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NB: Construction will be in (1+1)d. 2d theories are special in many respects, 
but not as far as the hierarchy problem goes

!
Calculate S-matrix Sn(pi)

!
“Gravitational dressing” gives 

!

     Start with an arbitrary UV complete natural QFT               
Non-protected scalars are allowed as soon as they are heavy 

L( , H)

Ŝn(pi, `)

Principal Technical Result



!Ŝn(pi) = ei`
2/4

P
i<j pi⇤pjSn(pi)



!
Properties of gravitational dressing

✴Results in a well-to-do S-matrix 
✴Physical spectrum remains the same 
✴Low energy EFT description, tuned for 
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free massive scalar:

✴THIS CONSTRUCTION SHOULD NOT  
                        BE POSSIBLE !!!



This is how these theories should have been found:

!

What are possible integrable reflectionless massless 
theories in two dimensions?

!S = e2i�(s)1

Everything is determined  by a two-particle phase shift:



Unitarity+Analyticity+Crossing:

!

This argument relies only on world-sheet Lorentz invariance and shift symmetry and thus
applies to a broad class of e↵ective string theories. For the critical D = 26 theory similarities
with the models discussed in [22], [23] go further. Scattering in these models is purely elastic
(reflectionless). The S-matrix is diagonal and is completely determined by the phase shift
e2i�(s) in 2 ! 2 scattering.

This is exactly what one expects given the finite volume spectrum (4). This spectrum im-
plies that the states with a fixed number of particles are exact eigenstates of the Hamiltonian,
implying the absence of particle production. Furthermore, di↵erent SO(D � 2) multiplets
with the same number of particles are exactly degenerate, implying the absence of annihila-
tions (and, by crossing symmetry, reflections). Intuitively, the latter property implies that
a string initially oscillating in one direction will keep oscillating in this direction forever.
As demonstrated in [18] this property holds at tree-level in the Nambu–Goto theory for a
relativistic string in any number of dimensions, but is violated away from the critical number
of dimensions at one-loop.

As explained in [22], the requirements of unitarity, crossing symmetry and analyticity
restrict the phase shift for the purely diagonal massless scattering to take the form

e2i�(s) =
Y

j

µj + s

µj � s
eiP (s) , (5)

where P (s) is an odd polynomial in s and µj are located in the lower half of the complex
plane, and either lie on the imaginary axis or come in pairs symmetric with respect to it.
The expression (5) holds for Im s > 0. For s in the lower half of the complex plane the same
expression applies with s replaced by �s.

The standard expectation is that P (s) = 0, so that the scattering amplitude is exponen-
tially bounded. Exponential boundedness plus analyticity is commonly taken as the only
sharp definition of locality in quantum theories. In agreement with this expectation, the
goldstino model of [22] does have P = 0 and realizes the simplest possible amplitude of this
type of the form

e2i�Gold

(s) =
iM2 � s

iM2 + s
, (6)

where M is the scale of supersymmetry breaking.
If the critical NG theory indeed has a well-defined S-matrix it should also be of the form

(5) (times a unit matrix in “flavor” space), but what are the corresponding µj and P?
Fortunately, it is straightforward to answer this question. Indeed, the exact spectrum of

the theory at finite volume is known and is given by equation (4). Deducing the scattering
amplitudes from the finite volume spectrum is a routine problem in lattice calculations, and
the corresponding techniques were developed in [6]. Theories in one spatial dimension were
specifically considered in [7]. For the sake of completeness let us sketch a semi-rigorous
argument leading to the desired result.

Consider a two particle eigenstate of the Hamiltonian on a cylinder with a zero total
KK momentum, i.e. with N = Ñ in the string case (see (4)). On the one hand, in the
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Expectation from Locality: P (s) = 0

Im s > 0



!

