

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Sterile Neutrino Physics Motivation & Experiment Status

Steve Brice Fermilab PAC Meeting 24 July 2014

Overview

- I aim to describe the evidence and counter evidence for "eV scale" sterile neutrinos and future efforts in this area
- I aim to stick to the facts and not deliver opinions
 - You can judge how successful I am at this
- I'm pitching the content at the non-neutrino PAC members
 - Neutrino experts should see nothing new in this talk

Summary of Tensions in the 3v Mixing Scheme

- Gallium: 2.7s evidence for v_e disappearance
- LSND: 3.8s evidence for anti- v_e appearance
- MiniBooNE: 3.8s evidence for v_e and anti- v_e appearance
- Reactor: 3.0s evidence for anti- v_e disappearance
- These can be interpreted as evidence for a 4th neutrino state at ~eV mass
- However

- There are a number of results that are sensitive, but see no evidence for a 4th neutrino state with ~eV mass:-
 - CDHS and MiniBooNE searches for v_{μ} disappearance
 - MiniBooNE search for \overline{v}_{μ} disappearance
 - MINOS search for $v_{\mu} \rightarrow v_{s}$
 - Karmen search for $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
 - OPERA and ICARUS searches for $v_{\mu} \rightarrow v_{e}$
- It is hard (impossible?) to fit all data with a single oscillation hypothesis
 Eermilab

Three Active Neutrino Species

- Oscillations with Δm^2_{solar} and Δm^2_{atm} are well established
- Therefore a 4th light state must be sterile

Anti-v_e Appearance at ~40MeV

- LSND used 800 MeV protons from LAMPF at Los Alamos in the 1990's
- Searched for anti-v_e appearance in neutrino beam from pion decay at rest.

- Found an excess of anti-v_e over background prediction -
 - $87.9 \pm 22.4 \pm 6.0$ (3.8 σ)

Anti-v_e Appearance at ~40MeV

• A similar experiment, KARMEN, ran at RAL at the same time and found no significant excess

 The two results are not incompatible when interpreted with an 2v oscillation hypothesis

v_e and anti- v_e Appearance at ~1GeV: MiniBooNE

Keep L/E same as LSND while changing systematics, energy & event signature

v_e and anti-v_e Appearance at ~1GeV: MiniBooNE

Phys. Rev. Lett. 110, 161801 (2013)

Antineutrino Event Excess from 200-1250 MeV = 78.4+-20.0+-20.3 (2.8s)

Neutrino Event Excess from 200-1250 MeV = 162.0+-28.1+-38.7 (3.4s)

Combined Event Excess from 200-1250 MeV = 240.3+-34.5+-52.6 (3.8s)

v_e and anti- v_e Appearance at ~1GeV: MiniBooNE

9

Under a 2v oscillation hypothesis...

Antineutrino $P_{bf} = 66\%$, $P_{null} = 5.4\%$ P_{null} relative to $P_{bf} = 0.5\%$

Neutrino $P_{bf} = 6.1\%$, $P_{null} = 0.5\%$ P_{null} relative to $P_{bf} = 2.0\%$

Phys. Rev. Lett. 110, 161801 (2013)

Steve Brice I Sterile Neutrino Physics Motivation & Experiment Status

24 July 2014

\mathbf{v}_{e} and anti- \mathbf{v}_{e} Appearance at Multi GeV

ICARUS and Opera at Gran Sasso running in the Multi-GeV CNGS beam from CERN see no evidence of v_e appearance

v_{μ} and Anti- v_{μ} Disappearance at ~1 and Multi GeV

- There is no evidence for v_μ disappearance from multiple experiments looking in the region L/E ~1 m/MeV and E from ~1 GeV to multi-Gev

CDHS, CCFR, MiniBooNE, SciBooNE, MINOS,

Anti-v_e **Disappearance at ~few MeV: Reactor Anomaly**

- In the last few years there has been a re-evaluation of the predicted reactor neutrino flux causing it to move up by 3.5%
- This results in the measurements now sitting 3.0σ below the prediction (Mueller et al. 1101.2663, Huber 1106.0687, Hayes et al. 1309.4146)

🚰 Fermilab

Anti-v_e Disappearance at ~few MeV: Reactor 5MeV Bump

24 July 2014

v_e Disappearance at ~sub MeV: Gallium Anomaly

- Calibration of the Gallium Solar v Detectors
- e-capture sources
 - ⁵¹Cr (750 keV) & ³⁷Ar (810keV)

