

Outline

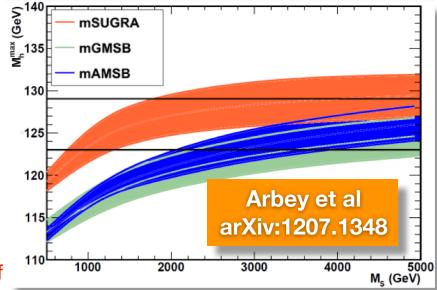
- Motivation
- Physics
- Choosing the signature
- Signal simulation
- Event selection
- Backgrounds
- Analysis optimization
- Multivariate analysis vs. cut-based one
- ◆ Results
- Interpretation
- ◆ Next steps
- Conclusions

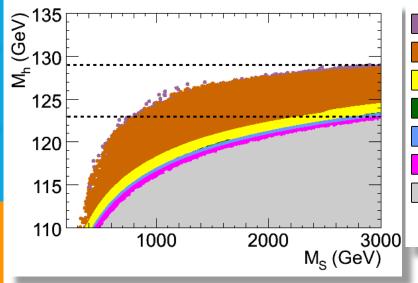
MOTIVATION

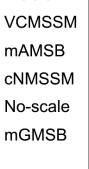
Some people need more than others...

Why Motivate Yourselves?

- ◆ Searching for new physics is not for lighthearted:
 - Some 200 searches have been done by the ATLAS and CMS Collaborations so far, and all came empty-handed
 - A likelihood for any given search to find something interesting is close to zero...
 - ..yet, the only way to find something is to keep looking!
- It's much easier to do the analysis if you are motivated
 - ...not [just] by your advisor, but by the physics you are doing!
- Remember, every search is a potential discovery, and only if it fails, it becomes a limit setting exercise
- ◆ "Pier is a disappointed bridge" James Joyce
 - Set out to build bridges, not piers!

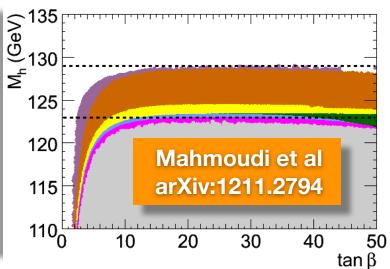

Looking for SUSY


- See more motivational details in Jessie Shelton's lectures:
 - What is SUSY?
 - Three SUSY miracles
 - Supersymmetric particle zoo
 - "Natural" SUSY
- SUSY and Higgs the marriage made in heaven
 - What did we learn about SUSY in the aftermath of the Higgs discovery?



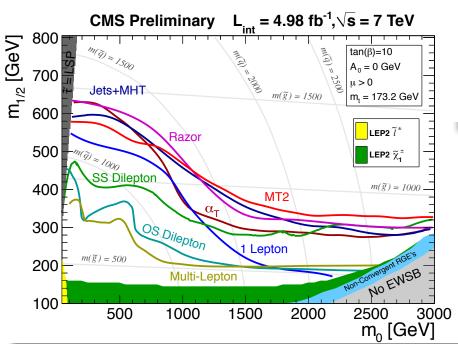
SUSY: the Higgs Aftermath

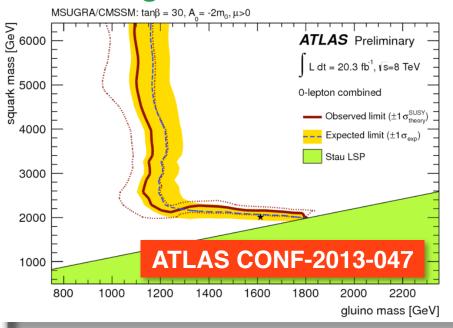
- ◆ A 125 GeV Higgs boson is challenging to accommodate in (over)constrained versions of SUSY, particularly for "natural" values of superpartner masses
 - Started to constrain some of the simpler models
- Big question: if SUSY exists, can it still be "natural", i.e. offer a non-fine-tuned solution to the hierarchy problem
 - If not, we would be giving up at least one of the three SUSY "miracles"



NUHM

mSUGRA





SuperSymmetry or SuperCemetery?

◆ Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV -

or did we?

SuperSymmetry or SuperCemetery?

Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV or did we?

