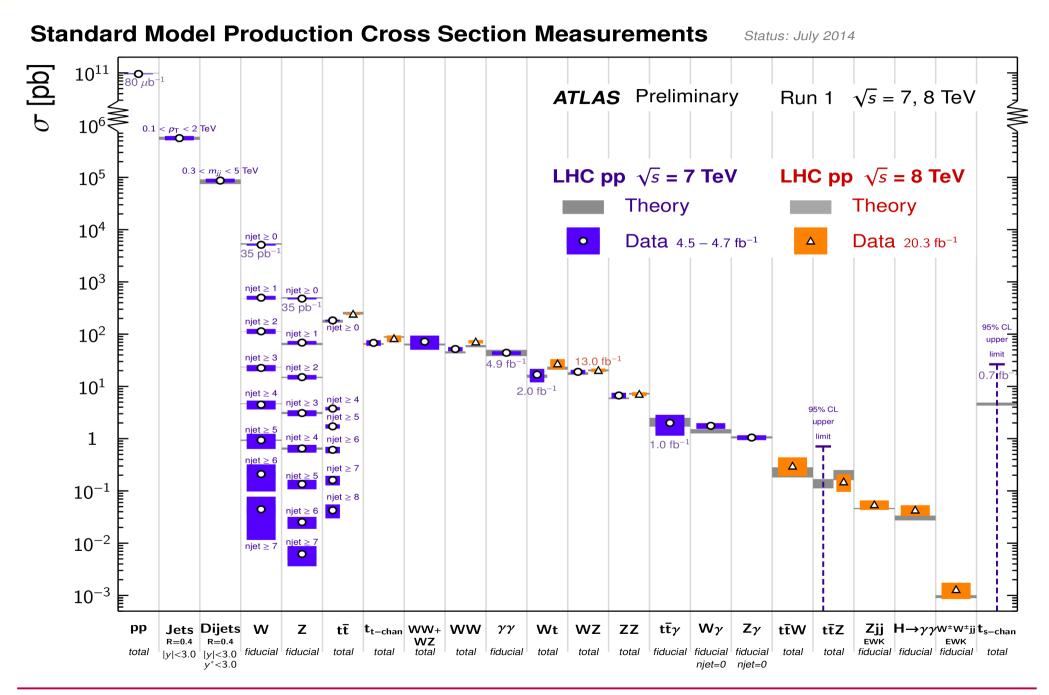
BSM Physics in Run 2 of the LHC

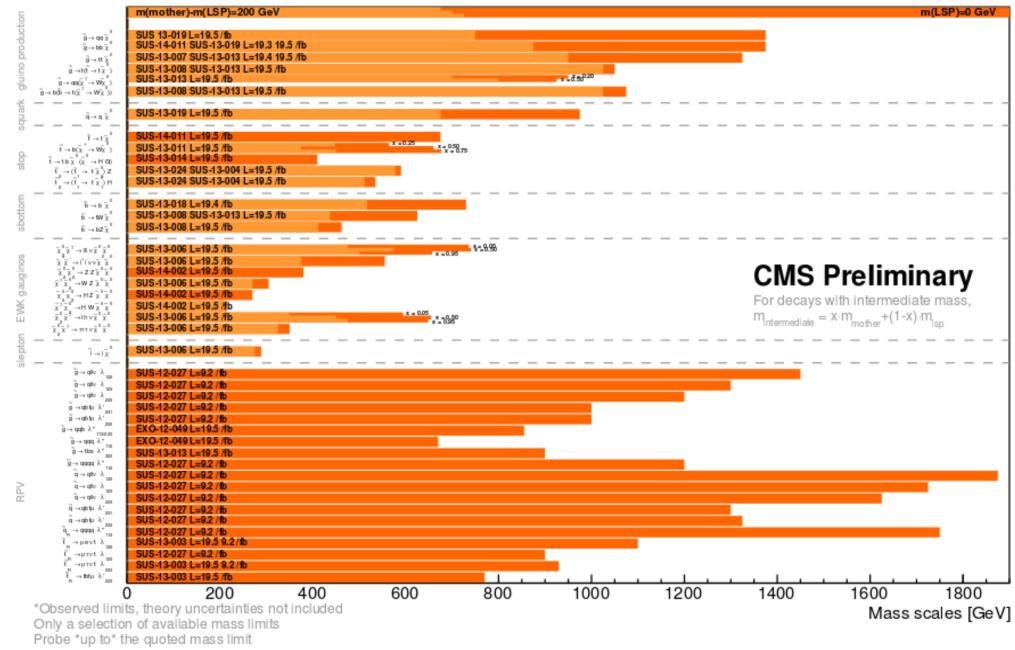
Nature Guiding Theory Workshop, August 21 - 23, 2014, FNAL


Sanjay Padhi

FNAL LPC/University of California, San Diego

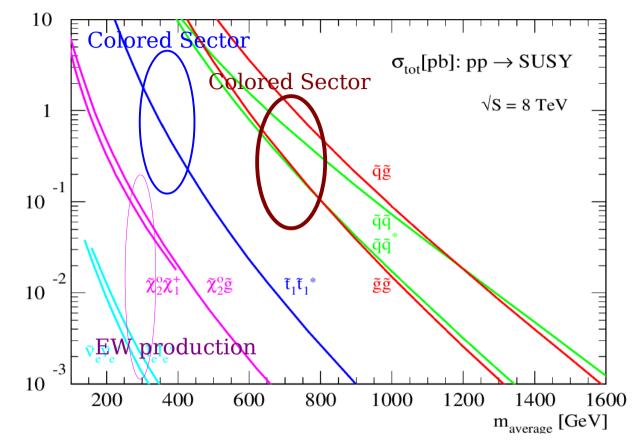
Outline

- Re-discovery of the Standard Physics at the LHC
- Review of Run-1 BSM studies
 - Colored Sector
 - Electroweak Sector
- SUSY/BSM Physics in Run-2 of the LHC
 - Naturalness as it stands
 - SUSY Colored and weak sectors
 - Other BSM Physics searches
- Summary and conclusion


Rediscovery of the SM at the energy frontier

SUSY/BSM searches at the energy frontier

Summary of CMS SUSY Results* in SMS framework


ICHEP 2014

Aug. 22nd, 2014, "Nature Guiding Theory Workshop, FNAL"

Search for BSM (Supersymmetry)

SUSY search strategy was driven by cross section and thus luminosity

Early analyses were dominated by broad inclusive searches

- mainly gluino and squark production

Increase in luminosity gave access to rarer channels

- Also with added motivation from *Natural* SUSY paradigm

It was quickly realized to develop exclusive search modes to cover full spectrum

SUSY Status

- Various constrained SUSY models like mSUGRA. CMSSM were severely put under pressure by the the LHC limits!
- Experiments were bound to define new benchmarks and use simplified SUSY models in order to present the results and its interpretation
- Aided by the discovery of a Higgs boson, the focus of the experimental search strategy and corresponding interpretation moves towards
 "Natural SUSY" scenarios:
 - Expect to see dedicated 3rd generation searches
 - Electroweak studies (also with Higgs in the final state)

In this talk, I plan to walk you through few key studies:

- Areas of interest, Academic Exercises & Expectations from Run-2

Let us ignore experimental challenges such as:

PileUp, Higher trigger rates (soft and displaced phys.), Boosted Jets, etc.

BSM/SUSY Search strategy

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Searches are defined (explore MET +X signatures):

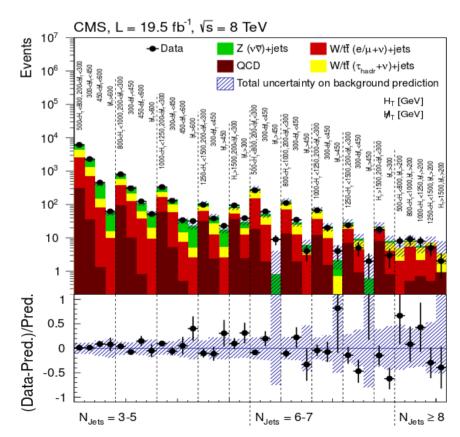
- Categorized by the number of leptons in final state
- Missing energy signatures
- Many include jet requirements to be sensitive to strong production
- Direct stop/sbottom production using b-tag jets
- Electroweak production Sensitive to leptonic final state

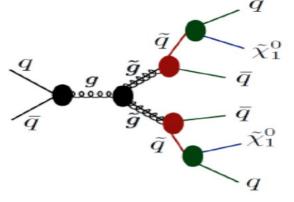
SUSY/BSM Colored Sector Studies

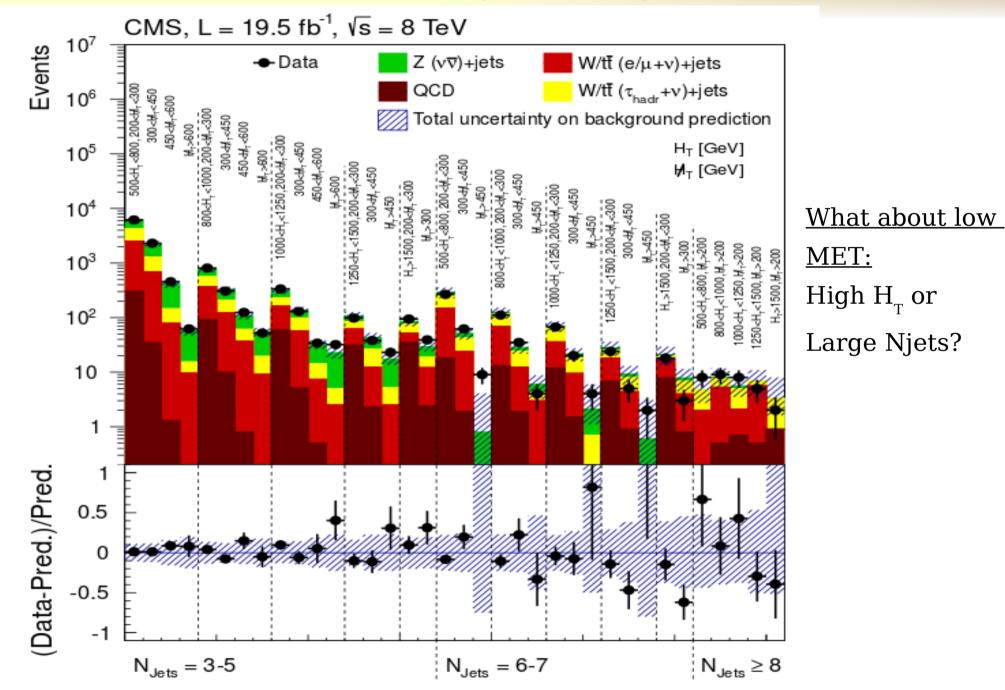
Inclusive search for multijets with large MET signature.

Baseline Selection:

- \bullet At least 3 jets with $\rm p_{_T} > 50$ GeV, $|\rm I| < 2.4$
- |] [] [$(J_n, MET)| > 4.0, n=1,2, 3$

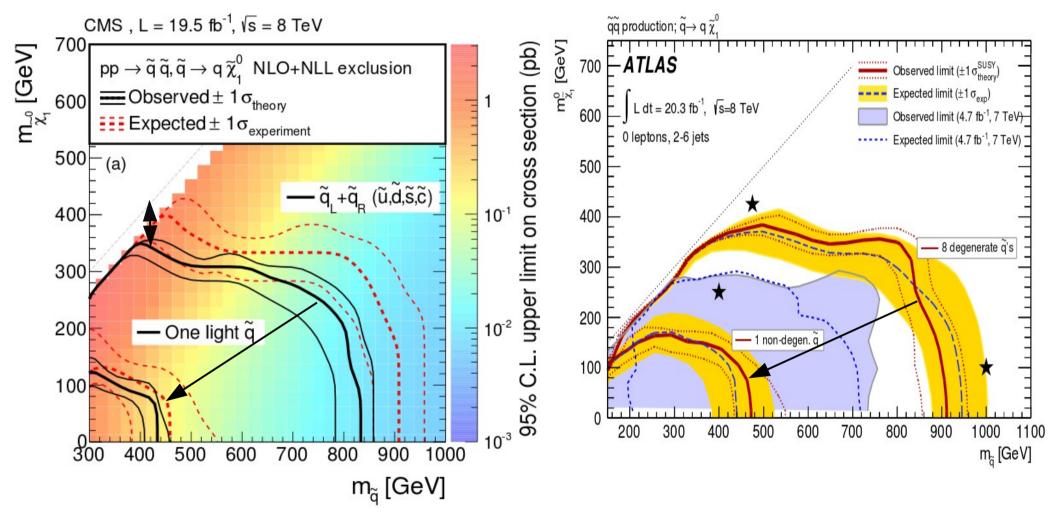

[Veto events in which $H_{_{\rm T}}^{_{\rm miss}}$ is aligned with jets in the transverse plane]


- $H_{_{\rm T}} > 500 \text{ GeV}, \text{MET} > 200 \text{ GeV}$
- Veto isolated leptons with $p_{_{\rm T}} > 10 \text{ GeV}$
- Isolated Track Veto with pT > 15 GeV

