Is the Higgs Boson Associated with Coleman-Weinberg Symmetry Breaking?

> Christopher T. Hill Fermilab

Fermilab August 23, 2014

Bardeen: Classical Scale Invariance could be the custodial symmetry of a fundamental, perturbatively light Higgs Boson in pure SU(3)xSU(2)xU(1)*

The only manifestations of Classical Scale Invariance breaking by quantum loops are d = 4 scale anomalies.

> On naturalness in the standard model. <u>William A. Bardeen</u> FERMILAB-CONF-95-391-T, Aug 1995. 5pp.

> > * Modulo Landau pole

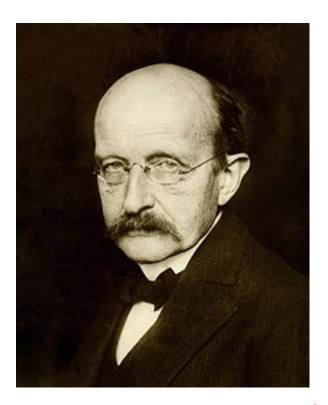
In the real world there are possible additive effects from higher mass scales, eg: $\delta m_{H}^{2} = \alpha^{p} M_{GuT}^{2} + \alpha^{q} M_{Planck}^{2}$.

But the existence of the low mass Higgs may be telling us that such effects are absent (similarly for $\Lambda_{\text{cosmological}}$)

To apply this to real world we need some notion of "recovery of scale symmetry in the IR," eg, below M_{Gut} or M_{Planck} . We don't know how nature does this, but we know it happens empirically eg $\Lambda_{cosmological}$ or an isolated Higgs boson.

Assume that below M_{Gut} scale symmetry recovers.

An expanded Conjecture:



Max Planck

All mass is a quantum phenomenon. $h \longrightarrow 0 \Longrightarrow Classical scale symmetry$

Conjecture on the physical implications of the scale anomaly: M. Gell-Mann 75th birthday talk: <u>C. T. Hill</u> hep-th/0510177 Scale Symmetry in QCD is broken by quantum loops and this gives rise to:

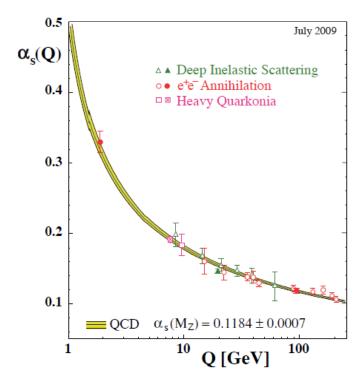
The Origin of the Nucleon Mass (aka, most of the visible mass in The Universe)

Gell-Mann and Low:

$$\frac{dg}{d\ln\mu} = \beta(g)$$

Gross, Politzer and Wilczek (1973):

 $\beta(g) = \beta_0 g^3$ where



"running coupling constant"

$$\beta_0 = -\frac{\hbar}{16\pi^2} \left(\frac{11}{3} N_c - \frac{2}{3} n_f \right)$$

$$\alpha_s(k^2) \equiv \frac{g_s^2(k^2)}{4\pi} \approx \frac{1}{\beta_0 \ln(k^2/\Lambda^2)}$$

 $\Lambda = 200 \text{ MeV}$

S. Burby and C. Maxwell arXiv:hep-ph/0011203

A Puzzle: (Murray Gell-Mann's lecture ca 1975)

Noether current of Scale symmetry S

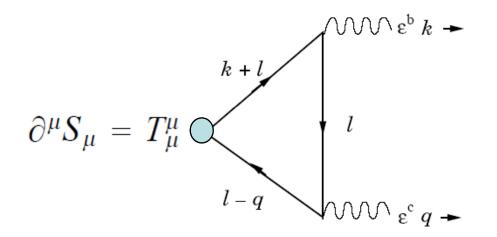
$$S_{\mu} = x^{\nu} T_{\mu\nu}$$

Current divergence $\partial_{\mu}S^{\mu} = T^{\mu}_{\mu}$

Yang-Mills
Stress Tensor
$$T_{\mu\nu} = \text{Tr}(G_{\mu\rho}G^{\rho}_{\nu}) - \frac{1}{4}g_{\mu\nu} \text{Tr}(G_{\rho\sigma}G^{\rho\sigma})$$

Compute: $\partial_{\mu}S^{\mu} = T^{\mu}_{\mu} = \operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) - \frac{4}{4}\operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) \neq 0$ QCD is scale invariant!!!???

Resolution: The Scale Anomaly



<u>Canonical Trace Anomalies</u> <u>Michael S. Chanowitz (SLAC), John R. Ellis</u>. Phys.Rev. D7 (1973) 2490-2506 Resolution: The Scale Anomaly is equivalent to the running coupling constant.

$$\partial_{\mu}S^{\mu} = \frac{\beta(g)}{g} \operatorname{Tr} G_{\mu\nu}G^{\mu\nu} = \mathcal{O}(\hbar)$$

Origin of Mass in QCD = Quantum Mechanics !