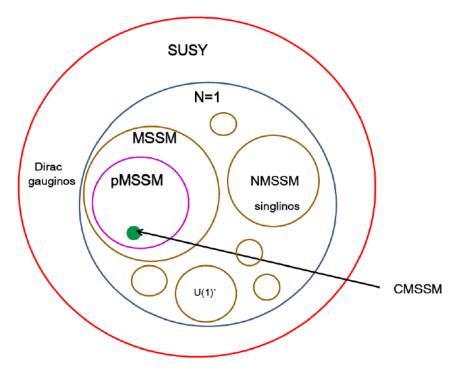
>Read the fine print!

What SUSY Have We Excluded?

 We set strong limits on squarks and gluinos, and yet we have not excluded SUSY

- Moreover, we basically excluded VERY LITTLE!
- We ventured for an "easy-SUSY" or "lazy-SUSY" and we basically failed to find it
 - So what? Nature could be tough!
- What we probed is a tiny sliver of multidimensional SUSY space, simply most "convenient" from the point of view of theory

◆ All it takes to avoid these limits is to give up squark degeneracy!



What SUSY Have We Excluded?

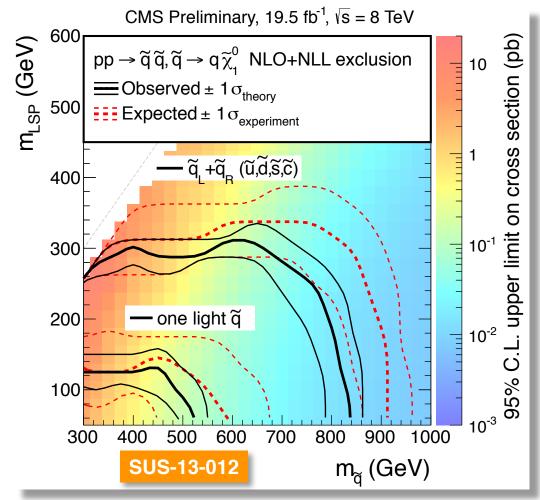
 We set strong limits on squarks and gluinos, and yet we have not excluded SUSY

- Moreover, we basically excluded VERY LITTLE!
- We ventured for an "easy-SUSY" or "lazy-SUSY" and we basically failed to find it
 - So what? Nature could be tough!
- What we probed is a tiny sliver of multidimensional SUSY space, simply most "convenient" from the point of view of theory

SUSY Theory phase space

T. Rizzo (SLAC Summer Institute, 01-Aug-12)

◆ All it takes to avoid these limits is to give up squark degeneracy!


What SUSY Have We Excluded?

♦ We set strong limits on squarks and gluinos, and yet we have not

excluded SUSY

Moreover, we basically excluded VERY LITTLE!

- We ventured for an "easy-SUSY" or "lazy-SUSY" and we basically failed to find it
 - So what? Nature could be tough!
- What we probed is a tiny sliver of multidimensional SUSY space, simply most "convenient" from the point of view of theory

All it takes to avoid these limits is to give up squark degeneracy!

We are at a SUSY Crossroad

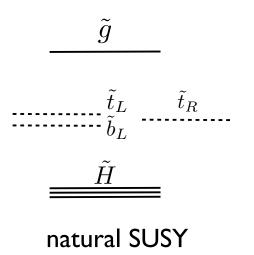
- ◆ Light 125 GeV Higgs boson strongly prefers SUSY as the fundamental explanation of the EWSB mechanism (via soft SUSY-breaking terms and radiative corrections)
- ◆ But what kind of SUSY?

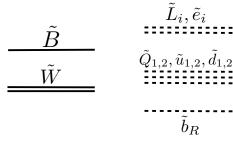
The Stakes Are Very High Nima Arkani-Hamed, SavasFest 2012

Implies: light stops/sbottom, reasonably light gluinos and charginos/neutralinos

Likely: long-lived particles, light neutralino, multi-TeV Z', ...