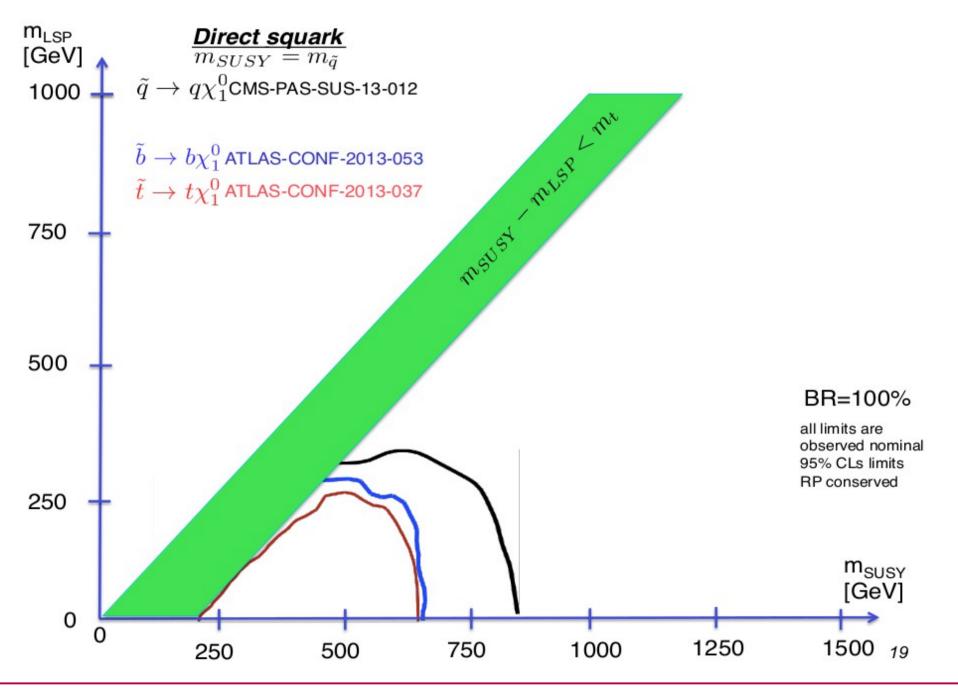

<u>Major backgrounds</u>

- Z 🛛 🗤 + Jets
- W + Jets (where either e/O is lost or W O OO)
- ttbar + Jets (same as above)

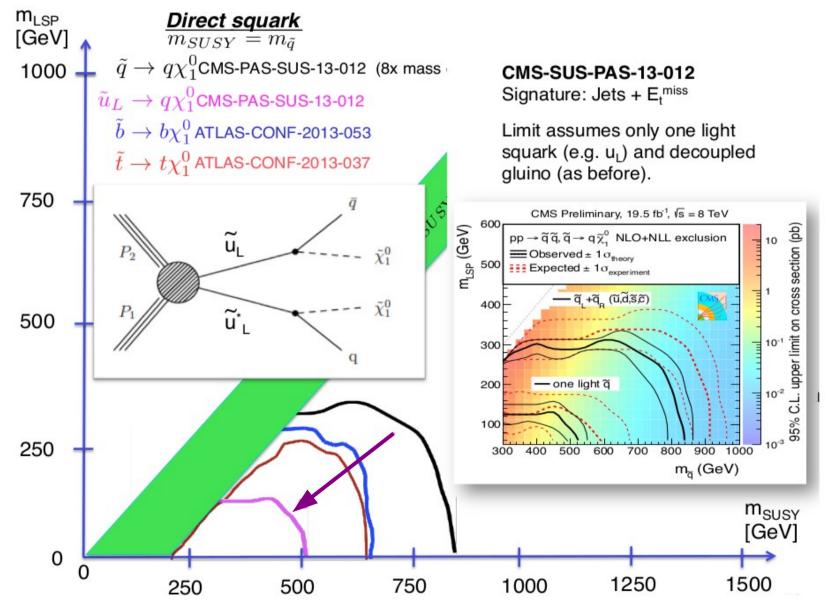
QCD

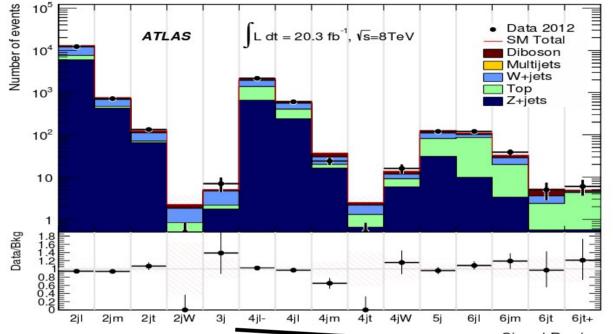


10


ATLAS study

Requirement	Signal Region						
rtequirement	2jl	2jm	2jt	2jW	3j	4jW	
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160						
$p_{\rm T}(j_1) \; [{\rm GeV}] >$				130)		
$p_{\rm T}(j_2) \; [{\rm GeV}] >$				60)		
$p_{\rm T}(j_3) [{\rm GeV}] >$			_		60	40	
$p_{\rm T}(j_4) \; [{\rm GeV}] >$			_			40	
$\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$				0.4	1		
$\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{T}^{\text{miss}})_{\min} >$			_			0.2	
W candidates	_			$2(W \to j)$	_	$(W \rightarrow j) + (W \rightarrow jj)$	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \; [{\rm GeV}^{1/2}] >$	8 15				_		
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	_			0.25	0.3	0.35	
$m_{\rm eff}$ (incl.) [GeV] >	800	1200	1600	1800	2200	1100	

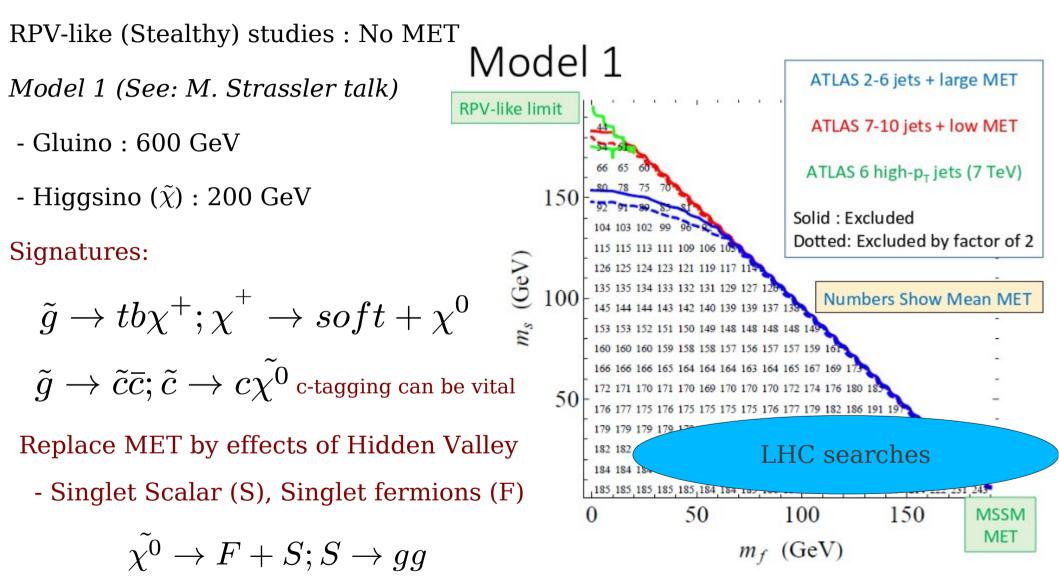

Limits on SUSY squark sector


Assuming 8-fold degeneracy (100% BR) - Squarks are excluded ~900 GeV in mass With single light squark \rightarrow limits are ~450 GeV Compressed regions with low $\Delta m = m(\tilde{q}) - m(\tilde{\chi^0})$ are also important

CMS (ATLAS)1st & 2nd generation squark limits are only better than the 3^{rd} generation when assuming BR=100%! Eight-fold mass degeneracy

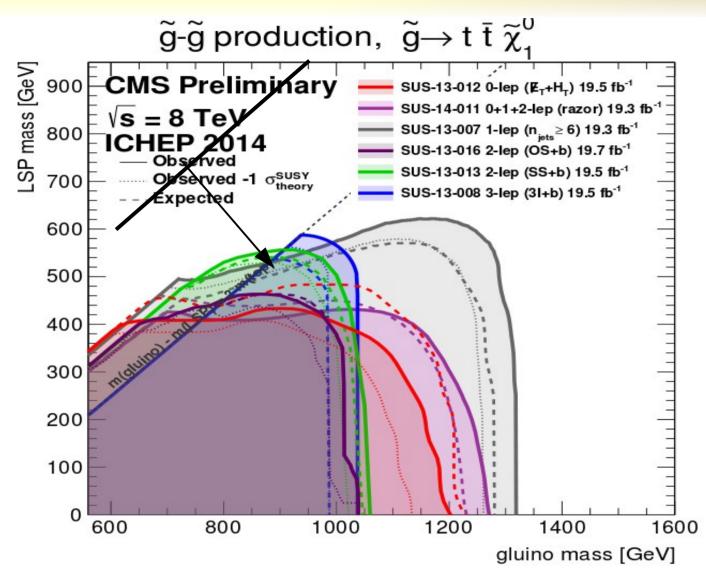
Inclusive search using hadronic jets and MET (ATLAS Study)

Signa	l Region


Signal Region	2jl	2jm	$_{2jt}$	$_{2jW}$	3j
Diboson	879	72	13	0.41	0.36
$Z/\gamma^* + \text{jets}$	6709	552	103	1.2	5.5
W+jets	5472	303	59	0.82	3.1
$t\bar{t}(+\text{EW}) + \text{single top}$	1807	54	9	0.14	0.85
	Fitted b	oackground e	vents		
Diboson	900 ± 400	70 ± 40	13 ± 6	0.41 ± 0.21	0.36 ± 0.18
$Z/\gamma^* + jets$	5900 ± 900	430 ± 40	65 ± 8	$0.39^{+0.41}_{-0.39}$	1.7 ± 1.0
W+jets	4500 ± 600	216 ± 26	40 ± 6	0.98 ± 1.0	2.5 ± 0.9
$t\bar{t}(+\text{EW}) + \text{single top}$	1620 ± 320	47 ± 8	6.5 ± 2.2	$0.44^{+0.84}_{-0.44}$	$0.42^{+0.51}_{-0.42}$
Multi-jets	115^{+140}_{-115}	$0.41^{+1.37}_{-0.41}$	$0.14\substack{+0.44\\-0.14}$	$0.03_{-0.03}^{+0.03}$	$0.03 \substack{-0.42\\+0.06\\-0.03}$
Total bkg	13000 ± 1000	760 ± 50	125 ± 10	2.3 ± 1.4	5.0 ± 1.2
Observed	12315	715	133	0	7
$\langle \epsilon \sigma \rangle_{\rm gps}^{95}$ [fb]	60	4.3	1.9	0.09	0.40

Aug. 22nd, 2014, "Nature Guiding Theory Workshop, FNAL"

Inclusive search using hadronic jets and MET (CMS Study)


Selection		$Z \to \nu \overline{\nu}$	tī/W	tī/W	QCD	Total	Data	
N _{Jets}	$H_{\rm T}$ [GeV]	∄ _T [GeV]		\rightarrow e, μ +X	$\rightarrow \tau_h{+}X$		background	
6–7	500-800	200–300	22.7±6.4	133 ± 59	117±25	18.2±9.2	290±65	266
6–7	500-800	300-450	9.9±3.2	22±11	$18.0 {\pm} 5.1$	1.9 ± 1.7	52±12	62
6–7	500-800	> 450	$0.7{\pm}0.6$	$0.0^{+3.2}_{-0.0}$	$0.1\substack{+0.5 \\ -0.1}$	$0.0^{+0.1}_{-0.0}$	$0.8^{+3.3}_{-0.6}$	9
6–7	800-1000	200–300	9.1±3.0	56 ± 25	$46{\pm}11$	13.1 ± 6.6	124±29	111
6–7	800-1000	300-450	$4.2{\pm}1.7$	$10.4{\pm}5.5$	12.0 ± 3.6	$1.9{\pm}1.4$	28.6 ± 6.9	35
6–7	800-1000	>450	$1.8{\pm}1.0$	$2.9{\pm}2.5$	$1.2{\pm}0.8$	$0.1\substack{+0.4 \\ -0.1}$	$6.0{\pm}2.8$	4
6–7	1000-1250	200–300	$4.4{\pm}1.7$	24±12	29.5 ± 7.8	11.9±6.0	70±16	67
6–7	1000-1250	300-450	$3.5{\pm}1.5$	$8.0{\pm}4.7$	$8.6{\pm}2.7$	1.5 ± 1.5	21.6 ± 5.8	20
6–7	1000-1250	> 450	$1.4{\pm}0.8$	$0.0\substack{+3.6 \\ -0.0}$	$0.6\substack{+0.8\\-0.6}$	$0.1\substack{+0.4 \\ -0.1}$	$2.2^{+3.8}_{-1.1}$	4
6–7	1250-1500	200–300	$3.3{\pm}1.4$	$11.5 {\pm} 6.5$	$6.4{\pm}2.7$	6.8±3.9	28.0±8.2	24
6–7	1250-1500	300-450	$1.4{\pm}0.8$	$3.5{\pm}2.6$	$3.5 {\pm} 1.9$	$0.9^{+1.3}_{-0.9}$	9.4±3.6	5
6–7	1250-1500	> 450	$0.4{\pm}0.4$	$0.0\substack{+2.5\\-0.0}$	$0.1\substack{+0.5 \\ -0.1}$	$0.1\substack{+0.3 \\ -0.1}$	$0.5^{+2.6}_{-0.4}$	2
6–7	>1500	200–300	$1.3{\pm}0.8$	$10.0{\pm}6.9$	$2.0{\pm}1.2$	$7.8{\pm}4.0$	21.1±8.1	18
6–7	>1500	>300	$1.1{\pm}0.7$	3.2±2.8	$2.8{\pm}1.9$	$0.8^{+1.1}_{-0.8}$	7.9 ± 3.6	3
≥ 8	500-800	>200	$0.0\substack{+0.8 \\ -0.0}$	1.9±1.5	$2.8{\pm}1.4$	$0.1^{+0.4}_{-0.1}$	$4.8^{+2.3}_{-2.1}$	8
≥ 8	800-1000	>200	$0.6 {\pm} 0.6$	4.8±2.9	2.3 ± 1.2	$0.5\substack{+0.9 \\ -0.5}$	$8.3^{+3.4}_{-3.3}$	9
≥ 8	1000-1250	>200	$0.6{\pm}0.5$	$1.4^{+1.5}_{-1.4}$	2.9 ± 1.3	$0.7^{+1.0}_{-0.7}$	$5.6^{+2.3}_{-2.1}$	8
≥ 8	1250-1500	>200	$0.0\substack{+0.9 \\ -0.0}$	5.1 ± 3.5	$1.4{\pm}0.9$	$0.5\substack{+0.9\\-0.5}$	$7.1^{+3.8}_{-3.6}$	5
≥ 8	>1500	>200	$0.0^{+0.7}_{-0.0}$	$0.0\substack{+4.2 \\ -0.0}$	$2.4{\pm}1.4$	$0.9^{+1.3}_{-0.9}$	$3.3^{+4.7}_{-1.7}$	2

