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• Higgs mass in scale invariant theories

• Threshold corrections

• Comments on different regulators            
(is dim reg special?)

• Scale invariance all the way                                 
and asymptotically free theories    

Outline



One idea to address naturalness:  scale-invariant theories.

There are two possible philosophies: 

(i) SM is embedded in a scale-invariant theory up to 
    the Planck scale and then gravity is somehow different

(ii) SM and gravity merge into a scale-invariant theory
    (asymptotic safety)
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It is easy to see how fine tuning might be 
avoided using dimensional regularization:

After minimal subtraction corrections to the Higgs 
mass are proportional to small mass scales.  



�m2
h /

Z
ddp

(2⇡)d
1

p2
= 0

[ �m2
h /

Z
ddp

(2⇡)d
1

(p2)↵
= 0 ]

Two essential points:

(i)

(ii)   there are no heavy particles



SM is nearly scale invariant classically, but cannot 
be so quantum mechanically at high energies 
because of the hypercharge U(1) and gravity. 

Let’s assume that SM merges into a CFT at 
an energy scale M.
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SM is nearly scale invariant classically, but cannot 
be so quantum mechanically at high energies 
because of the hypercharge U(1) and gravity. 

Let’s assume that SM merges into a CFT at 
an energy scale M.

[ If there are heavy particles at M, the usual fine-tuning   
arguments apply. Perhaps the CFT phase can be entered 
without heavy states present as a result of coupling 
evolution. Banks-Zaks fixed point a good example. ]

Threshold corrections
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A useful way of computing Higgs mass corrections:

In a CFT

Parameterize different behaviors in the IR and UV 
with an intermediate threshold M:
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Cannot calculate f(y). It is inherently non-perturbative.
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UV subtraction

Finite, can be computed in 4d
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UV subtraction, 
(= 0 in dim reg)
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(The abruptness of the transition
 is not crucial to the result.) 
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Choice of regulator

- Dimensional regularization seems to go well with scale  
invariance because it seems to break the scale invariance 
minimally compared to other regulators. 

- Clearly physics should not depend on the regulator, so 
we need to reach the same conclusions using any 
regularization scheme.

- It is the symmetries of the quantum theory that dictate 
the form of counter-terms via the Ward identities and 
choosing specific regulators should not matter. 



Well-known example: fermion masses are not tuned due to 
chiral symmetry �m / m 



Well-known example: fermion masses are not tuned due to 
chiral symmetry �m / m 

L = i D/ �m  +  @2

⇤  + . . .

�m / ⇤

What happens if we choose a regulator that breaks 
chiral symmetry, e.g. higher-derivative regulator ?



Well-known example: fermion masses are not tuned due to 
chiral symmetry �m / m 

L = i D/ �m  +  @2
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What happens if we choose a regulator that breaks 
chiral symmetry, e.g. higher-derivative regulator ?

Fermion mass is still natural even though the regulator 
obscures that fact. The Ward identities need to be 

enforced and the choice of the counter-term to satisfy 
such identities does not constitute fine tuning. 
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Dimensional regularization with MS seems to imply that 
contributions to scalar mass arise only from massive 
particles because it is a mass independent regulator. 

Using Wilsonian renormalization 

makes it apparent that scalar mass contribution 
arise from each momentum shell. 

For example,  in supersymmetric theories contributions 
to the scalar mass cancel for each momentum shell 
between the fermionic and bosonic fields. 
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Scale invariance at the highest scales

It is proposed that SM and gravity are described by a 
field theory at energies above the Planck scale. The 
theory approaches a UV fixed point and therefore 

might be valid up to arbitrarily high scales. 

Normally we don’t worry about logarithmic divergencies 
since log(M_Planck/M_weak) is not huge. For an ultimate 
theory any leftover divergence that cannot be attributed 
to a CFT behavior implies (infinite) fine tuning. [Even 
without a divergence there could be large contributions 
to the Higgs mass from high scales.]

The fixed point needs to be approached sufficiently fast.
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Asymptotically free theories present a puzzle:
At short distances, one can use the OPE
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Asymptotically free theories present a puzzle:
At short distances, one can use the OPE

- dim reg: d<2 and analytic continuation yields 
  multi-valued function
- subtracting a CFT power law does not give finite result
- could not find a meaningful way to regulate this integral



• Even if scale invariance solves the hierarchy 
problem in the UV, SM needs to be modified at 
the TeV scale due to threshold contributions

• Scale invariance of the quantum theory could 
ameliorate the hierarchy problem, but classical 
scale invariance does not cut it.

• Asymptotic safety faces additional challenges 
from naturalness. 

Summary



The end. 