 $\begin{array}{c} + m_{\tilde{t}_R}^2 + A_t^2) \log M / m_{\tilde{t}} \\ \hline m_Z^2 = -2(m_{H_u}^2 + |\mu|^2) + \frac{2}{\tan^2\beta} (m_{H_d}^2 - m_{H_u}^2) + \mathcal{O}(1/\tan^4\beta) \\ \hline m_Z^2 = m_{H_u}^2 + m_{H_$ $\delta m_{ ilde{t}}^2 pprox rac{8lpha_s}{m_{ ilde{g}}^2 \log M/m_{ ilde{t}}}$ m $^2_{
m Hu}$ is small —3 fights stops (at one-loop level) and gluinos (at two-loop level) (to be made more precise in any given SB-mediation scheme) see, e.g., 3jinopoulos, Giudice for SUGRA-mediation, 1995 $\delta m_{H_u}^2 = -\frac{1}{2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2\right) \ln \left(\frac{1}{2} m_{\tilde{t}}\right) + 1$ Is-particles other than $\tilde{g}, \tilde{t}_L, \tilde{t}_R, \tilde{b}_L, \tilde{h}$ weakly constrained ipled SU stops FIG. 1: Natural electroweak symmetry breaking constrains the superpartne gluino-top loop drives the stop mass further up $^{
m vy,\ }M\gg 1$ $^{
m T}$ verall amount of the paper, in focus or determining by MESIS M constructions of the paper, in focus or determining by MESIS M constructions of the paper, in focus or determining by MESIS M. Ve t! the superpartners on the left.

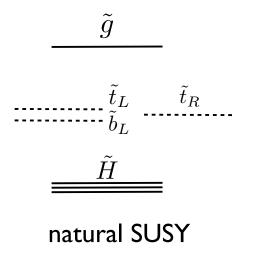

key equations:



Natural SUSY

- ◆ If SUSY is natural, we should find it soon:
 - And we most likely will find it by observing 3rd generation SUSY particles first!
- ◆ Requires shifting of the SUSY search paradigm: going for the third generation partners, push gluino reach, and look for EW boson partners

Papucci, Ruderman, Weiler arXiv:1110.6926

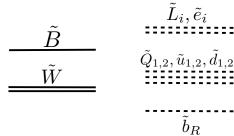

decoupled SUSY

Natural SUSY

- ◆ If SUSY is natural, we should find it soon:
 - And we most likely will find it by observing 3rd generation SUSY particles first!
- Requires shifting of the SUSY search paradigm: gging for the third generation partners, push gluino reach, and look for EW boson partners

Papucci, Ruderman, Weiler arXiv:1110.6926

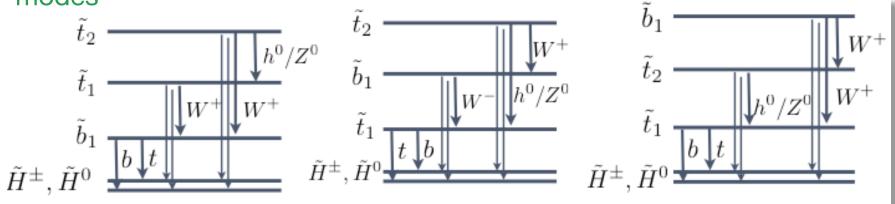
decoupled SUSY



Natural SUSY

- ◆ If SUSY is natural, we should find it soon:
 - And we most likely will find it by observing 3rd generation SUSY particles first!
- ◆ Requires shifting of the SUSY search paradigm: going for the third generation partners, push gluino reach, and look for EW boson partners

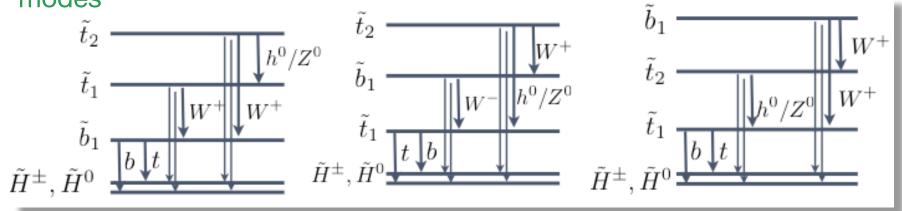
Papucci, Ruderman, Weiler arXiv:1110.6926