Low MET and large Njet/ H_{T}

Low MET and multi-jet signatures \rightarrow largely unexplored

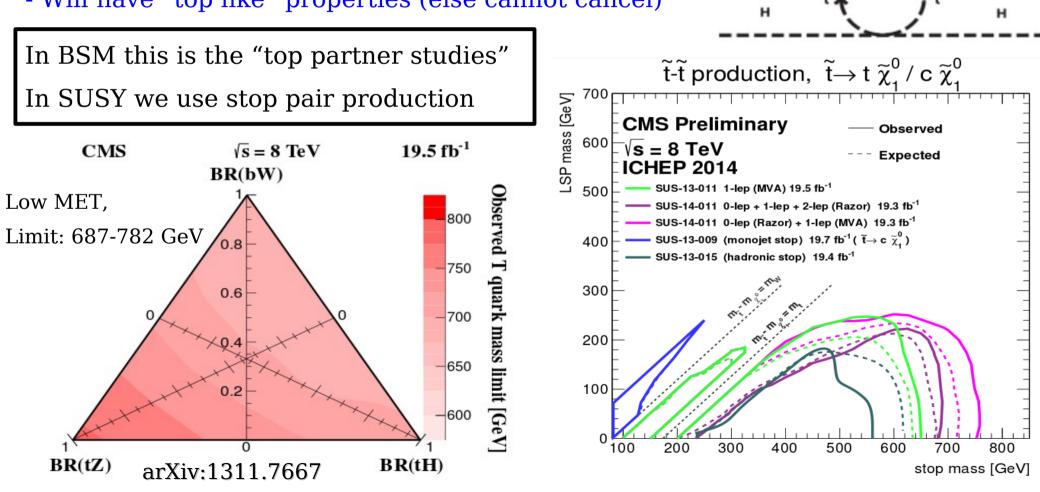
Gluino pair productions

Gluinos with mass ~ 1.3 TeV are excluded (assuming large "virtual" stop masses) For LSP mass = 50 GeV:

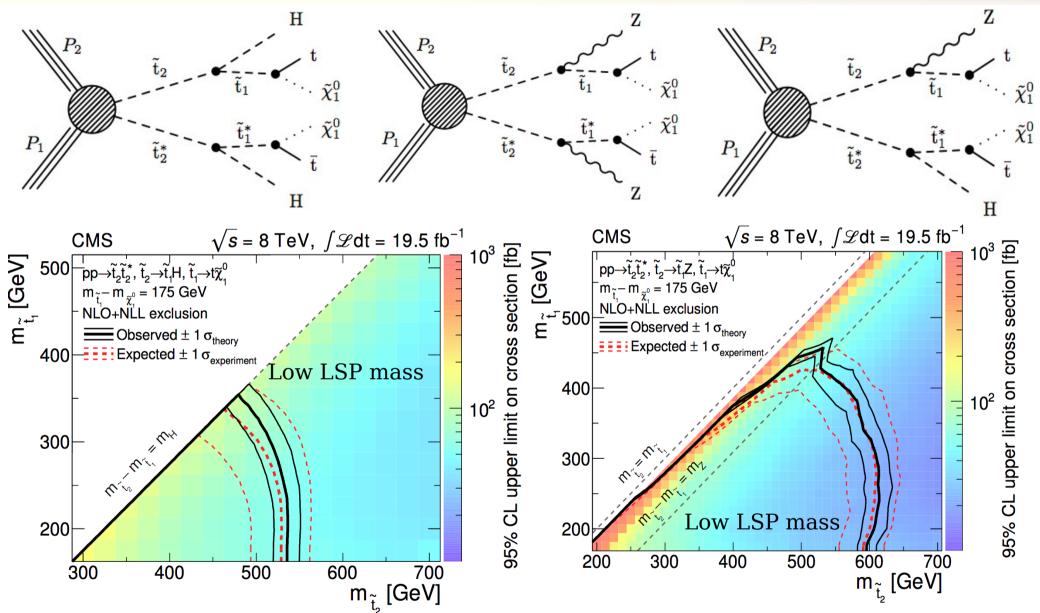
Gluino mass ~ 1.3 (1.1) TeV excluded with stop mass ~ 700(300) GeV

Gluino pair productions

CMS-SUS-13-007; 1lep, Large H_T /Njet (Low MET regions are also important)


$H_{\rm T} > 400 {\rm GeV}$							I	$N_{\rm b} \ge$		1
150 5 1 5 6 6 11	-					Obs.		Pred.	\pm stat.	± syst.
$150 < \not\!\!E_T < 250 \text{GeV}$						94	MT	92	± 5	± 14
$250 < \not\!\!E_T < 350 \mathrm{GeV}$						16	MT	14.5	± 1.3	± 2.5
$350 < \not\!\!E_T < 450 \text{GeV}$						2	MT	2.6	± 0.4	± 0.7
$E_T > 450 \text{ GeV}$						0	MT	0.8	± 0.2	± 0.4
$H_{\rm T} > 500 {\rm GeV}$			$N_{\rm b} =$					$N_{\rm b} \ge$		
	Obs.		Pred.	\pm stat.	± syst.	Obs.		Pred.	\pm stat.	\pm syst.
$150 < E_T < 250 \mathrm{GeV}$	350	LS	320	± 16	± 14	84	LS	71.1	± 3.5	\pm 8.3
$250 < E_T < 350 \text{GeV}$	55	LS	58.1	\pm 7.2	± 5.3	16	LS	12.4	± 1.6	± 1.8
$350 < E_T < 450 \text{GeV}$	10	LS	15.4	± 4.3	± 3.1	2	LS	3.1	± 0.9	± 0.7
$E_T > 450 \text{ GeV}$	1	LS	0.7	$^{+2.3}_{-0.3}$	+2.0 -0.2	0	LS	0.1	$^{+0.5}_{-0.0}$	+0.4 -0.0
$H_{\rm T} > 750 {\rm GeV}$			$N_b =$	2				$N_b \ge 3$		
$H_{\rm T} > 750 {\rm GeV}$	Obs.		Pred.	\pm stat.	\pm syst.	Obs.		Pred.	\pm stat.	\pm syst.
$150 < E_T < 250 \mathrm{GeV}$	141	LS	114.8	± 9.4	± 6.9	37	LS	25.9	± 2.1	± 3.1
$150 < t_T < 250 \text{ GeV}$	141	1.5	114.0	1 9.4	1 0.9	57	MT	31.8	± 2.7	± 4.8
$250 < E_T < 350 GeV$	26	LS	26.3	± 4.9	± 2.9	12	LS	5.9	± 1.1	± 1.0
	20	MT	37.9	± 4.0	± 3.5	12	MT	8.5	± 0.9	± 1.6
$350 < E_T < 450 \text{GeV}$	9	LS	10.6	$^{+3.8}_{-3.7}$	± 2.4	2	LS	2.1	± 0.7	± 0.5
	9	MT	9.4	± 1.4	± 2.7	2	MT	1.9	± 0.3	± 0.6
$E_T > 450 \text{GeV}$	1	LS	0.6	$^{+3.0}_{-0.2}$	$^{+1.9}_{-0.2}$		LS	0.1	$^{+0.7}_{-0.0}$	$^{+0.4}_{-0.0}$
	1	MT	3.1	± 0.2	± 1.5	0	MT	0.7	± 0.2	± 0.4
U > 1000 C-M			$N_{\rm b} =$	2			$N_b \ge 3$			
$H_{\rm T} > 1000 {\rm GeV}$	Obs.		Pred.	\pm stat.	\pm syst.	Obs.		Pred.	\pm stat.	\pm syst.
150 C T C 250 C -N	4.0	LC	42.2	1.6.1	127	14	LS	10.4	± 1.5	± 1.5
$150 < E_T < 250 \text{GeV}$	46	LS	43.2	± 6.1	± 3.7	14	MT	11.1	± 1.6	± 1.8
250 - 1 - 250 - 31	11	LS	9.9	\pm 3.1	± 1.7	4	LS	2.4	± 0.7	± 0.5
$250 < \not\!\!E_T < 350 \mathrm{GeV}$	11	MT	15.1	± 2.5	± 1.9	4	MT	3.6	± 0.6	± 0.8
		LS	2.2	+2.3	+2.2		LS	0.4	+0.5	+0.4
$350 < E_T < 450 GeV$	4	MT	4.7	$^{-1.6}_{\pm 0.9}$	$\pm^{-0.7}$	1	MT	0.9	$^{-0.3}{\pm 0.2}$	$^{-0.2}{\pm 0.4}$
		LS	0.1	+2.2	+3.5		LS	0.0	+0.4	+0.7
$E_T > 450 \text{GeV}$	1	MT	2.0	$^{-0.1}{\pm 0.5}$	$^{-0.1}_{\pm 1.1}$	0	MT	0.5	$^{-0.0}{\pm 0.1}$	$^{-0.0}{\pm} 0.3$
		IVII	2.0	± 0.5	± 1.1		IVII	0.0	± 0.1	± 0.5

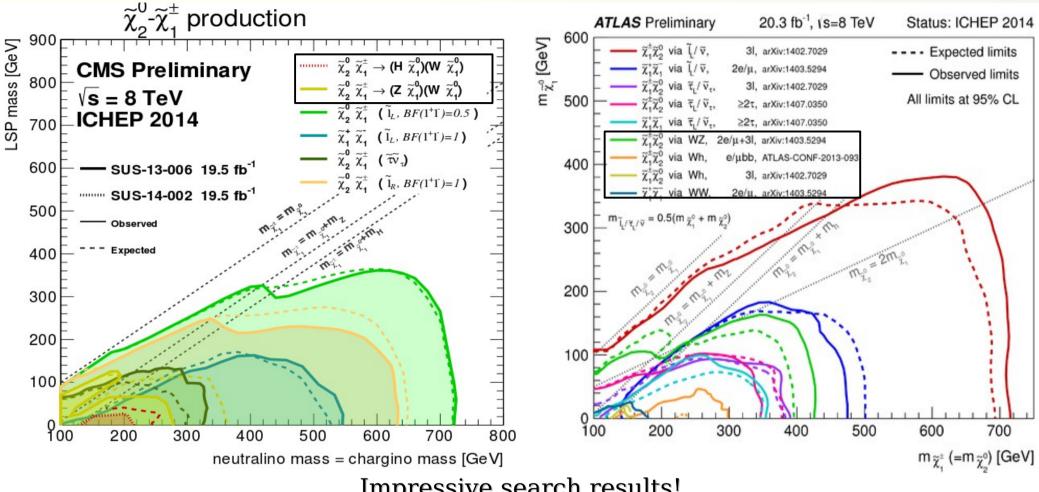
Aug. 22nd, 2014, "Nature Guiding Theory Workshop, FNAL"


Top partners or SUSY stops

In order to stabilize/cancel the Higgs mass from emission and absorption of top pairs:

- We expect new physics will emit something with color
- Will have "top like" properties (else cannot cancel)

Other third generation SUSY studies



Missed opportunity: Triangular plot could provide generic BR based exclusion

Incorporating constraints from lighter states (previous slide) could be useful

SUSY Electroweak Productions

SUSY Electroweak Productions

Impressive search results!

Sleptons in the cascade provide lepton rich final states \rightarrow enhance the reach

 \rightarrow From naturalness point of view, not sure if there is a need?