- The goal was to test (*not* calibrate) the production-extractiondetection efficiency of the SAGE and GALLEX experiments
- Deficit observed
- $R_{obs/pred} = 0.86 \pm 0.05 (\sigma_{Bahcall})$
- $R_{obs/pred}$ =0.76±0.085 (σ_{Haxton})

"A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in ⁷¹Ge has been overestimated" SAGE Collab. in abstract of Phys. Rev. C80, 015807 (2009)
 Fermilab

CMB and Large Scale Structure

- Number of relativistic species N_{eff}
- N_{eff} = 4 is mildly disfavored by current data

Ade et al. (Planck), arXiv:1303.5076 Gonzalez-Garcia Maltoni Salvado, arXiv:1006.3795 Hamann Hannestad Raffelt Tamborra Wong, arXiv: 1006:5276

"Cosmological data is rare and precious stuff for determining the properties of the early Universe. We shouldn't waste it measuring v properties. v properties should be inputs to cosmology, not outputs. That statement is (to me) independent of the quality of the cosmological data." Dave Wark, Neutrino 2014

Summary Tables

Anomalies						
	Strength of effect (σ)	Channel	Energy Scale			
LSND	3.8	anti-v _e app.	~40 MeV			
MiniBooNE	3.8	v _e /anti-v _e app.	~1 GeV			
Reactor	3.0	anti-v _e disapp.	Few MeV			
Gallium	2.7	v _e disapp.	Sub MeV			

	Null Results	
	Channel	Energy Scale
CDHS	v _µ disapp.	30-200 GeV
MiniBooNE	v_{μ} and anti- v_{μ} disapp	~1 GeV
MINOS	v_{μ} disapp.	several GeV
KARMEN	anti-v _e app	~40 MeV
OPERA & ICARUS	v _e app	Tens of GeV
		1

The Global Picture Assuming One Additional Sterile State

The Global Picture Assuming Additional Sterile States

The global oscillation fit

- 3 + 1 Severe tension between appearance and disappearance and between exp's with and without a signal
- 3 + 2 Tension remains for two sterile neutrinos
- 3 + 3 No significant improvement expected

Parameter goodness of fit (PG) test:

Compares χ^2_{min} from global and separate fits to test compatibility of 2 data sets

JK Machado Maltoni Schwetz, arXiv:1303.3011

	$\chi^{\sf 2}_{\sf min}/{\sf dof}$	GOF	$\chi^2_{\rm PG}/{ m dof}$	PG
3+1	712/(689 - 9)	19%	18.0/ <mark>2</mark>	$1.2 imes 10^{-4}$
3+2	701/(689 - 14)	23%	25.8/ <mark>4</mark>	$3.4 imes10^{-5}$
1+3+1	694/(689 - 14)	30%	16.8/ <mark>4</mark>	$2.1 imes 10^{-3}$

Slide taken from Joachim Kopp's Neutrino 2014 talk

How to Compare Experimental Results and Models

- Usual plots assume 3+1 the one scenario we know is in severe tension with the data
- Plots of L/E provide a somewhat more general way of comparing experiments.
 - L/E scales with the relativistic proper time
 - The relevant variable for many phenomena other than oscillations e.g. decay
- Being careful about L/E plots
 - The full error matrix of the data is needed to compare experiments
 - The effects of energy mis-reconstruction are needed to compare experiment with model
 - Neglecting either can lead to sizeable mistakes see Bill's talk to follow

L/E Plots

Direct Tests and Oscillation Tests

- Two approaches to testing the anomalies
- Test the oscillation hypothesis by operating at the right L/E but not necessarily the same E
 - e.g. MiniBooNE was an oscillation test of LSND
- Test the experimental anomaly directly by operating at the same L/E and the same E
 - i.e. Do a better version of the experiment that generated the anomaly
 - e.g. OscSNS would be a direct test of LSND