decoupled SUSY

Natural SUSY Spectra

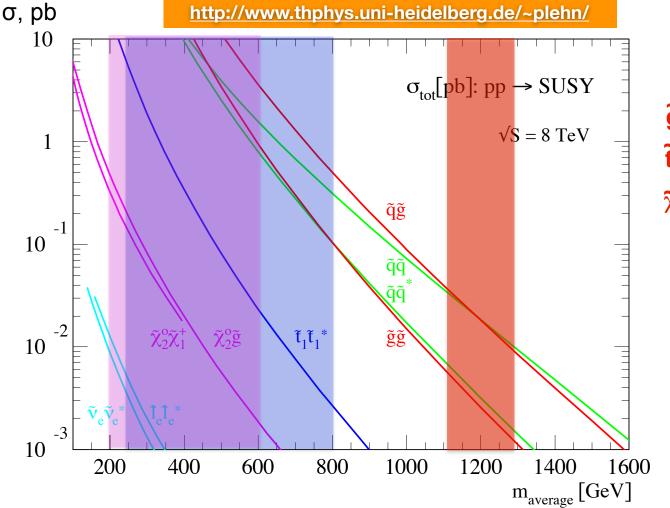
- ◆ Once we focus on natural SUSY, the spectra and the signatures become rather simple – almost like "simplified model spectra"
- Basically have to consider three types of spectra and related decay modes



Abbreviation	Decay mode	Conditions
T_t	$\tilde{t} \to t \chi^0$	$m_{ ilde{t}} > m_t + m_{\chi^0}$
T_b	$\tilde{t} \to b\chi^+ \to bW^+\chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} > m_{\chi^0} + m_W $
$T_{b'}$	$\tilde{t} \to b\chi^+ \to bW^{+*}\chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} < m_{\chi^0} + m_W $
$T_{t'}$	$\tilde{t} \to t^* \chi^0 \to bW^+ \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$
T_c	$\tilde{t} \to c \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$
B_b	$\widetilde{b} ightarrow b \chi^0$	
B_t	$\tilde{b} \to t \chi^- \to t W^- \chi^0$	$ m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} > m_{\chi^0} + m_W $
$B_{t'}$	$\tilde{b} \to t \chi^- \to t W^{-*} \chi^0$	$\mid m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} < m_{\chi^0} + m_W \mid$

Natural SUSY Spectra

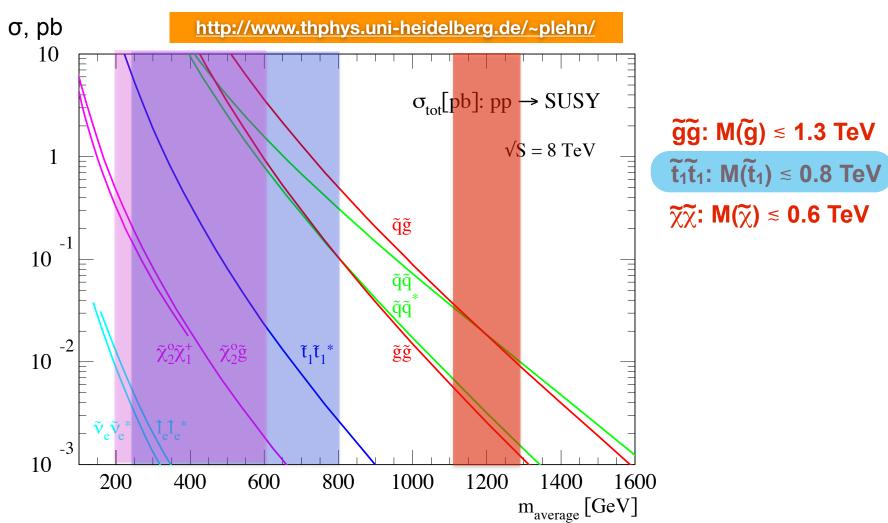
- ◆ Once we focus on natural SUSY, the spectra and the signatures become rather simple – almost like "simplified model spectra"
- Basically have to consider three types of spectra and related decay modes