Limits on direct production of EWinos are still weak (Opportunity for Phase-II) Assuming LEP limits + "realistic BR" for neutralinos \rightarrow current limits are negligible

Standard Model WW issues

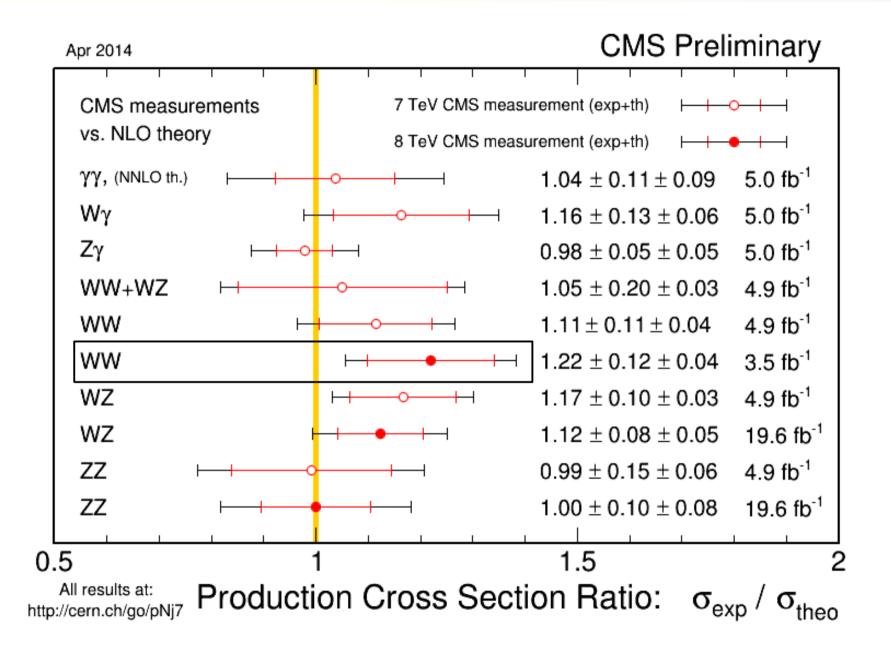
The W^+W^- cross section measured by the ATLAS collaboration at 7 TeV & 4.7 $fb^{\text{-1}}$

- 53.4 ± 2.1 (stat) ± 4.5 (syst) ± 2.1 (lumi) pb [ATLAS-CONF-2012-025]
- SM NLO prediction is: $45.1 \pm 2.8 \text{ pb}$

The W^+W^- cross section measured by the CMS collaboration at 7 TeV & 4.92 $fb^{\text{-1}}$

- 52.4 ± 2.0 (stat) ± 4.5 (syst) ± 1.2 (lumi) pb [CMS-PAS-SMP-12-005]

- SM NLO prediction is: $47.0 \pm 2.0 \text{ pb}$


The W^+W^- cross section measured by the CMS collaboration at 8 TeV & 3.54 fb⁻¹

- 69.9 ± 2.8 (stat) ± 5.6 (syst) ± 3.1 (lumi) pb [CMS-PAS-SMP-12-013]
- SM NLO prediction is: 57.3 (+2.4 -1.6) pb

Both ATLAS and CMS 7 TeV results are consistent with each other

- They disagree with the SM prediction and is bit "high" CMS 8 TeV result is even more discrepant with the SM prediction

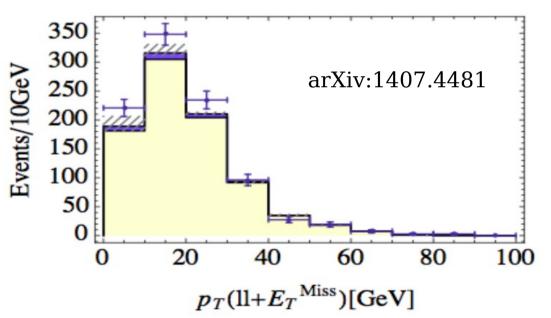
Standard Model - WW issues

Standard Model - WW issues

Both experiments observed a total cross section $\sim 15 - 20\%$ above the SM

- Individual diagreement is at ${\sim}1{\text{-}}2\sigma$ level, combined at 3σ

Excess seems to be at moderate $p_{_{\rm T}}$ and invariant mass, tails are very well modeled


- Such diagreement is absent for SM WZ and ZZ final states from both exp.

The issue is also related to Jet Veto used by the experiments at a given order:

 $\epsilon_{\mathrm{W^+W^-}}^{\mathrm{MC}} imes \epsilon_{\mathrm{Z}}^{\mathrm{data}}/\epsilon_{\mathrm{Z}}^{\mathrm{MC}}$

This can be of various reasons:

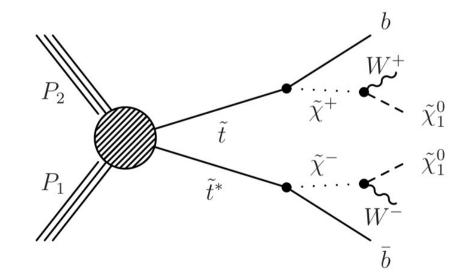
- a statistical fluctuation
- "unexplained effects"
- a new physics signature

Moreover, ratios between 13/14 TeV measurement to 7/8 TeV can further cancel various systematics.

Resummation increases the differences at low pt

Implications of WW anomaly

Assuming this can be from new physics such as SUSY


The dominant contribution (with moderately low cross section) can fit well with this anomaly can be from SUSY electroweak productions.

$$\chi_1^+\chi_1^- \to W^+W^-\chi_1^0\chi_1^0$$

Similarly, low mass stops compressed with charginos can also give such anomalies

There is lot happening in the literature. Most significant contributions are from: P. Meade et. al:

- a) e-Print: arXiv:1407.4481
- b) Natural SUSY in Plain Sight
 - arXiv:1406.0848
- c) Casting Light on BSM Physics with SM Standard Candles
 - arXiv:1304.7011

SUSY/BSM Physics in Run-2 of the LHC

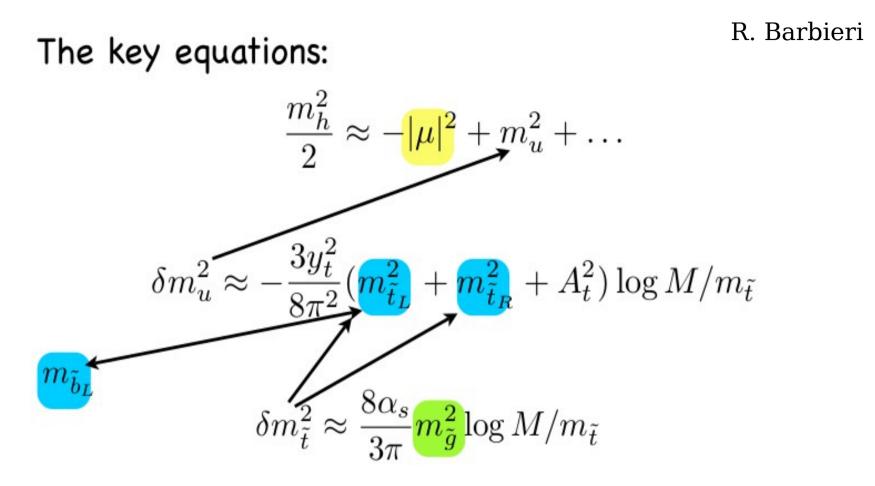
Naturalness in Supersymmetry

$$\frac{1}{2}M_Z^2 = \underbrace{\frac{(m_{H_d}^2 + \Sigma_d) - (m_{H_u}^2 + \Sigma_u)\tan^2\beta}{(\tan^2\beta - 1)}}_{\text{``Tuned'' due to the Higgs mass - Colored sector}} \underbrace{\text{SUSY weak sector}}_{\text{``SUSY weak sector}}$$

- Individual terms on right side should be comparable in magnitude

- "Large" cancellations are "unnatural"

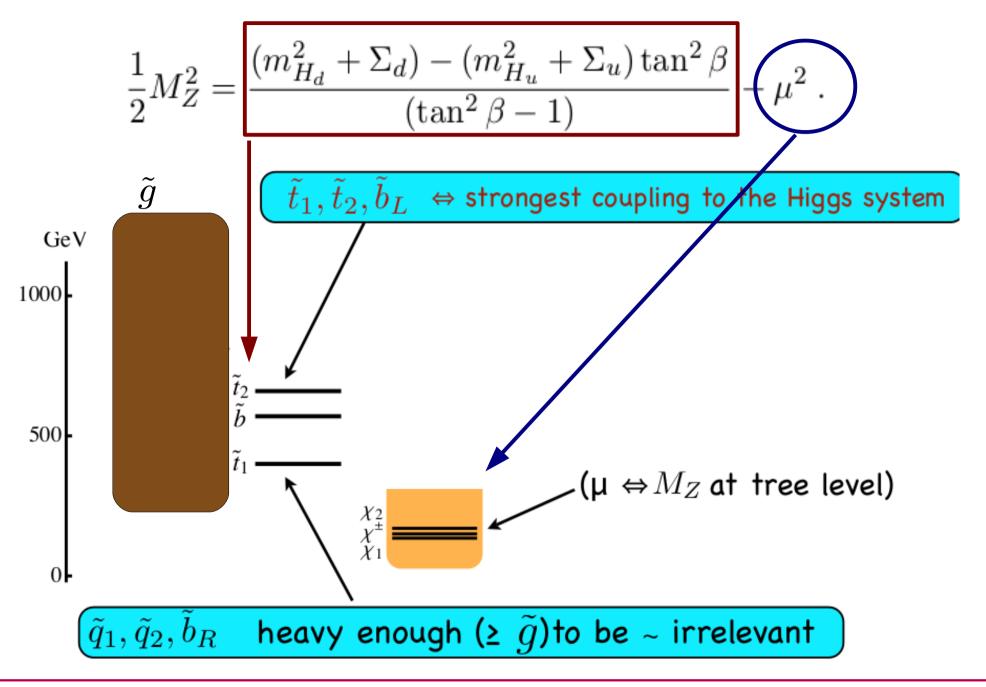
-
$$|\mu|$$
 can be a measure of naturalness
 Σ - arises from radiative correction $\longrightarrow \Sigma_u \sim \frac{3f_t^2}{16\pi^2} \times m_{\tilde{t}_i}^2 \left(\ln(m_{\tilde{t}_i^2}/Q^2) - 1\right)$
or $\Sigma \simeq 1/2M^2 \rightarrow m_Z \simeq 500$ GeV


For, $\Sigma pprox 1/2M_Z^2
ightarrow m_{ ilde{t}_i} pprox 500~{
m GeV}$

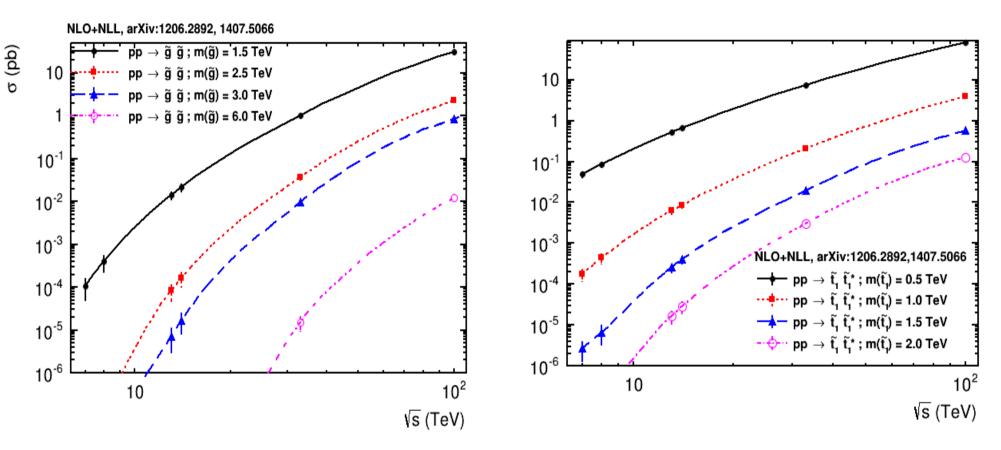
Assuming $\mu \sim 150$ (200) GeV \rightarrow Mass(stop) ~ 1 (1.5) TeV

Other heavier Higgs can easily be in the TeV mass range and is perfectly natural:

$$m_A^2 \simeq 2\mu^2 + m_{H_u}^2 + m_{H_d}^2 + \Sigma_u + \Sigma_d$$


Naturalness in Supersymmetry

to be made more precise in any given SB-mediation scheme


see Dimopoulos, Giudice for SUGRA-mediation

Naturalness in Supersymmetry

SUSY in Run-2 of the LHC

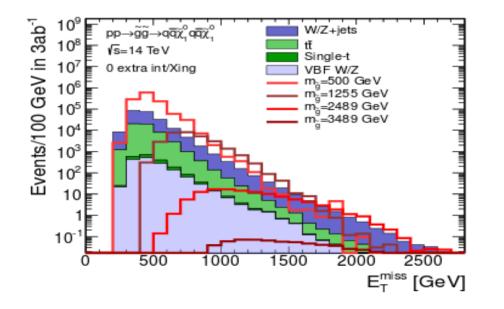
Large gain in cross section during LHC Run-2 (gluinos/stops)

Gain in order's of magnitude in cross section.

