OPTICAL STOCHASTIC COOLING IN IOTA

Gene Kafka (IIT/ FNAL), Valeri Lebedev (FNAL)

40 m circumference 8 dipoles 39 quadrupoles

Nonlinear Integrable Optics

Electron Lens

Optical Stochastic Cooling
HIN Hath
40. IOTA Version 6.5 OSC Insert,

- OSC was first attempted in BATES in 2007
- existing electron synchrotron
- did not receive enough support
- Will be one of several tests in IOTA
- test in small electron ring is cost effective

IOTA Parameters in OSC mode	Value
Circumference	40 m
Nominal Beam energy	100 MeV
Bending field	4.8 kG
Transverse RMS emittances,	11.5 nm
RMS momentum spread	1.23×10
SR damping times (ampl.),	$1.4 / 0.67 \mathrm{~s}$

Only longitudinal kicks are effective for cooling:

- At optimum cooling rate is:

- ~(bandwidth)/(number of slices in the sample)
- Correction signal is proportional to longitudinal position change
- Only longitudinal kicks are effective
- longitudinal cooling requires $s-x$ coupling
- transverse cooling requires $x-y$ coupling
- Pickup-to-kicker Transfer Matrix (vertical plane is uncoupled and omitted)

$$
\left[\begin{array}{c}
x \\
\theta_{x} \\
s \\
\Delta p / p
\end{array}\right]=\left[\begin{array}{cccc}
M_{11} & M_{12} & 0 & M_{16} \\
M_{21} & M_{22} & 0 & M_{26} \\
M_{51} & M_{52} & 1 & M_{56} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{x} \\
s \\
\Delta p / p
\end{array}\right]
$$

- Partial slip factor (pickup-to-kicker) describes a particle’s longitudinal displacement

$$
\tilde{M}_{56}=C \eta_{p k}=M_{51} D_{p}+M_{52} D_{p}^{\prime}+M_{56}
$$

- First order approximation of the LONGITUDINAL KICK in the pickup:

$$
\Delta \delta=\kappa \Delta s=\kappa\left(M_{51} x+M_{52} \theta_{x}+M_{56} \frac{\Delta p}{p}\right)
$$

- Cooling rates per turn:

$$
\left[\begin{array}{l}
\lambda_{x} \\
\lambda_{s}
\end{array}\right]=\frac{\kappa}{2}\left[\begin{array}{c}
M_{56}-\tilde{M}_{56} \\
C \eta_{p k}
\end{array}\right]
$$

- $x-y$ coupling outside the bypass allows for redistribution of horizontal damping rate into both transverse planes
- A zero length sample will lengthen on its way from the pickup to the kicker; to first approximation, this is a linear kick.

- Both $\Delta \mathrm{p} / \mathrm{p}$ and ε contribute to the sample lengthening $\sigma_{\Delta s}^{2}=\sigma_{\Delta s \varepsilon}^{2}+\sigma_{\Delta s p}^{2}$
- For a Gaussian distribution:

$$
\begin{aligned}
& \sigma_{\Delta s \varepsilon}^{2}=\varepsilon\left(\beta_{p} M_{51}^{2}-2 \alpha_{p} M_{51} M_{52}+\gamma_{p} M_{52}^{2}\right) \\
& \sigma_{\Delta s p}^{2}=\sigma_{p}^{2}\left(M_{51} D_{p}-M_{52} D_{p}^{\prime}+M_{56}\right)^{2}
\end{aligned}
$$

- In the linear approximation, β_{p} and α_{p} do not affect damping rates, but affect sample lengthening and consequently the cooling range

Sample lengthening in chicane

- The first approximation of cooling dynamics are determined by the:
- orbit offset, h
- path lengthening, δs
- defocusing strength of the chicane quad, Φ
- D^{*} and β^{*} in the center of the chicane
- δs is set by the delay in the amplifier
- $\Phi D^{*} h$ is set by the ratio of decrements
- The dispersion invariant, A, in the dipoles determines the equilibrium emittance.

$$
\begin{aligned}
& M_{56} \approx 2 \Delta s \\
& \tilde{M}_{56} \approx 2 \Delta s-\Phi D^{*} h, \\
& \lambda_{x} / \lambda_{s} \approx \Phi D^{*} h /\left(2 \Delta s-\Phi D^{*} h\right), \\
& \text { o. }{ }^{\circ} n_{\sigma x} \approx \frac{\mu_{0}}{k \sigma_{p}}\left(2 \Delta s-\Phi D^{*} h\right), \\
& \Phi D^{*} h \approx \frac{\mu_{0}}{2 k n_{\sigma x}} \sqrt{\frac{A^{*}}{\varepsilon}}
\end{aligned}
$$

kicker undulator

- Energy reduced from 150 MeV to reduce $\varepsilon, \sigma p$ and undulator period and length
- Operating at the coupling resonance $\mathrm{Qx} / \mathrm{Qy}=5.83 / 3.83$ reduces horizontal emittance and introduces vertical damping
- Small β^{*} is required to minimize sample lengthening due to betatron motion

OSC OPTICS SECOND ORDER OPTICS

$$
\delta \theta=\frac{\rho s L}{p c} x^{2}=\frac{S L\left(L_{s} \theta\right)^{2}}{p c} \quad \Delta L_{s}=M_{52} \delta \theta=M_{52} \frac{\rho S L L_{s}^{2} \epsilon}{p c \beta^{*}}
$$

OSC SECOND ORDER OPTICS

Using a realistic IOTA beam to develop second order optics

SAMPLE LENGTHENING DUETO

HORIZONTAL EMITTANCE

OSC SECOND ORDER OPTICS

SAMPLE LENGTHENING

 DUETO HORIZONTAL EMITTANCE

SAMPLE LENGTHENING

SAMPLE LENGTHENING

- Optics for OSC in ASTA has been developed, but the details are still being worked out; no showstoppers have been identified.
- Strong sextupoles in the bypass drastically limit the dynamic aperture in the ring. This must be corrected.
- will aim to demonstrate cooling with and without an amplifier; the latter having a damping time that exceeds SR damping by about an order of magnitude