Corresponds to integrable RG flow between 
tricritical Ising model in the UV and Ising model in 

the IR 
(equivalently, N=1 Wess-Zumino model in the UV 

and free fermion in the IR)

Goldstino (Volkov-Akulov) Theory

L =  @̄ +  ̄@ ̄ � 1

M2
( @ )( ̄@̄ ̄) + . . .
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A simple example of  “Asymptotic Safety”: 
naively non-renormalizable theory flows into a 

strongly coupled UV fixed point, no new stuff added



Unitarity+Analyticity+Crossing:

!
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Let us look at 
at (D-2) bosons with 

✴Polynomially bounded on the physical sheet 
✴No poles anywhere. A cut all the way to infinity 
with an infinite number of broad resonances 
✴One can reconstruct the entire finite volume 
spectrum using Thermodynamic Bethe Ansatz 

!
e2i�(s) = eis`

2/4

!
E(N, Ñ) =
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A new type of RG flow behavior: 
Asymptotic Fragility 
Integrable theory of gravity



Integrable QG rather than QFT

Gravitational shock waves:

Eikonal phase shift: !ei2�eik(s) = ei`
2s/4

`2 / GNb4�d

Dray,’t Hooft ’85 
Amati, Ciafaloni,Veneziano ’88



✴Theory of gravitational shock waves. 
✴No UV fixed pоint and central charge. 
✴Maximal achievable (Hagedorn) temperature. 
✴Integrable cousins of black holes.  
✴Minimal length. 
✴No local off-shell observables.  
!

!

Some properties of the theory

SNG = �`2
Z

d2�
q

� det (⌘↵� + @↵Xi@�Xi)

classical action: 



Time Delay

c.f. �tH = `4PlE
3
cms for Hawking evaporation in 4d

!�tcms =
1

2
`2sEcms

�t

Equivalence Principle at work 

is the same for a single hard particle and for a bunch of soft ones

String uncertainty principle

!

This probability density exhibits two interesting properties. First, the spatial spread of the
scattered packet has increased. It is natural to call this the stringy uncertainty principle. It is
consistent with the evidence that no local observables exist and prevents one from measuring
space-time events with a resolution better than the string length `s. This can be made more
precise by inspection of the two-particle probability distribution after the collision. One finds
that this stringy uncertainty principle can be written in a more suggestive Lorentz-invariant
form

�xL�xR � `2s . (62)

The second distinctive feature of the probability distribution is the large time delay for
macroscopic objects experienced by the outgoing wave packet

�t = p̄R`
2
s . (63)

This is in agreement with the black hole interpretation of the amplitude (1). The Hawking
temperature of two-dimensional black holes is independent of the mass, resulting in an evap-
oration time linear in the mass. It is worth stressing that time delays that grow indefinitely
with energy are highly unusual in conventional quantum field theories.

With the black-hole interpretation, it may be surprising that the evaporation time (63)
for the left-mover depends only on the energy of the right-mover and not on the total center
of mass energy of the collision. However, this is perfectly consistent with the black hole
interpretation and Lorentz invariance. To see this, note that the two-momentum of a created
black hole is

kBH = (p̄R + p̄L, p̄R � p̄L) .

The black hole thus moves with respect to the lab frame with velocity

v =
p̄R � p̄L
p̄R + p̄L

.

The time delays measured by the detectors are related to the evaporation time as measured
in the lab frame by

�tlab =
�tL,R
1± v

=
1

2
`2s(p̄R + p̄L) ,

where the upper/lower sign should be used for the time delay measured by left/right detector.
The evaporation time in the rest frame of the black hole is then simply

�tcms = `2s
p
p̄Lp̄R =

1

2
`2sEcms ,

confirming that the evaporation time is simply linear in the mass consistent with the black
hole interpretation.

To make the case for the black hole interpretation of the S-matrix (1) even stronger, note
that there is an equivalence principle at work. Let us replace the right-moving particle with
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 Integrable Black Hole Precursors



Classical Origin of the Time Delay

formation and its consequent evaporation, as described by the Hawking calculation, which
represents the leading quantum (one-loop) correction to the classical solution.