With high luminosity upgrades:

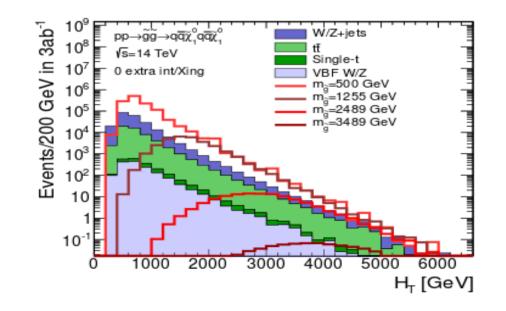
 \rightarrow One should be able to access large mass ranges

Inclusive SUSY studies - $ilde{g} ilde{g}$


Hadronic decay modes

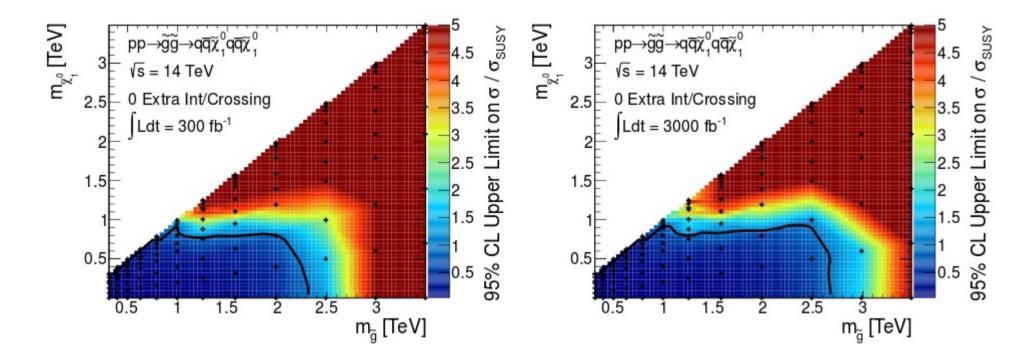
Preselection:

- Veto leptons with $\rm p_{_T} > 10~GeV$
- MET > 100 GeV
- At least 4 jets with $\rm p_{_T} > 60~GeV$
- Reduce QCD: MET/ $\sqrt{H_{T}}$ > 15 GeV^{1/2}


Optimization over MET and ${\rm H}_{_{\rm T}}$

$$Z \to \nu \nu, W(\to l \nu), t \bar{t}$$

Cohen, Golling, Hance, Henrichs, Howe, Loyal, Padhi, Wacker SNOW13-00193, arXiv:1310.0077, arXiv:1311.6480


				$m_{\overline{g}}$ [GeV]		
Cut	V+jets	$t\bar{t}$	Total BG	500	1255	2489
Preselection	2.07×10^7	2.47×10^7	4.54×10^7	3.08×10^7	1.03×10^5	173
$E_T^{\rm miss}/\sqrt{H_T}>15{\rm GeV}^{1/2}$	4.45×10^5	1.20×10^5	5.65×10^5	1.34×10^6	3.14×10^4	95
$p_{\rm T}^{\rm leading} < 0.4 \times H_T$	1.69×10^5	5.16×10^4	2.21×10^5	7.62×10^5	1.68×10^4	52.9
$E_T^{ m miss} > 450~{ m GeV}$	4.73×10^{4}	1.84×10^4	6.57×10^4	5.57×10^5	2.98×10^4	115
$H_T > 800 \text{ GeV}$	4.15 X 10	1.04 × 10	0.01 × 10	0.01 × 10	2.00 × 10	115
$E_T^{ m miss} > 800 { m GeV}$	1.22×10^{3}	554	1.78×10^3	1.14×10^{4}	$9.36 imes 10^3$	110
$H_T > 1650~{\rm GeV}$	1.22 × 10		1.16 × 10	1.14 × 10	5.50 × 10	110
$E_T^{ m miss} > 1050~{ m GeV}$	55.5	30.1	85.6	297	288	57.2
$H_T>2600~{\rm GeV}$	55.5	50.1	85.0	297	200	51.2

Inclusive SUSY studies - $ilde{g} ilde{g}$

Hadronic decay modes

Cohen, Golling, Hance, Henrichs, Howe, Loyal, Padhi, Wacker SNOW13-00193, arXiv:1310.0077, arXiv:1311.6480

Using NLO for 3000 fb⁻¹ one gets 10 events for a mass of 3.3 TeV

Current study excludes gluino mass ~ 2.7 TeV using HL-LHC

 \rightarrow 175 events in fully hadronic mode

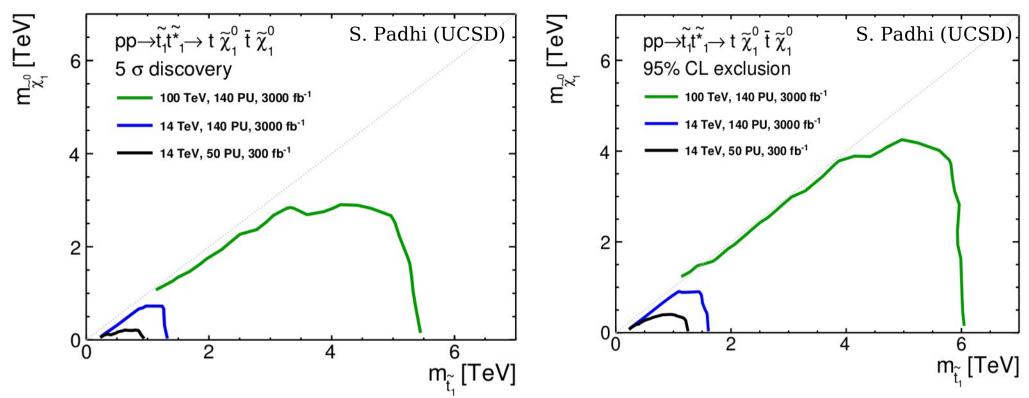
Significant regions of phase space can still be studied in the "compressed" regions

SUSY using 3rd generation squarks

Cohen, Golling, Hance, Henrichs, Howe, Loyal, Padhi, Wacker SNOW13-00193, arXiv:1310.0077, arXiv:1311.6480

m_i [TeV] $m_{\widetilde{\chi}_1^0}$ [TeV] Signal Significance Signal Significance pp→ĝĝ→ tł̃ χ̃⁰ tł̃ χ̃ pp → g̃g→ t t x̃ ut t x̃ 2.5 2.5 √s = 14 TeV, Same Sign di-leptons √s = 14 TeV. Same Sign di-leptons 50 Pile-up 140 Pile-up Ldt = 300 fb⁻¹ Ldt = 3000 fb⁻¹ 1.5 1.5 0.5 0.5 5 3 m_ã [TeV] 1.5 Ż 2.5 2.5 0.5 Ż 0.5 1.5 2 1 m_ã [TeV]

Using cross section arguments (+BR) one expects:


 \rightarrow 10 events using 3000 fb⁻¹ for a gluino mass of 2.8 TeV

With Snowmass detector and with 140 PU

 \rightarrow Sensitive to gluino mass of 2.4 TeV

 $\tilde{g}\tilde{g} \to t\bar{t}\tilde{\chi}_1^0 t\bar{t}\tilde{\chi}_1^0$

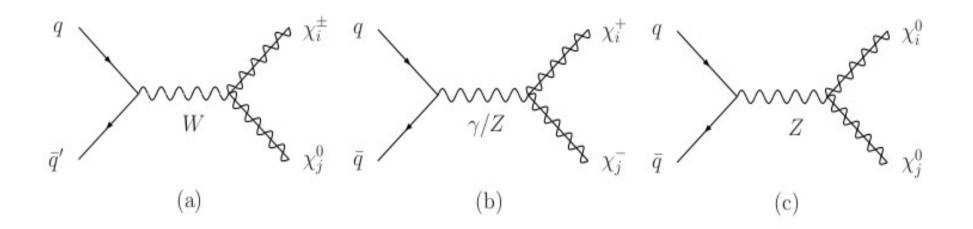
Direct stop production $\tilde{t} \to t \tilde{\chi}_1^0$

Preliminary results using 1-lepton mode.

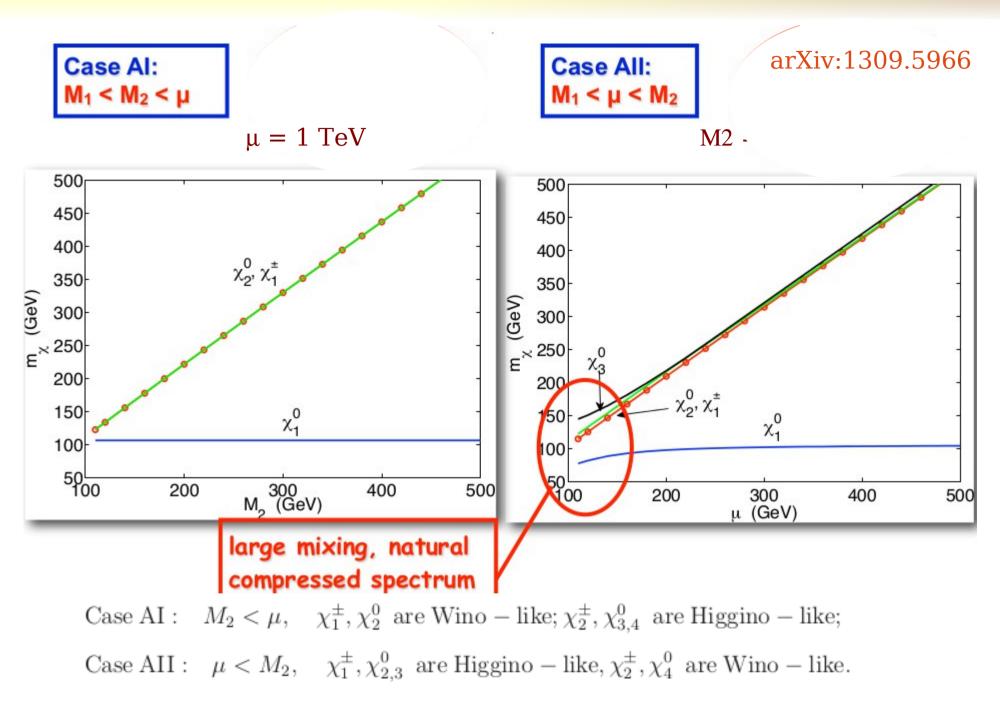
→ With 140 PU & 14 TeV, stop mass up to ~1.5 TeV can be probed arXiv:1309.1514

-					
	Collider	Energy	Luminosity	Cross Section	Mass
	LHC8	8 TeV	$20.5 {\rm ~fb^{-1}}$	10 fb	$650~{\rm GeV}$
	LHC	$14 { m TeV}$	$300 {\rm ~fb^{-1}}$	$3.5 \mathrm{fb}$	$1.0 \mathrm{GeV}$
	HL LHC	$14 { m TeV}$	3 ab^{-1}	$1.1 \mathrm{fb}$	$1.2 { m TeV}$
	HE LHC	$33 { m TeV}$	3 ab^{-1}	91 ab	$3.0 { m TeV}$
	VLHC	$100~{\rm TeV}$	1 ab^{-1}	200 ab	$5.7 { m TeV}$

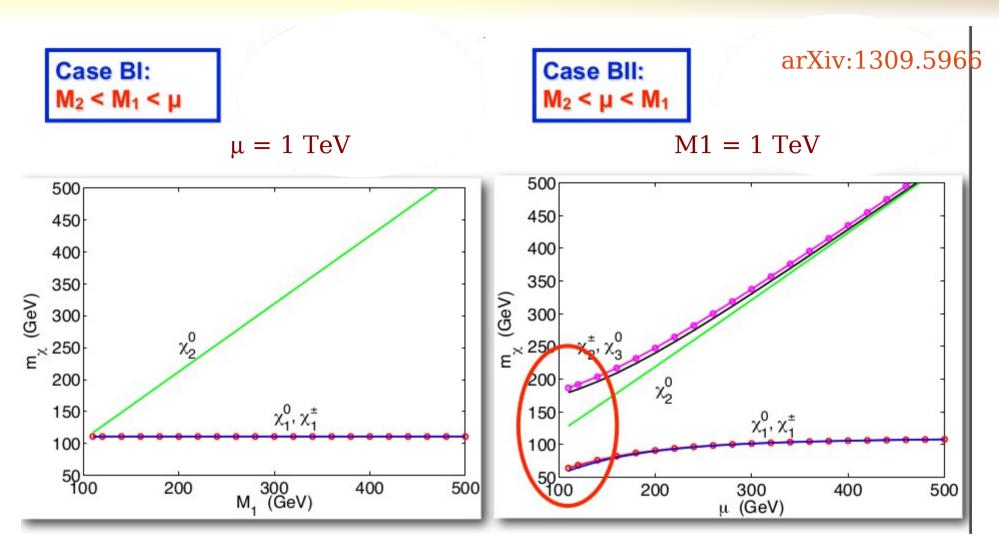
Aug. 22nd, 2014, "Nature Guiding Theory Workshop, FNAL"