't Hooft Naturalness:

"Small ratios of physical parameters are controlled by symmetries. In the limit that a ratio goes to zero, there is enhanced symmetry " (custodial symmetry)

$$\frac{\Lambda}{M} = \exp\left(-\frac{8\pi^2}{|b_0|g^2(M)}\right) \qquad b_0 \propto \hbar.$$

't Hooft Naturalness:

Small ratios of physical parameters are controlled by symmetries. In the limit that a ratio goes to zero, there is enhanced symmetry (custodial symmetry).

$$\frac{\Lambda}{M} = \exp\left(-\frac{8\pi^2}{|b_0|g^2(M)}\right) \qquad b_0 \propto \hbar$$

$$0 \qquad \hbar \longrightarrow 0$$
Classical Scale Invariance

is the "Custodial Symmetry" of Λ_{QCD}

Coleman-Weinberg Symmetry Breaking also arises from perturbative trace anomaly

Coleman-Weinberg Potential and Trace Anomaly

$$S = \int d^4x \,\mathcal{L} = \int d^4x \left(\frac{1}{2}\partial_\mu \phi \partial^\mu \phi - V(\phi)\right)$$

Improved Stress tensor: Callan, Coleman, Jackiw

$$\widetilde{T}_{\mu\nu} = T_{\mu\nu} + Q_{\mu\nu}$$

$$=\frac{2}{3}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{6}\eta_{\mu\nu}\partial_{\rho}\phi\partial^{\rho}\phi - \frac{1}{3}\phi\partial_{\mu}\partial_{\upsilon}\phi + \frac{1}{3}\eta_{\mu\nu}\phi\partial^{2}\phi + \eta_{\mu\nu}V(\phi)$$

Trace of improved stress tensor:

$$\widetilde{T}^{\mu}_{\mu} = \phi \partial^2 \phi + 4V(\phi) = -\phi \frac{\delta}{\delta \phi} V(\phi) + 4V(\phi)$$

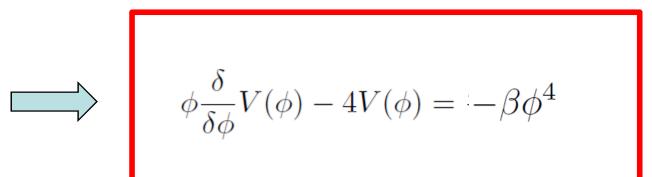
Traceless for a **classically** scale invariant theory:

$$V(\phi) = \frac{\lambda}{4}\phi^4$$
, $\widetilde{T}^{\mu}_{\mu} = 0$ Conserved scale current

Running coupling constant breaks scale symmetry:

$$\implies \widehat{T}^{\mu}_{\mu} = -\beta \phi^4$$
 Trace Anomaly

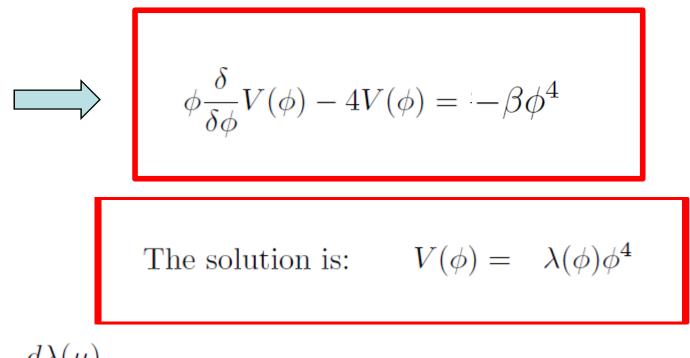
Coleman-Weinberg Potential can thus be **defined** as the solution to the equation:



Running coupling constant breaks scale symmetry:

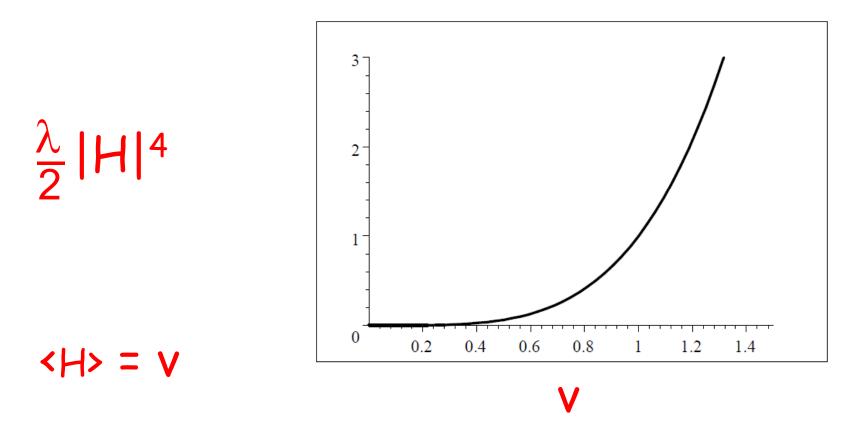
$$\implies \widehat{T}^{\mu}_{\mu} = -\beta \phi^4$$
 Trace Anomaly

Coleman-Weinberg Potential can thus be **defined** as the solution to the equation:



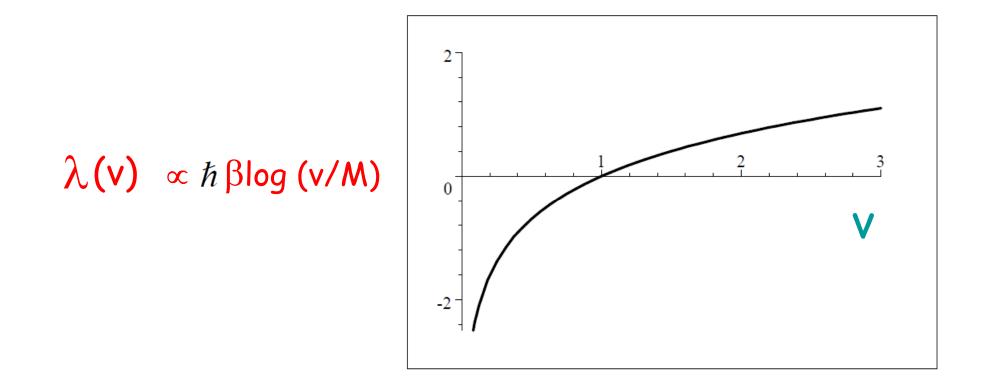
 $\frac{d\lambda(\mu)}{d\ln\mu} = \beta(\lambda)$ True to all orders in perturbation theory!!

