Progress of COMET Superconducting Solenoid System

Makoto YOSHIDA; KEK

RESMM15@FRIB May 11, 2015

- COMET Superconducting Magnet Overview and Status
- Updates on Irradiation Tests
- Estimation of Irradiation Effects in SC Coil

The COMET Experiment

- J-PARC E21
- 8GeVx7µA
- stopping µ[−] → Muonic atom

$$B(\mu^{-}N \to e^{-}N) = \frac{\Gamma(\mu N \to eN)}{\Gamma(\mu N \to \nu N')}$$

Detect monoenergetic electrons from μ -e conversion

Physics Reach: Br<10⁻¹⁶ \rightarrow 2x10¹⁸ muon stops

 \rightarrow 10¹¹ μ -/sec

nucleus

$$\mu^{-} + (A, Z) \rightarrow v_{\mu} + (A, Z - 1)$$

 $\mu^{-} + (A, Z) \rightarrow e^{-} + (A, Z)$
 $\mu^{-} + (A, Z) \rightarrow e^{-} + (A, Z)$

Ee (MeV/c)

Requirements

Goal: 10¹¹ µ⁻/sec

- 1. Large acceptance to collect pions from production target
 - High field on pion production target
 - Graded field to focus pions forward
- 2. Reduce pion contamination / high energy muons
 - -Long solenoids from production to muon stopping target
 - Curved solenoid to select momentum / charge
- 3. Large signal acceptance. Reduce decay-in-orbit BG
 - •Graded field on muon stopping target
 - Curved solenoid to select 105MeV/c electrons

COMET Magnet System

- Pion Capture Solenoid
 5T High field on Target
 Tungsten shield inside
 Muon Transport Solenoid
 3T curved solenoid
 - □ Correction dipole 0.03T~0.06T
- Stopping Target Solenoid
 - □ $3T \rightarrow 1T$ graded field
- Spectrometer Solenoid
 - 1T curved solenoid
- Detector Solenoid
 - 1T curved solenoid

Pion Capture Solenoid Magnet System

CS Cold Mass

Coil Structure

- Aluminum stabilized SC cable
 - to reduce nuclear heating (max. 35mW/kg)
- Radiation resistant insulator, resin
- Pure aluminum strips in between layers
 - to cool down a coil inside

Al stabilized SC cable

- Size: 4.7x15mm
- Offset yield point of AI@4K: >85MPa
- RRR@0T: >500
- Al/Cu/SC: 7.3/0.9/1
- 14 SC strands: 1.15mm dia.

DESIGN PARAMETERS OF CAPTURE SOLENOID MAGNET

Item	Value							
Conductor	Aluminum stabilized SC cable Al/Cu/NbTi = 7.3/0.9/1							
Cable dimensions	$15.0 \times 4.7 \text{ mm}^2$ (without insulation)							
Cable insulation	Polyimide film/Boron-free glass cloth/BT-Epoxy prepreg.							
Magnet length	~6 meters							
Num. of coils	10							
Operation current	2700 A							
Max. field on conductor	$5.5 \text{ T} (\text{T}_{\text{cs}} = 6.5 \text{ K})^{\text{a}}$							
Stored energy	47 MJ							
Coil inner diameter	1324 mm (CS0~MS2)							
	500 mm (TS1a~TS1e)							
	800 mm (TS1f)							
Coil length	~1.6 m (CS0+CS1)							
	~1.4 m (MS1), ~0.7m(MS2),							
	~1.6 m (TS1a~TS1f overall)							
Coil layers	9 (CS0+CS1)							
	5 (MS1), 7 (MS2)							
	1~6 (TS1a~TS1f)							
Quench protection	active quench back heater							

 a T_{cs} is critical temperature at the maximum temperature.

Coil Winding

Completed coil winding of TS1b,c,d,e in FY2014.

□ cured with BT+Epoxy

resin

COMET at J-PARC

Civil Construction at J-PARC

Building construction was completed in FY2014 10

Muon Transport Solenoid

Curved solenoid with correction dipole

DESIGN PARAMETERS OF TRANSPORT SOLENOID MAGNET

Item	Value
Conductor	NbTi/Cu monolith wire
	Cu/NbTi = 6
Cable dimensions	\$\$\phi\$1.5 mm (without insulation)
(Solenoids)	\$\$\phi\$1.56 mm (with insulation)
Cable dimensions	\$\$\phi\$1.2 mm (without insulation)
(Dipole coils)	φ1.3 mm (with insulation)
Cable insulation	Polyamide-imide enamel (AIW),
	PVF (TS2-15,16, TS3)
Magnet length	~6 meters
Curvature Radius	3 meters
Num. of solenoid coils	18
Num. of dipole coils	16 pairs
Operation current	210 A (solenoids)
	175 A (dipole coils)
Field on axis	~3 T (solenoid)
	~0.056 T (dipole)
Stored energy	5.6 MJ
Total inductance	254 H
Coil inner diameter	468 mm (TS2a~TS2-16)
	600 mm (TS3)
Refrigeration	conduction from forced flow 2-phase
	LHe piping (7~10 g/s)
Quench protection	semi-active quench back heater

Key Issue

- Radiation tolerance of magnet materials
- Organic material
 Strength
 Out gas
 Motol
- Metal
 - Electrical conduction
 Thermal conduction
- Radioactivation of He

Nuclear Heating : >100W Peak dose rate in AI : ~1MGy Neutron fluence : >10²¹ n/m²