SUSY EWinos

Assume LSP based on SUSY breaking mass parameters M1, M2 and $\boldsymbol{\mu}$

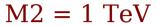

- Decouple the SUSY colored sector

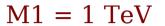
<u>There can be three cases:</u>

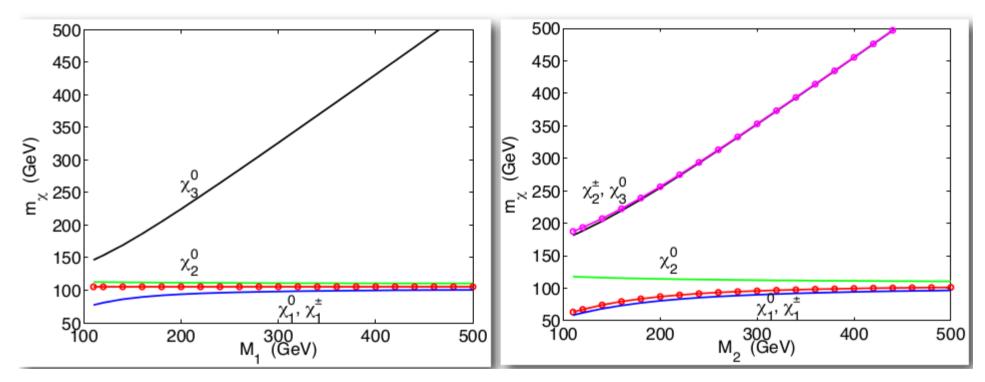

- a) Bino LSP (M1 < M2, μ)
- b) Wino LSP (M2 < M1, μ)
- c) Higgsino LSP ($\mu < M1, M2$)

SUSY EWinos – Bino LSP

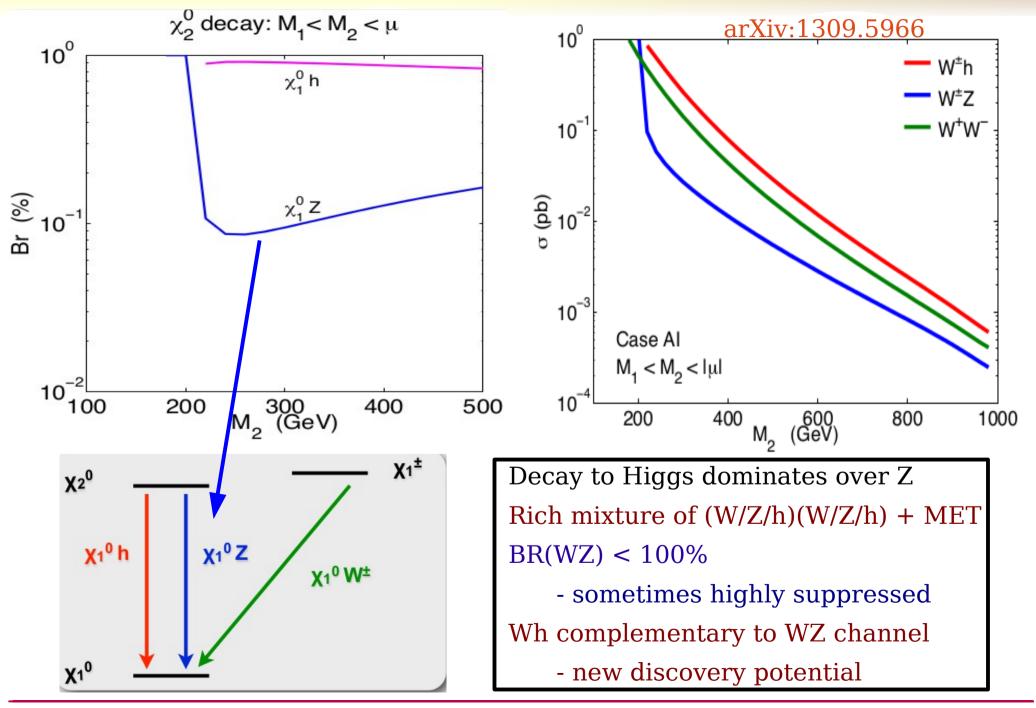
SUSY EWinos – Wino LSP


With wino LSP:


Case BI : $M_1 < \mu$, χ_2^0 Bino – like; χ_2^{\pm} , $\chi_{3,4}^0$ Higgsino – like; Case BII : $\mu < M_1$, χ_2^{\pm} , $\chi_{2,3}^0$ Higgsino – like; χ_4^0 Bino – like. SUSY EWinos – Higgsino LSP



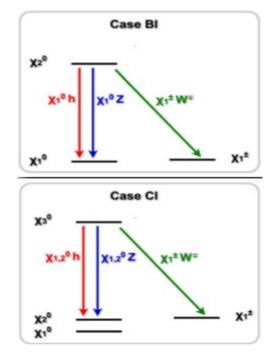
arXiv:1309.5966



With higgsino LSP:

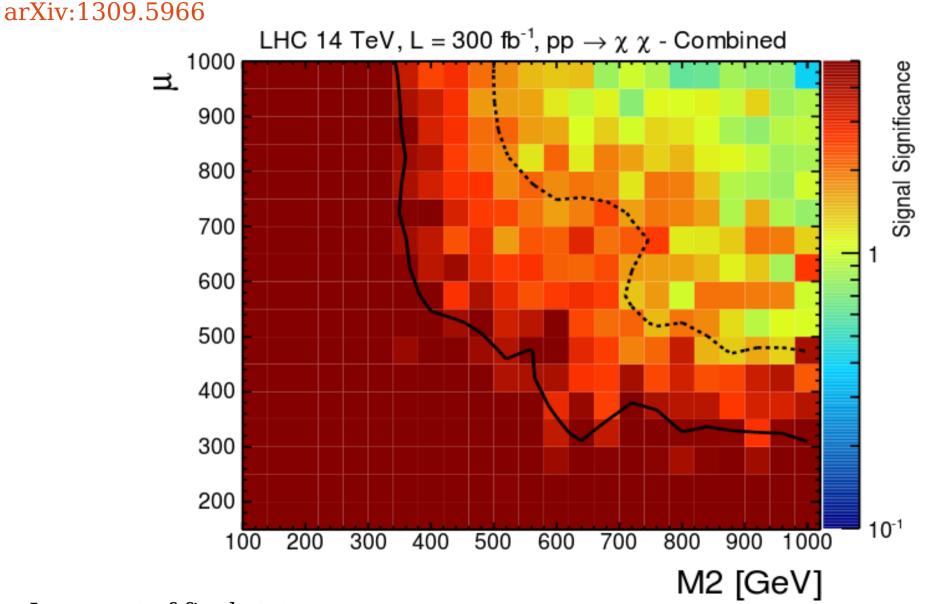
Case CI : $M_1 < M_2$, χ_3^0 Bino – like; χ_2^{\pm} , χ_4^0 Wino – like; Case CII : $M_2 < M_1$, χ_2^{\pm} , χ_3^0 Wino – like; χ_4^0 Bino – like.

Production Rates for Bino LSP, Wino NLSP



SUSY Electroweak productions

	NLSP d	Production	Total Branching Fractions (%)							
				W^+W^-	$W^{\pm}W^{\pm}$	WZ	Wh	Zh	ZZ	hh
Case AI	$\chi_1^\pm \to \chi_1^0 W^\pm$	100%	$\chi_{1}^{\pm}\chi_{2}^{0}$			18	82			
$M_1 < M_2 < \mu$	$\chi^0_2 \rightarrow \chi^0_1 h$	82%(96-70%)	$\chi_1^+\chi_1^-$	100						
Case AII	$\chi_1^\pm \to \chi_1^0 W^\pm$	100%	$\chi_{1}^{\pm}\chi_{2}^{0}$			26	74			
$M_1 < \mu < M_2$	$\chi^0_2 \rightarrow \chi^0_1 h$	74%(90-70%)	$\chi_{1}^{\pm}\chi_{3}^{0}$			78	23			
	$\chi^0_3 \rightarrow \chi^0_1 Z$	78%(90-70%)	$\chi_1^+\chi_1^-$	100						
			$\chi^{0}_{2}\chi^{0}_{3}$					63	20	17
Case BI										
$M_2 < M_1 < \mu$	$\chi_2^0 \rightarrow \chi_1^{\pm} W^{\mp},$	$\chi_1^0 h, \chi_1^0 Z, 68\%$	b, 27%(31 -	24%), 59	0(1 - 9%)), p	roduc	tion	supp	pressed.
Case BII	$\chi_2^\pm \to \chi_1^0 W^\pm$	35%	$\chi_{2}^{\pm}\chi_{2}^{0}$	12	12	32	23	10	9	2
$M_2 < \mu < M_1$	$\chi_2^{\pm} \rightarrow \chi_1^{\pm} Z$	35%	$\chi_{2}^{\pm}\chi_{3}^{0}$	12	12	26	29	11	3	7
	$\chi_2^{\pm} \rightarrow \chi_1^{\pm} h$	30%	$\chi_{2}^{+}\chi_{2}^{-}$	12		25	21	21	12	9
	$\chi^0_2 \to \chi^\pm_1 W^\mp$	67%	$\chi^{0}_{2}\chi^{0}_{3}$	23	23	23	21	7	2	2
	$\chi^0_2 \rightarrow \chi^0_1 Z$	26%(30-24%)								
	$\chi^0_3 \to \chi^\pm_1 W^\mp$	68%								
	$\chi^0_3 \rightarrow \chi^0_1 h$	24%(30-23%)								
Case CI										
$\mu < M_1 < M_2$	$\chi_3^0 \rightarrow \chi_1^{\pm} W^{\mp},$	$\chi^0_{1,2}Z, \chi^0_{1,2}h$, 5	2%, 26%, 2	2%, pro	duction st	uppre	ssed.			
Case CII	$\chi_2^{\pm} \rightarrow \chi_{1,2}^0 W^{\pm}$	51 %	$\chi_{2}^{\pm}\chi_{3}^{0}$	14	14	27	23	11	6	5
$\mu < M_2 < M_1$	$\chi_2^{\pm} \rightarrow \chi_1^{\pm} Z$	26 %	$\chi_2^+\chi_2^-$	26		26	24	12	7	5
	$\chi_2^{\pm} \rightarrow \chi_1^{\pm} h$	23 %								
	$\chi^0_3 \rightarrow \chi^\pm_1 W^\mp$	54 %								
	$\chi^0_3 \rightarrow \chi^0_{1,2} Z$	24 %								
	$\chi^0_3 \rightarrow \chi^0_{1,2}h$	22 %								


arXiv:1309.5966

4 out of 6 cases result in compressed spectra Nearly degenerate LSP pair production

MET + ISR (Mono Jet studies) Or VBF production

SUSY Electroweak productions

Large set of final states

Unique set of signals! Opportunity to explore using HL-LHC

SUSY Electroweak productions

In terms of searches:

1. If both parents are un-compressed:

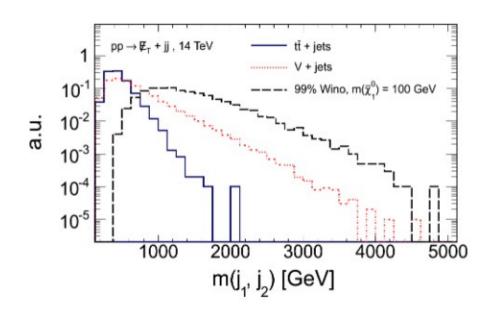
- Standard analysis, trigger on any or both of the visible decay products

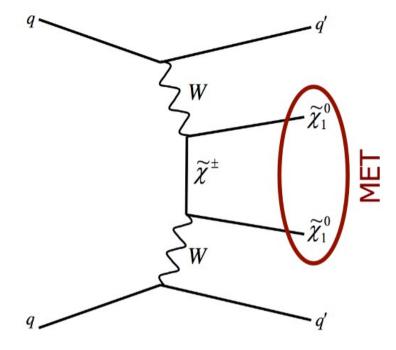
2. If one of the parents is compressed e.g: $\chi_2^0 \chi_1^{\pm}$; $M(\chi_1^{\pm}) \approx M(\chi_1^0)$

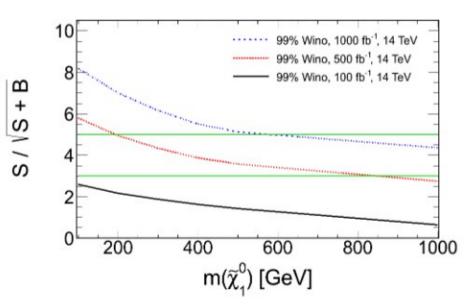
- Use trigger based on one visible decay product

3. If both parents are compressed

-e.g:
$$\chi_1^+ (\to W \chi_1^0) \chi_1^- (\to W \chi_1^0); M(\chi_1^\pm) \approx M(\chi_1^0)$$

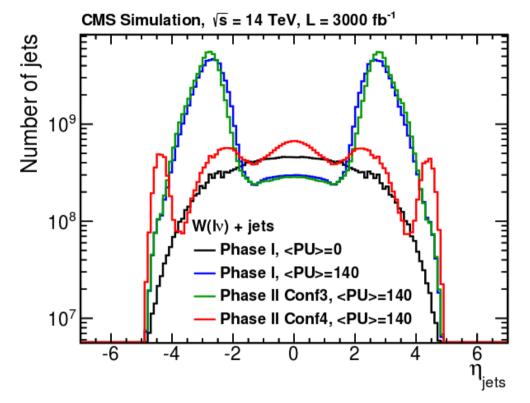

- Use mono-jet kind of analysis with trigger on ISR jets or VBF studies


Compressed spectra using VBF


Vector Boson fusion process at the LHC

- Unique opportunity to search for new physics
- Extremely useful for compression regions
- With simplistic assumptions on simulation
 - Sensitive to New Physics at HL-LHC