In words: Start with the Classically Scale Invariant Higgs Potential



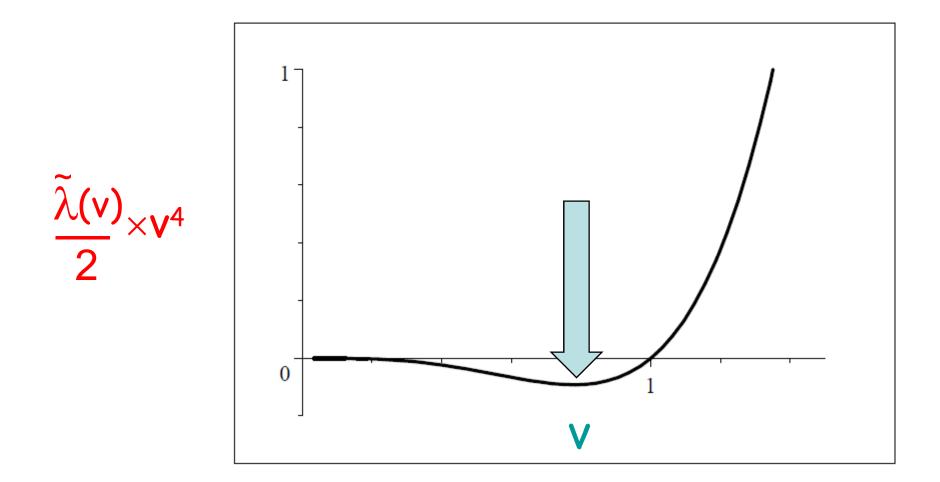
Scale Invariance -> Quartic Potential -> No VEV

Quantum loops generate logarithmic "running" of the quartic coupling



Nature chooses a trajectory determined by dimensionless cc's.

Result: "Coleman-Weinberg Potential:"



Potential arises from Quantum Mechanics

Example: ϕ^4 Field theory

$$\frac{d\lambda}{d\ln(\phi)} = \beta(\lambda) = \frac{9\lambda^2}{32\pi^2}$$

$$V_{RG} = \frac{\lambda}{4}\phi^4 + \hbar \frac{9\lambda^2}{32\pi^2}\phi^4 \ln(\phi/M) = \hbar \frac{m_h^4}{32\pi^2}(\phi/v)^4 \ln(\phi/\tilde{M})$$

agrees with CW original result log (path Integral)

Example: ϕ^4 Field theory

$$\frac{d\lambda}{d\ln(\phi)} = \beta(\lambda) = \frac{9\lambda^2}{32\pi^2}$$

$$V_{RG} = \frac{\lambda}{4}\phi^4 + \hbar \frac{9\lambda^2}{32\pi^2}\phi^4 \ln(\phi/M) = \hbar \frac{m_h^4}{32\pi^2}(\phi/v)^4 \ln(\phi/\tilde{M})$$

agrees with CW original result log (path Integral)

Example: Scalar Electrodynamics

$$\begin{split} V(\phi) &= \frac{\lambda_0}{2} |\phi|^4 + \frac{1}{16\pi^2} \left(5\lambda^2 - 6\lambda e^2 + 6e^4 \right) |\phi|^4 \ln\left(\frac{|\phi|}{M}\right) \\ V(\phi_c') &= \frac{\lambda_{CW}}{4!} \phi_c'^4 + \left(\frac{5\lambda_{CW}^2}{1152\pi^2} + \frac{3e^4}{64\pi^2} \right) \phi_c'^4 \ln\left(\frac{\phi_c^2}{M'^2}\right) \\ (C.6) \end{split}$$

agrees with CW original result with canonical normalization

The Renormalization Group generates the entire Coleman Weinberg potential:

Theorem:
$$\phi \frac{\delta}{\delta \phi} V(\phi) - 4V(\phi) = \frac{\beta}{\lambda} V(\phi) \implies \beta = -4\lambda$$
, at the minimum

The Renormalization Group generates the entire Coleman Weinberg potential:

$$\begin{array}{lll} \textbf{Theorem:} & \phi \frac{\delta}{\delta \phi} V(\phi) - 4 V(\phi) = \frac{\beta}{\lambda} V(\phi) & \implies \beta = -4 \lambda, & \text{at the potential} \\ & \text{minimum} \end{array}$$

$$\begin{split} V_{CW}(h) &= -\frac{1}{8}\beta_1 v^4 + \frac{1}{2}v^2 h^2 \left(\beta_1 + \frac{1}{4}\beta_j \frac{\partial\beta_1}{\partial\lambda_j}\right) \\ &+ \frac{5}{6\sqrt{2}}vh^3 \left(\beta_1 + \frac{9}{20}\beta_i \frac{\partial\beta_1}{\partial\lambda_i} + \frac{1}{20}\beta_j\beta_i \frac{\partial^2\beta_1}{\partial\lambda_j\partial\lambda_i} \right. \\ &+ \frac{1}{20}\beta_j \frac{\partial\beta_i}{\partial\lambda_j} \frac{\partial\beta_1}{\partial\lambda_i}\right) \\ &+ \frac{11}{48}h^4 \left(\beta_1 + \frac{35}{44}\beta_i \frac{\partial\beta_1}{\partial\lambda_i} + \frac{5}{22}\beta_j\beta_i \frac{d^2\beta_1}{\partial\lambda_j\partial\lambda_i} \right. \\ &+ \frac{5}{22}\beta_j \frac{\partial\beta_i}{\partial\lambda_j} \frac{\partial\beta_1}{\partial\lambda_i} + \frac{1}{44}\beta_k\beta_j\beta_i \frac{d^3\beta_1}{\partial\lambda_k\partial\lambda_j\partial\lambda_i} \\ &+ \frac{1}{44}\beta_k \frac{\partial\beta_j}{\partial\lambda_k} \frac{\partial\beta_i}{\partial\lambda_j} \frac{\partial\beta_1}{\partial\lambda_i} + \frac{1}{44}\beta_j\beta_i \frac{d^2\beta_i}{\partial\lambda_j\partial\lambda_i} \frac{\partial\beta_1}{\partial\lambda_i} \\ &+ \frac{3}{44}\beta_j\beta_k \frac{\partial\beta_i}{\partial\lambda_k} \frac{d^2\beta_1}{\partial\lambda_j\partial\lambda_i}\right) + \end{split}$$