Note that any purely left-moving configurationX i
cl(⌧+�) presents an exact solution of the

Nambu–Goto equations. A natural string configuration to study the (semi)classical origin of
the time delay (63) is then a large left-moving kink X i

cl(⌧ + �) acting as a background. For
simplicity, we consider a configuration with a single non-zero flavor X i

cl(⌧ +�), and suppress
the flavor superscript in what follows.

One then sends a small right-moving perturbation across this kink, and calculates the
time it takes to reach the other side. In the probe approximation this amounts to studying
right-moving null geodesics in the induced metric (65), corresponding to Xcl(⌧ + �)

ds2 = (�1 +X 02
cl )d⌧

2 + 2X 02
cld⌧d� + (1 +X 02

cl )d�
2 . (66)

The null geodesic equation results in

�̇(⌧) =
�X 02

cl (⌧ + �(⌧))± 1

X 02
cl (⌧ + �(⌧)) + 1

. (67)

The lower sign corresponds to a left-mover, whose propagation is una↵ected by the presence
of the background. The upper sign corresponds to a right-mover, which experiences a time
delay

�t =

Z 1

�1
d⌧ (1� �̇) =

Z 1

�1
d⌧

2X 02
cl (⌧ + �0(⌧))

X 02
cl (⌧ + �0(⌧)) + 1

=

Z 1

�1
dzX 02

cl (z) . (68)

Here �0(⌧) is a solution of the geodesic equation (67), and we used equation (67) when
changing the integration variable from ⌧ to z = ⌧ + �0(⌧). We recognize

Z 1

�1
dzX 02

cl (z) = `2s�E ,

where �E is the energy of the classical solution Xcl relative to the vacuum energy. The time
delay obtained in the classical theory (68) thus exactly coincides with the one derived in the
quantum theory (63). This is an important di↵erence with a realistic quantum theory of
gravity – as a consequence of integrability there is no actual horizon and particle production
and the black hole “evaporation” happens classically.

In spite of this deficiency, we feel that this class of solutions is close in other respects
to actual black holes. For instance, it follows from (67) that for X 02

cl > 1 there is a region
inside the kink where both left- and right-movers propagate towards the left. We see that
the classical origin of the time delay (63) is very intuitive—a right-mover gets carried away
towards left by the kink, see Figure 1. In the presence of non-integrable perturbations,
when the energy transfer between left and right-movers becomes possible, one expects the
emergence of an actual horizon.

The CGHS model [12] supports this expectation. The field equations, with quantum
backreaction taken into account, look a lot like the equations of the bosonic string in the
Polyakov formalism with additional interactions included. Purely left-moving excitations of
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Figure 1: This figure shows the structure of light-cones indicated by the green and orange
arrows in the background of a left-moving kink in the static gauge. The blue and red lines
show geodesics of a left- and right-moving particle, respectively.

matter fields (which are analogous to our X i) solve the field equations, but do give rise to a
black hole horizon. It appears plausible that the S-matrix (1) provides a reasonable zeroth
order approximation for the process of black hole evaporation in models of this type.

Note, that for a right-moving bump excited in the same target space direction as the
left-moving one (and perhaps in one other transverse direction) the classical string solutions
generically develop cusp singularities. These singularities are not shielded by any horizon.
The development of classical singularities is another consequence of the absence of power
counting renormalizability. In power counting renormalizable theories singularities usually
do not occur if one starts with a regular initial data [32, 33]. They do occur for the string
worldsheet theory but get resolved at the quantum level by the S-matrix (1).

At the end of section 4, we mentioned that our S-matrix is related to a trivial S-matrix
by a gauge transformation which acts non-trivially at infinity. We are now in a position to
provide a physical interpretation for one natural choice of coordinates related to the static
gauge coordinates by a gauge transformation of this kind. To this end, it is helpful to write
the metric (66) in a form that makes its null Killing vector manifest

ds2 = �d⌧+d⌧� +X 02
cl (⌧

+)(d⌧+)2 , (69)

where ⌧± = ⌧ ± �. We then see that in coordinates t, x related to ⌧± by

⌧+ = t+ x and ⌧� = t� x+

Z t+x

�1
dz X 02

cl (z) , (70)
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exactly reproduces the quantum answer

�t =

Z 1

�1
dzX 02

cl = `2E



This was an integrable QG coupled to 
 (D-2) massless bosons. 