Delannoy et. al. Phys. Rev. Lett. 111 (2013) 061801



Challenges with VBF SUSY EWK searches

Number of jets rises dramatically in forward region without tracking

Particle Flow with veto on charged tracks not from PV helps

 \rightarrow Important to make PF work with large PU

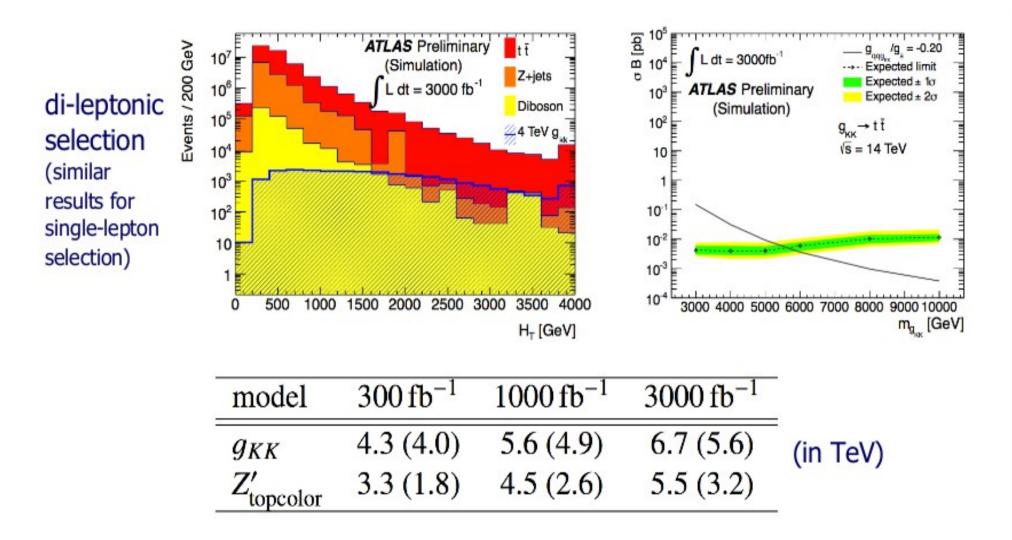
Calorimeter segmentation can also help reduce neutral deposits

Pico-sec timing calorimeter will be very useful (Study in progress)

Other Beyond Standard Model studies

Search for ttbar Resonances

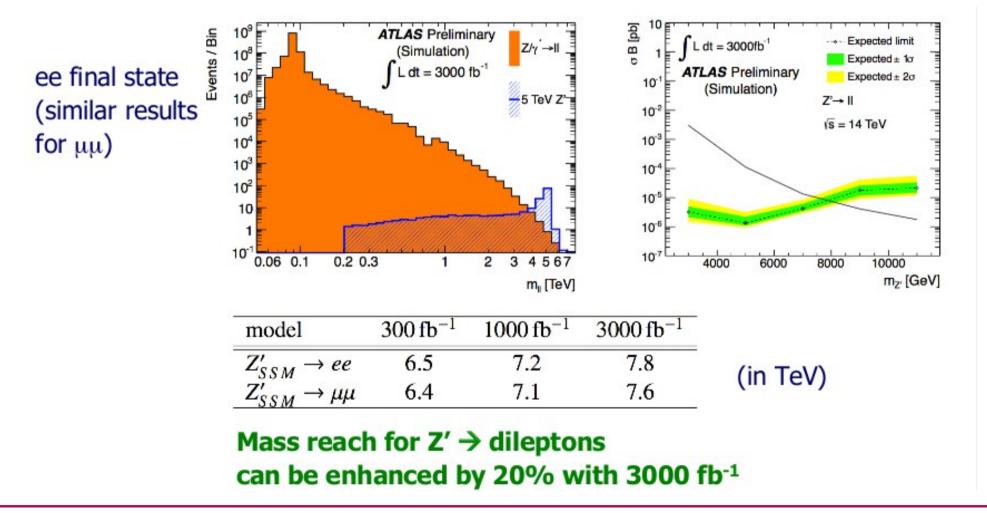
Extra Dimensions can lead to wide ttbar resonances:


e.g: Kaluza-Klein gluon ($g_{_{KK}}$) via the process pp $\rightarrow g_{_{KK}} \rightarrow$ ttbar

Topcolor Z' cases in models of strong electroweak symmetry breaking through top quark condensation can lead to narrow resonances from heavy Z' \rightarrow ttbar

Final states:

- a) dileptons + MET
 - Very clean state, difficult to reconstruct ttbar inv. mass
- b) Semi-leptonic decays (Single lepton + MET)
 - More complete reconstruction with large background


Search for ttbar Resonances

Mass reach for Kaluza-Klein gluons or Z' can be enhanced by 50% with 3000 fb⁻¹

Search for ttbar Resonances

- Z' decays to di-leptons
- \rightarrow Main background: SM DY, ttbar, dibosons (small)
- \rightarrow Upgraded detector should be able to suppress electron from γ conversion

Summary and Conclusions

BSM results from ATLAS and CMS show the breath of physics analyses Low MET and High H_T studies are crucial for the next phase of the LHC Anomalies associated with dibosons should be clarified

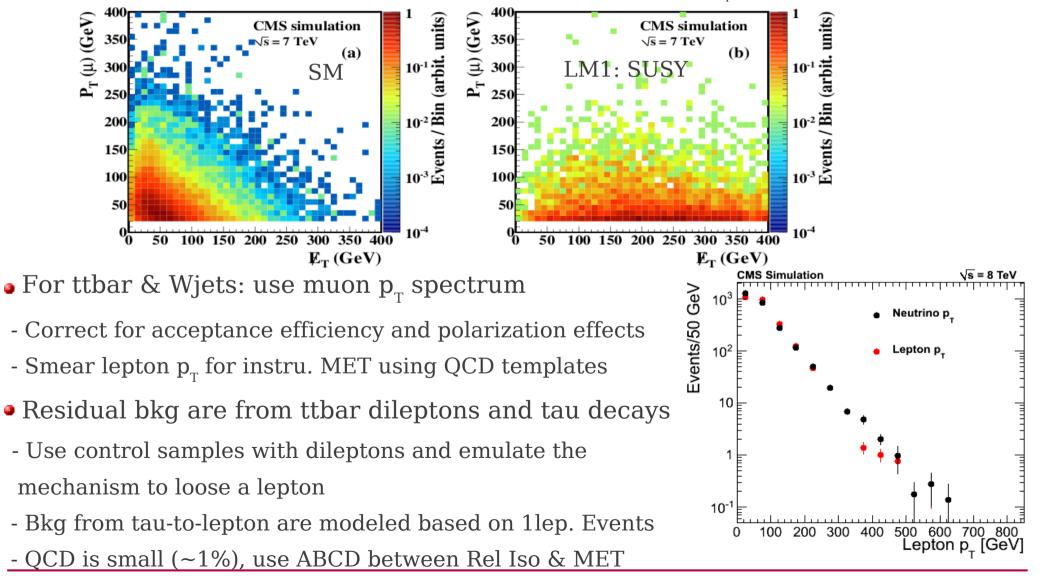
 \rightarrow using ratios, better re-summed calculations, etc.

Missed opportunities: First Evidence of Same sign WW Vector Boson (ATLAS) should have been discovered in 2013 using inclusive SS searches.

Huge array of measurements are possible with HL-LHC

- New Physics in colored sector as well as EW sector with Higgs in the final states
- Compressed Spectra/DM: Monojet + Vector boson scattering will essential
- Measurements of rare decays (not discussed here)

The results from ATLAS and CMS WILL set the agenda across the energy frontier for the foreseeable future!


Backup slides

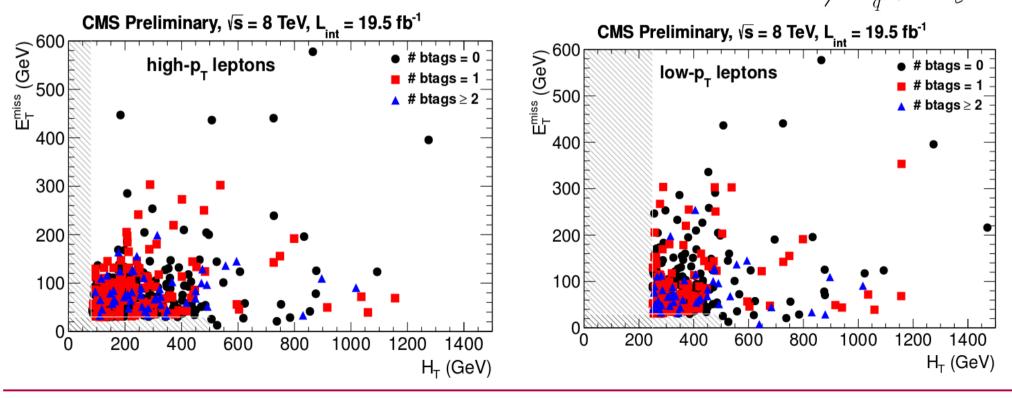
Lepton Spectrum method

In SM events, the neutrino and lepton $\boldsymbol{p}_{_{\!\mathrm{T}}}$ are anti-correlated in an event

Overall spectra are similar

In SUSY event, the correlation between MET and lepton $\boldsymbol{p}_{_{\!\mathrm{T}}}$ is very different

Same Sign dileptons

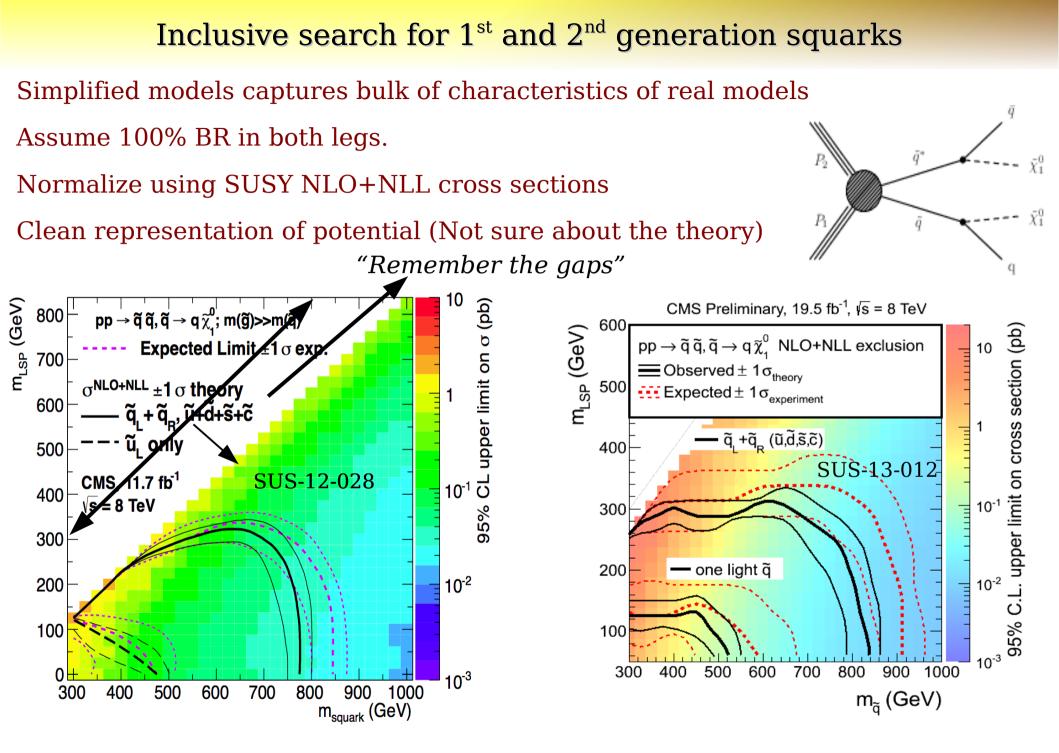

q

 $\tilde{\chi_1}$

- Isolated same sign dileptons (SS) are very rare in the SM
- Several search regions with lepton flavors (e, I) are studied
- A natural SUSY signature
 - we select two same-sign light leptons
 - -> veto events with a third lepton forming an OSSF within 15 GeV of the Z
 - -> veto events with a third lepton forming an OSSF pair with m_I < 12 GeV
 - -> veto events with mII < 8 GeV (trigger)

high-p⊤ analysis: 20/20 GeV

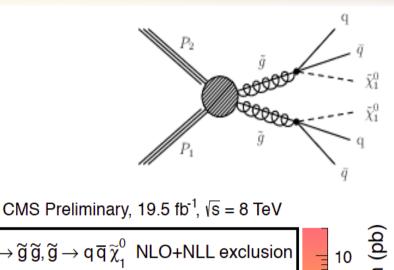
```
low-p<sub>T</sub> analysis: 10/10 GeV
```