$$\begin{split} &+ \frac{h^5}{40\sqrt{2}v} \left(\beta + \frac{25}{12} \beta_i \frac{d\beta}{d\lambda_i} + \frac{35}{24} \beta_j \beta_i \frac{d^2\beta}{d\lambda_j d\lambda_i} \right. \\ &+ \frac{35}{24} \beta_j \frac{d\beta_i}{d\lambda_j} \frac{d\beta}{d\lambda_i} + \frac{5}{12} \beta_k \beta_j \beta_i \frac{d^3\beta}{d\lambda_k d\lambda_j d\lambda_i} \\ &+ \frac{5}{12} \beta_k \frac{d\beta_j}{d\lambda_k} \frac{d\beta_i}{d\lambda_j} \frac{d\beta}{d\lambda_i} + \frac{5}{12} \beta_j \beta_i \frac{d^2\beta_i}{d\lambda_j d\lambda_i} \frac{d\beta}{d\lambda_i} \\ &+ \frac{5}{4} \beta_j \beta_k \frac{d\beta_i}{d\lambda_k} \frac{d^2\beta}{d\lambda_j d\lambda_i} + \frac{1}{24} \beta_i \beta_j \beta_k \beta_\ell \frac{\partial^4\beta}{\partial\lambda_i \partial\lambda_j \partial\lambda_k \partial\lambda_\ell} \\ &+ \frac{1}{24} \beta_\ell \frac{\beta\beta_k}{\partial\lambda_\ell} \frac{\partial\beta_j}{\partial\lambda_k} \frac{\partial\beta_i}{\partial\lambda_j \partial\lambda_i} \frac{\partial\beta}{\partial\lambda_i} + \frac{1}{4} \beta_i \beta_j \beta_k \frac{\partial\beta_\ell}{\partial\lambda_k} \frac{\partial^3\beta}{\partial\lambda_i \partial\lambda_j \partial\lambda_\ell} \\ &+ \frac{1}{8} \beta_\ell \beta_k \frac{\partial\beta_j}{\partial\lambda_k} \frac{\partial^2\beta_i}{\partial\lambda_j \partial\lambda_\ell} \frac{\partial\beta}{\partial\lambda_i} + \frac{1}{6} \beta_i \beta_\ell \frac{\beta\beta_k}{\partial\lambda_\ell} \frac{\partial\beta_j}{\partial\lambda_k \partial\lambda_j \partial\lambda_i} \\ &+ \frac{1}{8} \beta_\ell \beta_i \beta_j \beta_\ell \frac{\partial^2\beta_k}{\partial\lambda_\ell \partial\lambda_j \partial\lambda_\ell} \frac{\partial^2\beta}{\partial\lambda_k \partial\lambda_j} + \frac{1}{24} \beta_\ell \beta_k \beta_j \frac{\partial^3\beta_i}{\partial\lambda_j \partial\lambda_k \partial\lambda_\ell} \frac{\partial\beta}{\partial\lambda_i} \\ &+ \frac{1}{8} \beta_\ell \beta_i \frac{\partial\beta_k}{\partial\lambda_\ell} \frac{\partial^2\beta}{\partial\lambda_k \partial\lambda_j \partial\lambda_j} \frac{\partial\beta_j}{\partial\lambda_i} + \frac{1}{24} \beta_\ell \beta_k \beta_j \frac{\partial^2\beta_j}{\partial\lambda_\ell \partial\lambda_j \partial\lambda_k \partial\lambda_\ell} \frac{\partial\beta}{\partial\lambda_i} \\ &+ \frac{1}{8} \beta_\ell \beta_i \frac{\partial\beta_k}{\partial\lambda_\ell} \frac{\partial^2\beta}{\partial\lambda_k \partial\lambda_j \partial\lambda_j} \frac{\partial\beta_j}{\partial\lambda_i} + \frac{1}{24} \beta_\ell \beta_k \beta_\ell \beta_k \frac{\partial^2\beta_j}{\partial\lambda_\ell \partial\lambda_j \partial\lambda_\ell \partial\lambda_\ell} \frac{\partial\beta}{\partial\lambda_i} \\ &+ \frac{1}{8} \beta_\ell \beta_i \frac{\partial\beta_k}{\partial\lambda_\ell} \frac{\partial^2\beta}{\partial\lambda_k \partial\lambda_j \partial\lambda_j} \frac{\partial\beta_j}{\partial\lambda_i} + \frac{1}{24} \beta_\ell \beta_k \beta_\ell \beta_k \frac{\partial\beta_j}{\partial\lambda_\ell \partial\lambda_j \partial\lambda_k \partial\lambda_\ell} \frac{\partial\beta}{\partial\lambda_i} \\ \\ &+ O(h^6). \end{split}$$

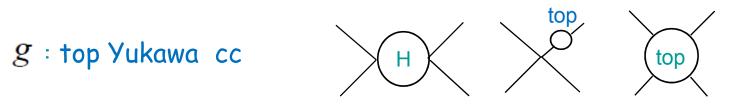
CTH arXiv:1401.4185 [hep-ph]. Phys Rev D.89. 073003. Can the light Higgs Boson mass come from quantum mechanics?

i.e., Is the Higgs potential a Coleman-Weinberg Potential?