Is there a generalization to other (non-integrable) 
theories?



This was an integrable QG coupled to 
 (D-2) massless bosons. 

Is there a generalization to other (non-integrable) 
theories?

Eikonal Scattering From Boundary Quantum 
Mechanics Verlinde & Verlinde ’91 

Seik =

Z
DXeiSCS [X]+i(
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!

Most simple-minded generalization:

D(pi) =

Z
DXeiSCS [X]+i

P
i p

↵
i X↵(⌧i) = ei`

2/4
P

i<j pi⇤pj

does not produce a consistent S-matrix, 
but allows to dress:

pi ⇤ pj = ✏↵�p
↵
i p

�
j

Ŝn(pi) = ei`
2/4

P
i<j pi⇤pjSn(pi)

✓Crossing Symmetry 
✓Analyticity 
? Unitarity 
? Factorization 
!



✓Unitarity from Factorization

D(pi) = ei`
2/4

P
a<a0 ka⇤ka0 ei`

2/4
P

b<b0 qb⇤qb0

!Ŝ = USU

U |{ka}i = ei`
2/4

P
a<a0 ka⇤ka0 |{ka}i

The whole story is a bit similar to non-commutativity. 
Two crucial differences: 
✴Dressing of the full S-matrix, rather than of the tree amplitudes. 
✴No summation over different cycling orderings. Preserves 
causality. 

!



Perturbative Check

LQFT =
1

2
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Reproduces O(�`2)-dressing 
up to local polynomial terms 
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Directly in terms of properties of the RG flow, 
without ever mentioning quadratic divergencies

For concreteness, let us place the discussion in the context 
of non-SUSY GUTs

mH ⌧ E ⌧ mGUT : L = CFT321 +m2
HH2 +
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How comes                           given no symmetry?                              mH ⌧ mGUT

relevant
irrelevant

Hierarchy Problem
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However, fine-tuning is truly manifest only as 
seen from higher energies:

mGUT ⌧ E : L = CFT5 + ghm
2
GUTH

2 + g⌃m
2
GUT⌃

2 + . . .

relevant relevant

Hierarchy Problem



!

No picture like that in our example. Energy scale does not 
correspond to a threshold. No scale invariance and               

no Wilsonian RG above the scale. 



!Two notions of a naturalness: 

1) If a natural theory possesses unprotected relevant 
operators (scalar masses), the corresponding energy 
scale should be the highest  

2) Among all possible scales set by relevant operators 
unprotected operators should correspond to the highest 
scale 

✴Agree for QFT = UV CFT perturbed by relevant operators. 
✴May disagree in the presence of gravity.  
Indeed, disagree in the gravitational dressing construction.



!

Is there a place for this scenario within 
the “standard” picture/string theory? 



The moment we talk about naturalness we 
are in the Landscape/Multiverse

Two canonical regions in the Landscape 
capable of producing a light Higgs:
✴An island where the Higgs mass is protected by a 
symmetry (SUSY...) 
✴Among  “         “ or so of random vacua with 
randomly distributed values of the Higgs mass

10100

Is there a third one?
✴Dragonland: A (small) set of strongly coupled 
vacua:             and Planckian extra dimensions gs = 1



Possible lesson: 

Should we be more serious about thinking 
on-shell when gravity is involved? 

CC:

✴Off-shell: nothing special about zero vacuum energy 
✴On-shell: zero CC is extremely special:                                                                                                  

AdS:CFT,  Minkowski:S-matrix, de Sitter: ???



Another possible lesson/alternative definition of naturalness: 

Every  natural QFT is an answer to some 
question. 

Perhaps we should learn to ask more 
questions. 

c.f. the following naturalness question: 
31415926535897932384626433832795028841971693993… 
is this sequence of digits “natural”? 