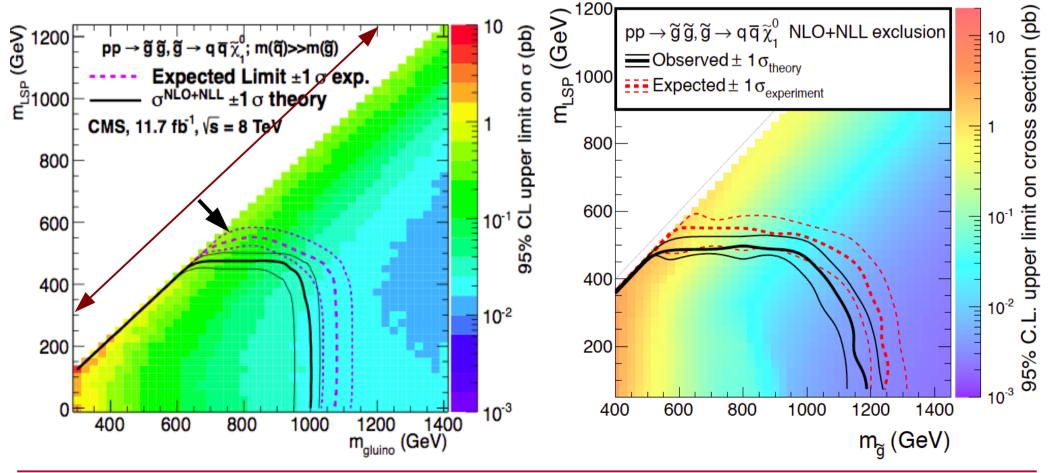


Same sign dileptons – Signal regions

+ 24 exclusive signal regions for high-, and low- p_{T} analyses

-> 2*Njets X 2*HT X 2*MET X 3*Nbtags = 24 exclusive SRs

-> minimum HT at 250 GeV for the low-pT analysis (trigger)

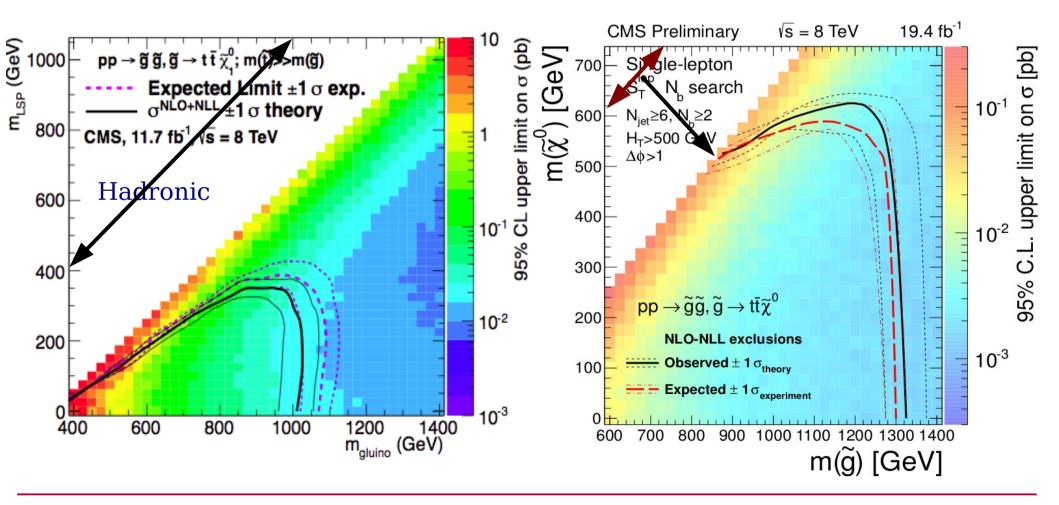

-	$N_{ m b-jets}$	$E_{\rm T}^{\rm miss}$ (GeV	N) $N_{\rm jets}$	$H_{\rm T} \in [200, 400] \; ({\rm GeV})$			$H_{\rm T} > 400 \; ({\rm GeV})$			
-	= 0	50-120	2-3	SR01			SR02			
		00-120	≥ 4	SR03			SR04			
Signal regions		> 120	2-3		SR05			SR06		
To cover wide ronge		> 120	≥ 4	$\operatorname{SR07}$			SR08			
To cover wide range	6 = 1	50-120	2-3	SR11			SR12			
of SUSY/NP scenarios		00-120	≥ 4	SR13			SR14			
		> 120	2-3		SR15			SR16		
		> 120	≥ 4		SR17			SR18		
-		50-120	2-3	SR21			SR22			
	≥ 2	00-120	≥ 4	$\operatorname{SR23}$			SR24			
		> 120	2-3	SR25			SR26			
		> 120	≥ 4	SR27			$\mathbf{SR28}$			
	<u>_</u>									
	$\overline{N_{ m jets}}$	$N_{ m b-jets}$	$E_{\rm T}^{\rm miss}$ (Ge	eV)	$H_{\rm T}~({\rm GeV})$	chai	rge	\mathbf{SR}		
	≥ 2	≥ 0	> 0 > 0 > 0		> 500	++/	′	RPV0		
Special Signal region	$ S \geq 2$	≥ 2			> 500	++/		$\operatorname{RPV2}$		
- For RPV SUSY	≥ 2	= 1	1 > 30		> 80 + +/		SStop1			
	≥ 2	= 1	> 30		> 80	++	only	SStop1++		
- SS top prod.	≥ 2	≥ 2	> 30		> 80	++/		$\mathrm{SStop2}$		
	≥ 2	≥ 2	> 30		> 80	++	only	SStop2++		



Inclusive search for gluinos cascade decays (via squarks)

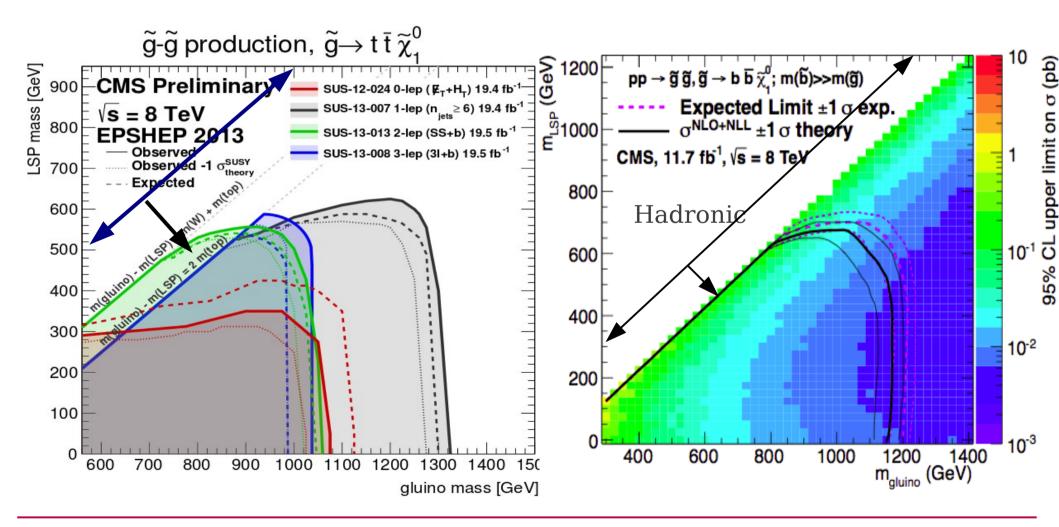
Hadronic searches probes:

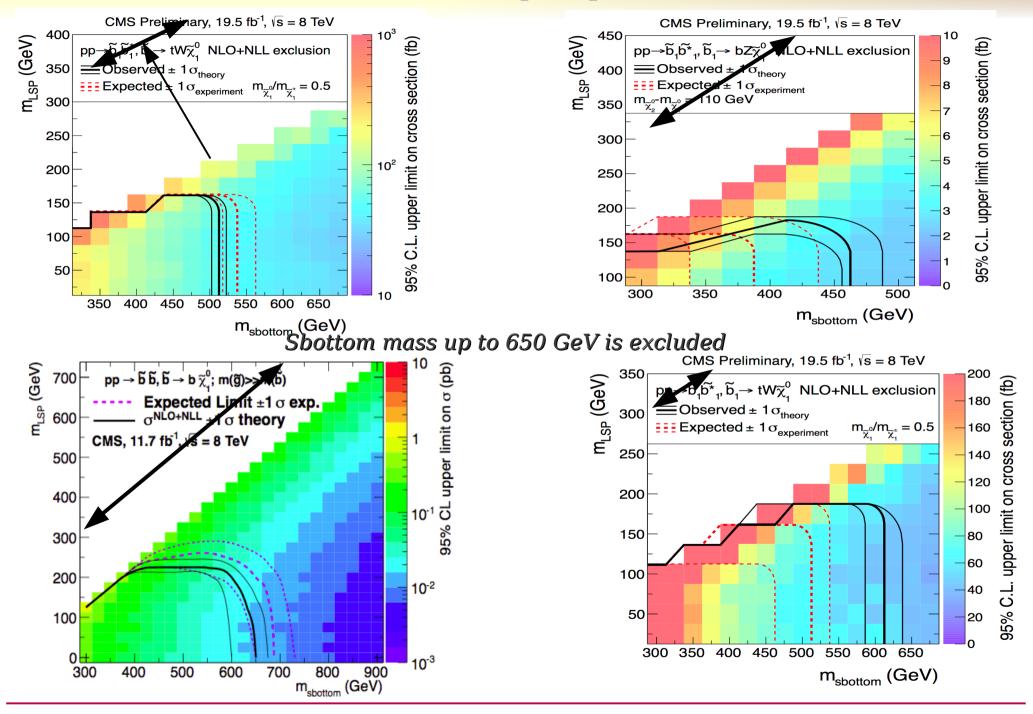
- Gluino masses up to 1.2 TeV
- "Compressed regions" better covered
 - in inclusive Jet/MET study



Inclusive search for gluinos cascade decays (via stops)

Gluino via stops:

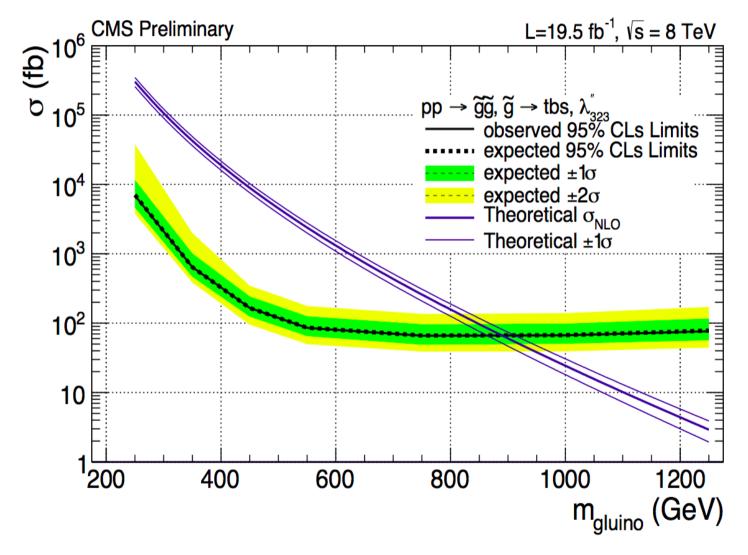

- Gluino masses up to 1.3 TeV using One lepton analysis
- A large "compressed" region available for future studies


Inclusive search for gluinos cascade decays (via stops and sbottoms)

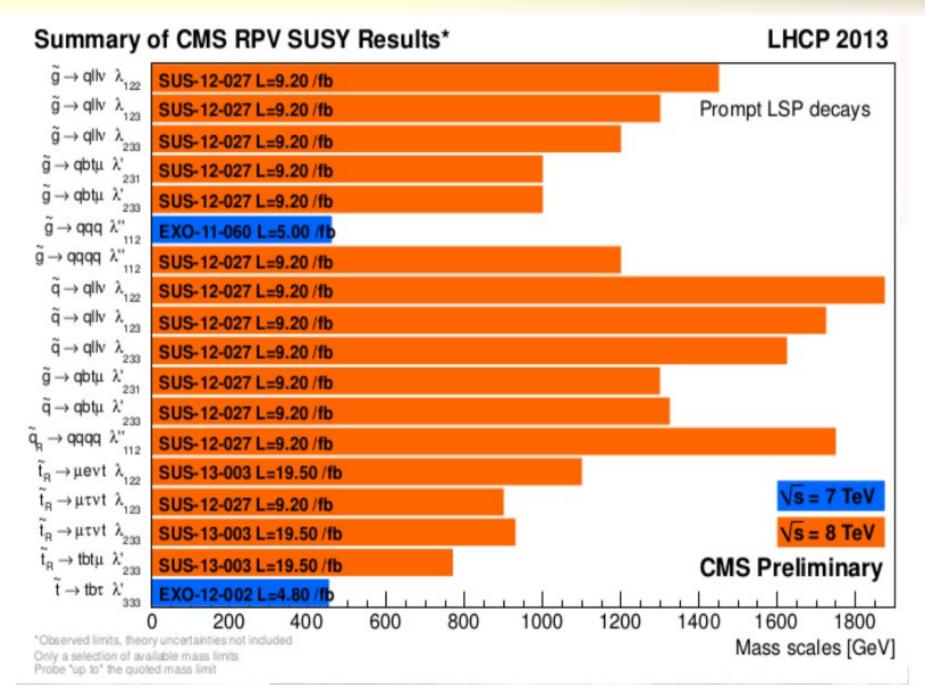
Gluino via stops or sbottoms:


- Gluino masses up to 1.32 TeV using One lepton analysis
- A large "compressed" region available for future studies

Direct sbottom pair production


RPV Studies and Interpretations

Probes stops in RPV mode up to 1.1 TeV


RPV Studies and Interpretations

Same sign dilepton study can also constrain RPV gluino decays

Gluino mass up to 950 GeV can be excluded

RPV Studies and Interpretations