Treat this as a phenomenological question !!!

Higgs Quartic coupling $\beta(\lambda)$

$$\frac{d\lambda(v)}{d\ln(v)} = \frac{12}{16\pi^2} (\lambda^2 + \lambda g^2 - g^4) = \beta$$



(I am ignoring EW contributions for simplicity of discussion)

approximate physical values from Higgs mass 126 GeV:
$$\lambda = 1/4$$
 $\beta = -5.2244 \times 10^{-2}$

 $-\beta/\lambda = 0.21 \ll 4$ Far from Coleman-Weinberg

Modify Higgs Quartic coupling $\beta(\lambda)$

Introduce a new field: S

Higgs-Portal Interaction $\lambda' |H|^2 |S|^2$

Two possibilities:

(1) Modifies RG equation to make $\beta > 0$:

$$\frac{d\lambda(v)}{d\ln(v)} = \frac{12}{16\pi^2} \left(\lambda^2 + \lambda g^2 - g^4 + c \lambda'^2\right)$$

(2) S develops its own CW potential, and VEV $\langle S \rangle = V'$ and Higgs gets mass, $\lambda' V'$

Simplest hypotheses S may be:

A new doublet NOT coupled to $SU(2) \times U(1)$ (inert) w or wo VEV

S. Iso, and Y. Orikasa, PTEP (2013) 023B08; Hambye and Strumia Phys.Rev. D88 (2013) 055022; <u>"Ultra-weak sector, Higgs boson mass, and the dilaton,"</u> <u>K. Allison, C. T. Hill, G. G. Ross.</u> <u>arXiv:1404.6268</u> [hep-ph]; <u>"Light Dark Matter, Naturalness, and the Radiative Origin of</u> <u>the Electroweak Scale," W. Altmannshofer, W. Bardeen, M Bauer,</u> M. Carena, J. Lykken e-Print: <u>arXiv:1408.3429</u> [hep-ph] ...

Many, many papers on this approach!

A New doublet COUPLED to SU(2)×U(1) with no VEV (dormant)

e.g., Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking? CTH, arXiv:1401.4185 [hep-ph]. <u>Phys Rev D.89.073003</u>.... S sector is Dark Matter

S sector is visible at LHC

$$\begin{array}{l} \text{Massless} \\ \text{two doublet} \\ \text{potential} \end{array} \left\{ \begin{array}{l} V(H_1, H_2) = \frac{\lambda_1}{2} |H_1|^4 + \frac{\lambda_2}{2} |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 \\ + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 e^{i\theta} + h.c. \right] \end{array} \right\} \\ \text{Two doublet} \\ \text{Two doublet} \\ \text{RG equations} \end{array} \right\} \left\{ \begin{array}{l} 16\pi^2 \frac{d\lambda_1(\mu)}{d\ln(\mu)} = 12\lambda_1^2 + 4\lambda_3^2 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 2\lambda_5^2 \\ - 3\lambda_1(3g_2^2 + g_1^2) + \frac{3}{2}g_2^4 + \frac{3}{4}(g_1^2 + g_2^2)^2 \\ + 12\lambda_1g_t^2 - 12g_t^4 \end{array} \right\} \\ \text{Two doublet} \\ \text{RG equations} \end{array} \right\} \left\{ \begin{array}{l} 16\pi^2 \frac{d\lambda_3(\mu)}{d\ln(\mu)} = (\lambda_1 + \lambda_2)(6\lambda_3 + 2\lambda_4) + 4\lambda_3^2 + 2\lambda_5^2 \\ - 3\lambda_3(3g_2^2 + g_1^2) + \frac{9}{2}g_2^4 + \frac{3}{4}g_1^4 - \frac{3}{2}g_1^2g_2^2 \\ + 6\lambda_3(g_t^2 + g_5^2) - 12g_t^2g_5^2 \\ 16\pi^2 \frac{d\lambda_4(\mu)}{d\ln(\mu)} = (\lambda_1 + \lambda_2)(6\lambda_3 + 2\lambda_4) + 4\lambda_3^2 + 2\lambda_5^2 \\ - 3\lambda_3(3g_2^2 + g_1^2) + \frac{9}{4}g_2^4 + \frac{3}{4}g_1^4 - \frac{3}{2}g_1^2g_2^2 \\ + 6\lambda_3(g_t^2 + g_5^2) - 12g_t^2g_5^2 \\ 16\pi^2 \frac{d\lambda_4(\mu)}{d\ln(\mu)} = \lambda_5[2(\lambda_1 + \lambda_2) + 8\lambda_8 + 12\lambda_8 \\ - 3(g_2^2 + g_1^2) + 2(g_t^2 + g_5^2)] \end{array} \right\} \\ \begin{array}{l} \text{CTH, C N Leung, S Rao} \\ \text{NPB262 (1985) 517} \\ - 3(3g_2^2 + g_1^2) + 2(g_t^2 + g_5^2)] \end{array}$$

Can easily solve for portal interaction λ_3 :

$$\beta = \frac{1}{16\pi^2} (12\lambda^2 + 12\lambda g^2 - 12g^4 + 4\lambda_3^2) + EW, etc.$$
 $g = g_{top} \approx 1$

$$\left. \begin{array}{c} \lambda = 1/4 \\ g = 1 \end{array} \right\} \qquad \beta/\lambda = -4$$

Solution is: $\lambda_3 = 4.8789$

Mass of New Doublet: $\sqrt{4.8789} \times (175) = 386.54$ GeV

Prediction: Heavy "dormant" Higgs doublet at ~ 400 GeV

No VeV but coupled to SU(2) xU(1): "Dormant" Higgs Doublet (vs. "Inert")