Direct Tests and Oscillation Tests

24 July 2014

Future Accelerator Based Tests

	Primary Channel	Other osc channels	Definitive sterile?	Other physics	Tech R&D?	Cost	Why worry?	Comment
MicroBooNE (π DIF)	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	T	GeV-scale xsec	Yes	\$20M	tech, cosmics	Exists!
LAr1-ND (π DIF)	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	-	GeV-scale xsec	Yes	\$13M	tech, cosmics	
ICARUS@FNAL (π DIF)	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$		GeV-scale xsec	Yes	Under study	tech, cosmics	
TripleLAr@FNAL (π DIF)	$\begin{array}{c} \nu_{\mu} \rightarrow \nu_{e} \\ \\ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \end{array}$	$ u_{\mu} o u_{\mu} $ $ \bar{ u}_{\mu} o \bar{ u}_{\mu} $	¥ Probably	GeV-scale xsec	Yes	Under study	tech, cosmics	Work in progress. Anti-nu?
OscSNS (π,μ DAR)	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e}$	$\nu_e ightarrow \nu_e$	Yes	Supernova xsec	No	\$20M	intrinsic $\bar{\nu}_e$	
JPARC MLF (π,μ,K DAR)	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	$\begin{array}{l} \nu_e \rightarrow \nu_e \\ \\ \nu_\mu \rightarrow \nu_e \end{array}$	Not in phase 1	Supernova and 235 MeV $ u_{\mu} $ xsec	No	\$5M	intrinsic $\bar{\nu}_e$	Phase 1
IsoDAR- KamLAND (Isotope DAR)	$\bar{\nu}_e ightarrow \bar{\nu}_e$	_	Yes	$ar{ u}_e e^-$ (electroweak)	Yes	\$30M	timeline, tech	
nuSTORM (μ DIF)	$ u_e ightarrow u_\mu$	$ar{ u}_{\mu} ightarrow ar{ u}_{\mu}$ $ u_e ightarrow u_e$	Yes	GeV-scale xsec	Yes	\$300M	timeline, tech, cost	P5 says no

Table taken from Josh Spitz Neutrino 2014 talk

v_e and Anti-v_e Disappearance at ~few MeV: Hot Source Experiments

- Place a very hot (MCi scale) β or EC source near (or inside) one of the very capable low energy neutrino detectors we now have or soon will have
- Look for disappearance of v_e or anti-v_e
 - Look for spatial pattern of oscillations within the detector volume
- Powerful, simple(ish), relatively cheap, relatively fast
- First data available with SOX-Ce by the end of 2015 / beginning 2016
- One or more of these experiments should be completed within the next 5 years

v_e and Anti-v_e Disappearance at ~few MeV: Hot Source Experiments

Technique	Detector	Sources	Sources Reaction		Reference
Large Liquid scintillator detectors	SOX	⁵¹ Cr,	v+e →v+e	10MCi	JHEP08(2013)038,
	(Borexino)	¹⁴⁴ Ce- ¹⁴⁴ Pr	$v+p \rightarrow e^++n$		Phys. Rev. Lett. 107, 201801 (2011)
	Komi AND	⁸ Li (ISODAR)	ν+p→e++n	8.2 x 10 ¹⁴ v/sec	arXiV:1205.4419, arXiV:1310.3857
	KamLAND	¹⁴⁴ Ce(CeLAND)	ν+p→e++n	100kCi	arXiv:1312.0896
	Daya-Bay	¹⁴⁴ Ce- ¹⁴⁴ Pr		arXiV:1109.6036	
	LENS	⁵¹ Cr	v^{+115} In \rightarrow^{115} Sn*+e 10MC		Phys.Rev.D75 093006(2007)
	JUNO	⁸ Li (ISODAR)	$\overline{v}+p \rightarrow e^++n$ 8.2 x 10 ⁻¹⁴ v/sec		arXiV:1310.3857
Radiochemical	BEST	⁵¹ Cr	v+ ⁷⁰ Ga → ⁷¹ Ge+e 3MCi		arXiV:1204.5379
Bolometers	Richochet	³⁷ Ar	$\nu + N \rightarrow \nu + N$	5MCi	Phys. Rev. D85, 013009, (2012)

Table taken from Barbara Caccianiga's Neutrino 2014 talk

Anti-v_e **Disappearance at ~few MeV: Reactor Proposals**

- Get a high resolution MeV neutrino detector in close to a reactor
- Preferably movable or multiple detectors
- Proposals for both research and commercial reactors
- Large range of L (5-20m) and E (1-8MeV)
- Relative fast and relatively cheap
- Likely that more than one experiment completed within 5 years

Anti-v_e **Disappearance at ~few MeV: Reactor Proposals**

Table taken from David Lhuillier's Neutrino 2014 talk

Summary

- A number of intriguing hints at oscillations involving a 4th v state
- No single hint is compelling
- Much experimental evidence is in tension with such a 4th state
- Nonetheless the situation cannot be ignored
- Definitive experiments are needed in more than one experimental domain
- Direct and oscillation tests needed
- Hot source and reactor tests will be completed before the next generation of accelerator based short-based experiments

Extra Slides

29 Steve Brice I Sterile Neutrino Physics Motivation & Experiment Status

24 July 2014

Anti-v_e Appearance at ~40MeV: OscSNS

- A proposed LSND-style decay-at-rest experiment at the 1.4 MW SNS (1 GeV protons on an Hg target)
- Can provide definitive coverage of the sterile neutrino region with an 800 ton LS detector, 60 m away.