Irradiation Tests

- Insulation tape (BT+epoxy prepreg) by gamma ray at JAEA Takasaki
- Protection Diode for Muon Transport Solenoid by neutrons at Kyushu Univ.
- Stabilizer (AI, Cu) by reactor neutrons at KUR
 - □ 2010 Nov.:
 - Al+CuMg(#1)
 - □ 2011 Jan.:
 - Al+CuMg(#2) (check reproducibility)
 - 2011 Fev.: 5MW operation
 - □ 2011 Sep.:
 - 5N pure Al, Cu(#1)
 - □ 2011 Nov.:
 - Al+Y(#1), Al+Y(#2), Cu(#2)
 - □ 2012 Nov.: (check recovery & cyclic irradiation)
 - Al+Y(#1), Al+Y(#2), Cu(#2)
 - 2013 Mar.: No irradiation (check recovery)
 - Al+Y(#2), Cu(#2)
 - □ 2013 July: (cyclic irradiation)
 - Al+Ni(#1), Al+Y(#2), Cu(#2)
 - □ 2014 Apr.: (cyclic irradiation)
 - Al+Ni(#1), Al+Y(#2), Cu(#2)
 - 2014 Dec.: No irradiation (check recovery)
 - Al+Ni(#1), Al+Y(#2), Cu(#2)
 - LTL is closed in 2015

Irradiation Tests on Insulation Tape

- BT+Epoxy prepreg tape was irradiated by Co gamma at Takasaki
- Shear bond strength is not affected by irradiation at 10MGy

Radiation Effect in Diode

- Estimated irradiation on protection diodes
 10¹⁶ n/m² at PhaseII
- Diode was irradiated by neutrons at Kyushu Univ.
- Irradiation effect was observed in the forward voltage
- Influence on magnet operation is under estimation

Recovery by Anneal Effect

- All Al samples show "full" recovery of electrical resistivity after thermal cycle to RT.
- Nevertheless, Cu sample shows "partial" recovery of 82%~96%.

Resistance Degradation in COMET Phase-II

Heat Input and Degradation by Neutron Irradiation

Summary

- Construction for COMET experiment started in FY2013.
 - New building was constructed at J-PARC Hadron Experiment Facility
 - Muon Transport Solenoid (90 degree) was deivered
 - □ Coil winding is in progress
- Irradiation tests was performed on Stabilizer, Insulation tape, Diode
- Design improvements for more radiation tolerance is in progress

b/P

Low Temperature Irradiation Facility

- Kyoto Univ. Research Reactor Institute
- 5MW max. thermal power
- Cryostat close to reactor core
- Sample cool down by He gas loop
 - □ 10K 20K
- Fast neutron flux(>0.1MeV)
 1.4x10¹⁵ n/m²/s@1MW

[2] M. Okada et al., NIM A463 (2001) pp213-219

Irradiation Sample

Aluminum

- EDM cut from aluminum-stabilized SC cable
- □ 1mmx1mmx70mm (45mm Vtap)
- Al-CuMg
 - 5N AI + Cu(20ppm) + Mg(40ppm) with 10% cold work (RRR~450)

□ AI-Y

- 5N AI + 0.2%Y with 10% cold work (RRR~330-360)
- 🗆 Al-Ni
 - 5N AI + 0.1%Ni with 10% cold work (RRR~560)

Copper

- □ OFHC for SC wire, provided by Hitachi Cable Ltd.
- RRR~300
- 5N aluminum
 - provided by Sumitomo Chemical

 - □ RRR~3000
- Thermometer
 - CERNOX CX-1050-SD, CX-1070-SD
 - □ Thermocouple (AuFe+Chromel)

Summary of Neutron Irradiation

	Aluminum									Copper						
	Hora k	Guin an	AI-5N	Al+C uMg	Al+Y 2011	Al+Y 2012	Al+Y 2013	Al+Y 2014	Al+Ni 2013	Al+Ni 2014	Hora k	Guin an	OFHC 2011	OFHC 2012	OFHC 2013	OFHC 2014
RRR	2286	74	3000	450	341, 360	342, 360	-, 368	-, 367	561	566	2280	172	308 (10К)	291 (13K)	285 (13K)	277 (12K)
T _{irr} (K)	4.5	4.2	15	12	12	15	15	14	15	14	4.5	4.2	12	15	15	14
Neutron Source	Reac tor	14 MeV	Reactor							Reac tor	14 MeV	Reactor				
Φ _{tot} (n/m²) (>0.1MeV)	2 x 10 ²²	1-2 x 10 ²¹	2.6 x 10 ²⁰	2.3 x 10 ²⁰	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.7 x 10 ²⁰	2.6 x 10 ²⁰	2.7 x 10 ²⁰	2 x 10 ²²	1-2 x 10 ²¹	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.6 x 10 ²⁰	2.7 x 10 ²⁰
$rac{\Delta ho_{ m irr}}{ m x10^{-}}$	1.9	4.1	2.5	2.4	2.6, 2.8	2.7, 2.9	2.5	2.2	2.3	2.3	0.58	2.29	0.93	1.02	0.77	0.73
Recovery by thermal cycle	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	90%	80%	82%	92%	95%	96%

Degradation rate $(\Delta \rho_{irr} / \Phi_{tot})$ seems to be consistent with the previous reactor neutron irradiation. higher in 14 MeV neutron irradiation.

- Present work shows that difference in RRR (300-3000) of Al doesn't influence the degradation rate or recovery behavior.
- Partial recovery observed in Cu, but would be saturated after multiple irradiation??