Production, mass, and decay details are model dependent

Parity $H_2 \rightarrow -H_2$ implies stabity: $H_2^+ \rightarrow H_2^0 + (e^+v)$ if $M^+ > M^0$ Then H_2^0 is stable dark matter WIMP

Best Visible Model: Break parity by coupling H₂ to b-quarks

The Dormant Doublet is pair produced above threshold near $2M_{\rm H}\approx 800~GeV$

 $p + p \rightarrow H_2^+, H_2^-$ at 14 TeV cms; $\sigma_{total} = 2.8$ fb

$pp \rightarrow X + (\gamma^*, Z^*, W^*, h^*) \rightarrow X + H H^*$

FIG. 1: H^+H^- production at LHC.

pp -> H^0 H^0 $\sigma = 1.4 \text{ fb}$ $\Gamma_{H^0 \rightarrow bb} = 45 \text{ GeV}$ Assume $g_b' = 1$ pp -> H^+ H^- $\sigma = 2.8 \text{ fb}$ $\Gamma_{H^+ \rightarrow tb} = 14 \text{ GeV}$ pp -> H^+ H^0 $\sigma = 0.9 \text{ fb}$ $\sigma = 0.9 \text{ fb}$

Maybe in Run II?

CalcHEP estimates

TABLE I: Predicted decay widths and production cross-sections for the dormant Higgs bosons. We used CalcHep, and production runs CTEQ61 proton structure functions, 1.64×10^5 calls. All cross-sections are evaluated at 14 TeV cms energy with the mass of H_2 doublet set to 380 GeV/ c^2 . Model dependent processes have rates or cross-sections that are indicated as $\propto (g'_b)^2$.

Process	value	comments
$\Gamma(H^+ \to t + \overline{b}) = \Gamma(H^- \to b + \overline{t})$	$14.5 \ (g_b')^2 \pm 5 \times 10^{-5}\% \text{ GeV}$	τ
$\Gamma(H^0 \to b + \overline{b}) = \Gamma(A^0 \to b + \overline{b})$	$5.67 (g'_b)^2 \pm 5 \times 10^{-5}\%$ GeV	T
$\Gamma(H^0 \to 2h, 3h) = \Gamma(A^0 \to 2h, 3h)$		absent in model
$pp \to (\gamma, Z^0) \to H^+ H^-$	$\sigma_t = 1.4~{ m fb}$	
$pp \to (\gamma, Z) \to H^0 H^0$		absent in model
$pp \to (\gamma, Z) \to A^0 H^0$	$\sigma_t = 1.3 \text{ fb}$	
$pp \to (\gamma, Z) \to A^0 A^0$		absent in model
$pp(gg) \to h \to H^0 H^0$ or $A^0 A^0$	$\sigma_t = 1.7 \times 10^{-5} ~{ m fb}$	
$pp \to W^+ \to H^0 H^+$	$\sigma_t = 1.8~{ m fb}$	
$pp \to W^+ \to A^0 H^+$	$\sigma_t = 1.8 ~{\rm fb}$	
$pp \rightarrow W^- \rightarrow H^0 H^-$	$\sigma_t = 0.74~{ m fb}$	
$pp \rightarrow W^- \rightarrow A^0 H^-$	$\sigma_t = 0.74~{ m fb}$	
$pp \rightarrow b + \overline{b} + H^0$ or A^0	$\sigma_t = 1.8~(g_b')^2~\mathrm{pb}~\pm 2.4\%$	No p_T cuts
	$\sigma_t = 67 \; (g_b')^2 \; \mathrm{fb} \; \pm 5\%$	$p_T(b)$ and $p_T(\overline{b}) > 50 \text{ GeV}$
	$\sigma_t = 9.6 \ (g_b')^2 \ {\rm fb} \ \pm 3.5\%$	$p_T(b)$ and $p_T(\overline{b}) > 100 \text{ GeV}$
$pp \to t + \overline{b} + (H^-)$	$\sigma_t = 220 \ (g_b')^2 \ \text{fb}$	No cuts
	$\sigma_t = 44 \; (g_b')^2 \; \mathrm{fb}$	$p_T(t), p_T(\overline{b}) > 50 \text{ GeV}$
	$\sigma_t = 14 \ (g_b')^2 \ \text{fb}$	$p_T(t), p_T(\overline{b}) > 100 \text{ GeV}$
$pp \to \overline{t} + b + (H^+)$	$\sigma_t = 270 \; (g_b')^2 \; {\rm fb}$	No cuts
	$\sigma_t = 46 \; (g_b')^2 \; \text{fb} \; p_T(\overline{t})$	$p_T(b) > 50 \text{ GeV}$
	$\sigma_t = 14 \ (g_b')^2 \ {\rm fb} \ p_T(\overline{t})$	$p_T(b) > 100 \text{ GeV}$

CTH, arXiv:1401.4185 [hep-ph]. Phys Rev D.89.073003. The "smoking gun" of a Coleman-Weinberg mechanism:

Trilinear, quartic and quintic Higgs couplings will be significantly different than in SM case

$$V_{CW}(H) = \frac{1}{2}m_h^2 h^2 + \frac{5}{6\sqrt{2}v}h^3 \left(\beta_1 + \frac{9}{20}\beta_3 \frac{\partial\beta_1}{\partial\lambda_3}\right) + \frac{11}{48v^2}h^4 \left(\beta_1 + \frac{35}{44}\beta_3 \frac{\partial\beta_1}{\partial\lambda_3}\right) + \frac{1}{40\sqrt{2}v}h^5 \left(\beta_1 + \frac{25}{12}\beta_3 \frac{\partial\beta_1}{\partial\lambda_3}\right) + \dots$$

trilinear =
$$\frac{5}{3}\left(1 + \frac{v^2}{5m_h^2}\frac{\lambda_3^3}{8\pi^4}\right) \approx 1.75$$

quadrilinear = $\frac{11}{3}\left(1 + \frac{35v^2}{44m_h^2}\frac{\lambda_3^3}{8\pi^4}\right) \approx 4.43$
quintic = $\frac{3}{5}\left(\frac{\beta_1}{\hat{\beta}} + \frac{25}{12\hat{\beta}}\frac{\lambda_3^3}{6\pi^4}\right) \approx -8.87$

* This may be doable at LHC in Run II?

