness increase possibilities

DPA map

Cm

DPA map @ 1 GeV

Inner bore radius=20 cm No yield drop for R>17 cm

K.Lynch and J.Popp Muon yield change with liner radius

Power density and other limits

Power density limit: -depends on the cooling scheme -involves many other assumptions Dynamic heat load limit: -scales with the number of cooling stations

Absorbed dose limit: usually high

Quantity	MARS15, reduced	Limits	
Peak Total Neutron flux in coils, n/cm2/s	8.3*10 ⁹		Talk at
Peak Neutron flux > 100 keV in coils, n/cm2/s	3.1 * 10 ⁹		NuEact ¹ 12
Peak Power density, µW/g	17	30	
Peak DPA (FermiDPA 1.0)	4.4*10 ⁻⁵ /yr	4-6*10 ⁻⁵	July 23-28,
Peak absorbed dose over the lifetime, MGy	1.7	7	2012,
Dynamic heat load, W	42	100	Williamsburg
			💳 😤 Fermilab
6 Vitaly Pronskikh Energy dependence of DPA dar	mage in SC coils	5/11	1/2015

DPA as a function of beam energy

DPA damage and peak power density are: Largest at ~3 GeV and drops with energy below that energy Larger for bronze than for tungsten by a factor of ~3-4

🛠 Fermilab

5/11/2015

DPA and power density @ 100 kW

- DPA: Current coil design can tolerate 100 kW at proton energies < 1 GeV.
- Power density: different cooling scheme may be required.

🛠 Fermilab

5/11/2015

• Above 1 GeV (DPA) or 2 GeV almost flat with energy.

Mu-spectra and yields at TS

Constant beam intensity (not power) = $6 \cdot 10^{12}$ p/s Steepest rise in μ^- yields is between 0.5 and 2 GeV.

9 Vitaly Pronskikh | Energy dependence of DPA damage in SC coils

5/11/2015

🛠 Fermilab

Acceptance

At 0.8 GeV

Average 1-8 GeV

5/11/2015

🛠 Fermilab

Calculated using G4beamline, used with MARS15 calculated muon spectra at TS

Mu-stopping rates and Figure of Merit

- 3 years = 3.6E20 protons on target
- If only stopped muons are taken into account: 2-3 GeV

🚰 Fermilab

5/11/2015

- If also DPA is accounted for: 1-3 GeV is optimal
- FOM : 0.8 GeV is at least as good as 8 GeV

Conclusions

- Energy dependence of DPA damage, power density, muon yield and muon stopping rate is studied.
- Figure of Merit (stopped muon to DPA ratio) is proposed.
- Current coil/ tungsten HRS design can tolerate 100 kW @ energies < 1 GeV.
- FOM is largest in the 1-3 GeV range.
- FOM for 0.8 GeV is slightly better than for 8 GeV.