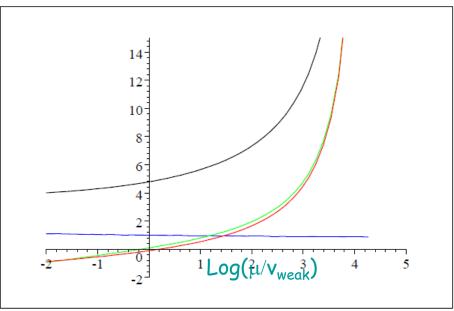
Problem with simplest model: the UV Landau Pole, hard to avoid, implying strong scale

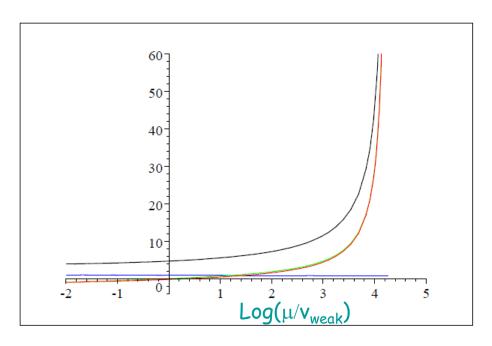
 $\lambda_3(175 \text{ GeV}) = 4.79 \text{ (black)}$ $\lambda_1(175 \text{ GeV}) = -0.1 \text{ (red)}$ $\lambda_2(175 \text{ GeV}) = 0.1 \text{ (green)}$ $g_{top} = 1 \text{ (blue)}$ $\lambda_4 = \lambda_5 = 0$

Landau Pole = 10 - 100 TeV

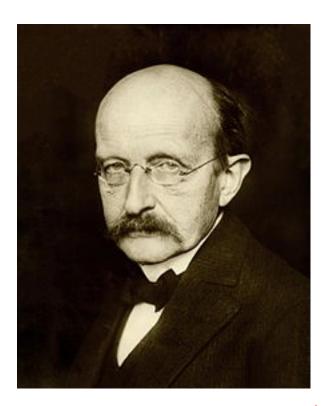
Landau Pole -> Composite H₂ New Strong Dynamics ?

e.g. <u>Higgs mass from compositeness at</u> <u>a multi-TeV scale</u>, <u>Hsin-Chia Cheng Bogdan Dobrescu</u>, <u>Jiayin Gu</u> e-Print: **arXiv:1311.5928**





The Conjecture:



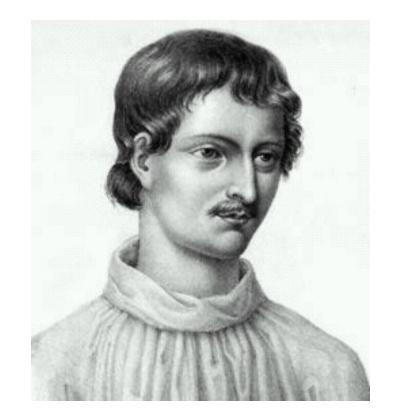
Max Planck

All mass is a quantum phenomenon. $\hbar \longrightarrow 0 \Longrightarrow Classical scale symmetry$

Conjecture on the physical implications of the scale anomaly: M. Gell-Mann 75th birthday talk: <u>C. T. Hill</u> hep-th/0510177

Musings: What if it's true?

All mass scales in physics are intrinsically quantum mechanical and associated with scale anomalies. The $\hbar \rightarrow 0$ limit of nature is exactly scale invariant.



(a heretic)

"Predictions" of the Conjecture:

We live in D=4!
$$T^{\mu}_{\mu} = \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{D}{4} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}$$

Cosmological constant is zero in classical limit

QCD scale is generated in this way; Hierarchy is naturally generated

Testable in the Weak Interactions !

"Predictions" of the Conjecture:

We live in D=4!
$$T^{\mu}_{\mu} = \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{D}{4} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu}$$

Cosmological constant is zero in classical limit

QCD scale is generated in this way; Hierarchy is naturally generated

Testable in the Weak Interactions!

Does the Planck Mass Come From Quantum Mechanics?

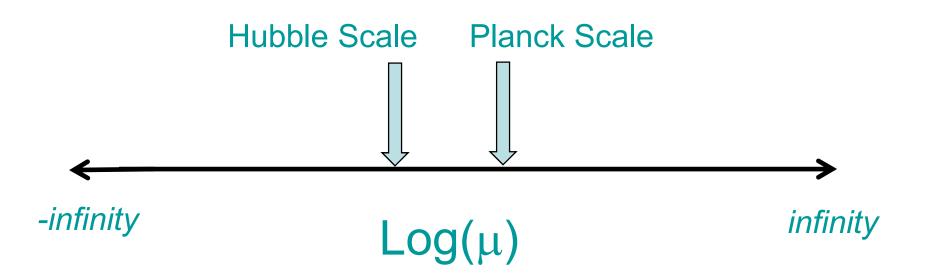
Can String Theory be an effective theory?

... or Weyl Gravity? (A-gravity?) Weyl Gravity is Renormalizable! 1

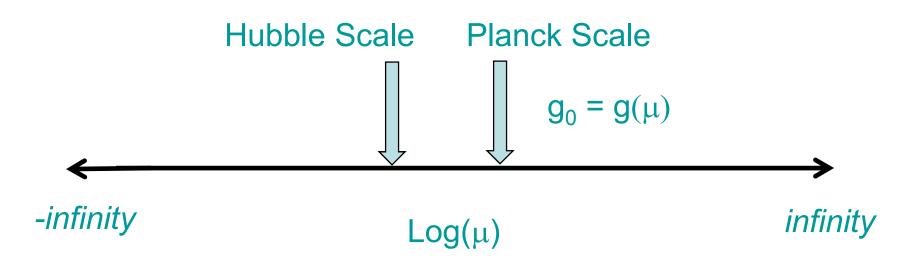
Weyl Gravity is QCD-like:

$$\frac{1}{h^2}\sqrt{-g}(R_{\mu\nu}R^{\mu\nu} - \frac{1}{3}R^2)$$

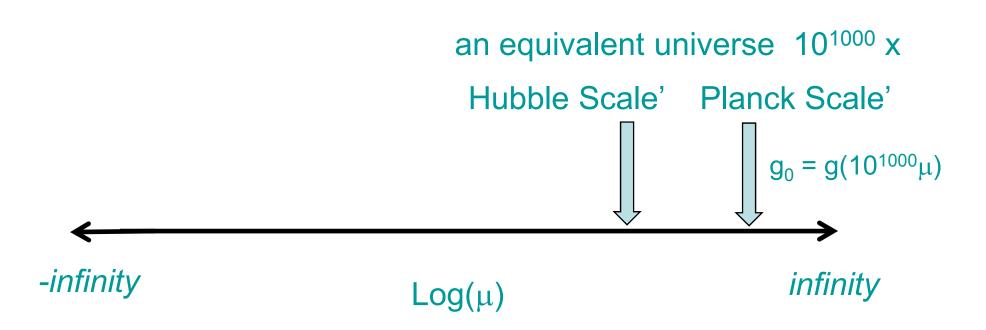
The "Scaloplex" (scale continuum) infinite, uniform, and classically isotropic



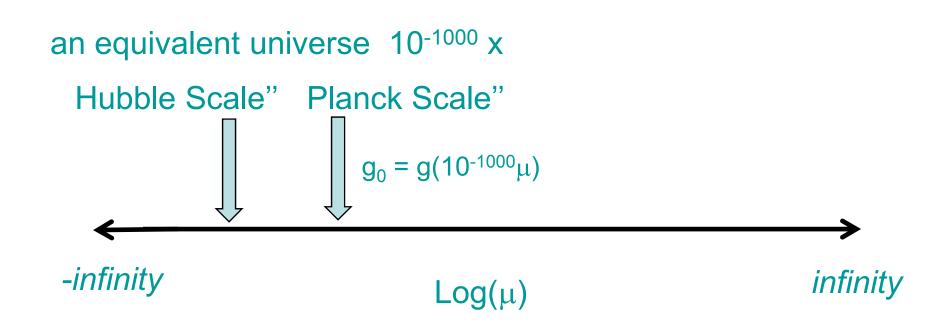
Physics is determined by local values of dimensionless coupling constants



Physics is determined by local values of dimensionless coupling constants



Physics is determined by local values of dimensionless coupling constants



Lack of additive scales: Is the principle of scale recovery actually a "Principle of Locality" in Scaloplex?

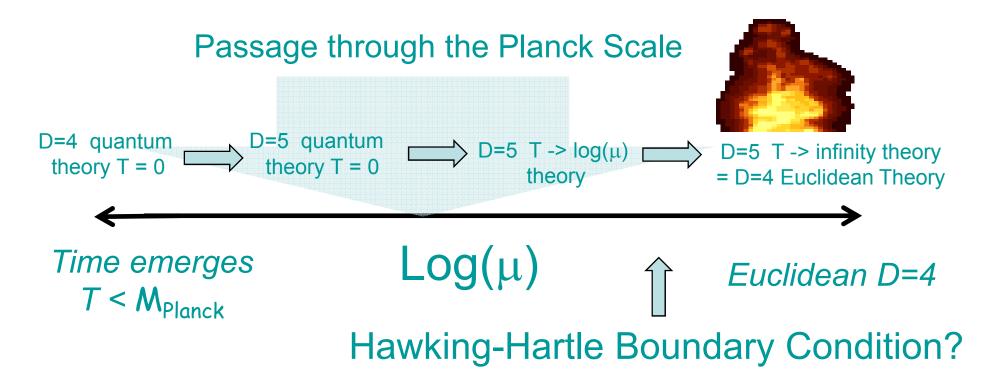
Physical Mass Scales, generated by e.g. Coleman-Weinberg or QCD-like mechanisms, are Local in scale, and do not add to scales far away in the scaloplex

E.g, "shining" with Yukawa suppression in extra dimensional models.

Does Coleman-Weinberg mechanism provide immunity from additive scales? Conjecture on a solution to the Unitarity Problem of Weyl Gravity

CTH, P. Agrawal

M_{Planck} arises via QCD-like mechanism. Theory becomes Euclidean for $\mu > M_{Planck}$ (infinite temperature or instanton dominated) Time is emergent for $\mu << M_{Planck}$



Conclusions:

An important answerable scientific question: Is the Higgs potential Coleman-Weinberg?

- We examined a "maximally visible" scheme
- Dormant Higgs Boson from std 2-doublet scheme $M\approx 386~GeV$
 - May be observable, LHC run II, III?
 - Higgs trilinear ... couplings non-standard or New bosons may be dark matter

Perhaps we live in a world where all mass comes from quantum effects No classical mass input parameters.

Everyone is still missing the solution to the scale recovery problem!

End