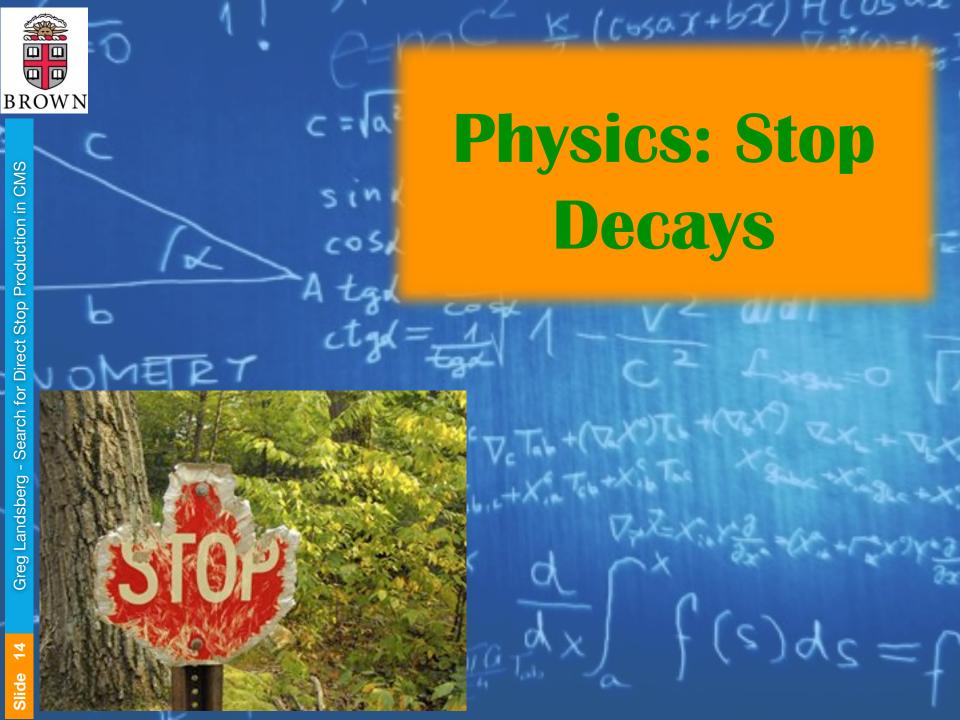


Abbreviation	Decay mode	Conditions
T_t	$\widetilde{t} o t \chi^0$	$m_{ ilde{t}} > m_t + m_{\chi^0}$
T_b	$\tilde{t} \to b \chi^+ \to b W^+ \chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} > m_{\chi^0} + m_W $
$T_{b'}$	$\tilde{t} \to b \chi^+ \to b W^{+*} \chi^0$	$ m_{\tilde{t}} > m_b + m_{\chi^+}, m_{\chi^+} < m_{\chi^0} + m_W $
$T_{t'}$	$\tilde{t} \to t^* \chi^0 \to b W^+ \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$
T_c	$\tilde{t} \to c \chi^0$	$m_{\tilde{t}} < m_t + m_{\chi^0}, m_{\tilde{t}} < m_{\chi^+} + m_b$
B_b	$ ilde{b} ightarrow b \chi^0$	
B_t	$\tilde{b} \to t \chi^- \to t W^- \chi^0$	$ m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} > m_{\chi^0} + m_W $
$B_{t'}$	$\tilde{b} \to t \chi^- \to t W^{-*} \chi^0$	$ m_{\tilde{b}} > m_t + m_{\chi^-}, m_{\chi^-} < m_{\chi^0} + m_W $

Natural SUSY Reach

♦ With [Ldt ~ 20/fb⁻¹ and 1 fb cross section produce 20 events; typically 1-10 events observed after acceptance/efficiencies

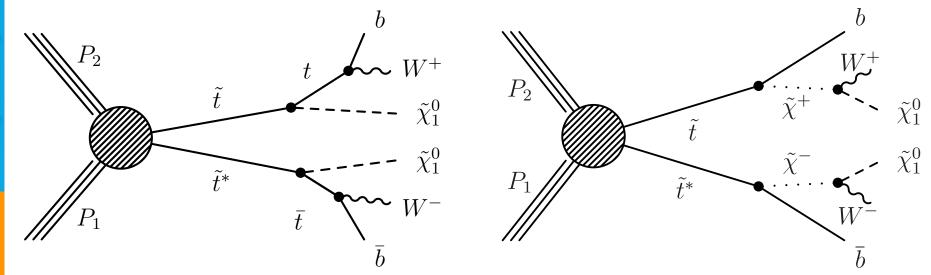

 $\widetilde{t}_1\widetilde{t}_1$: $M(\widetilde{t}_1) \leq 0.8 \text{ TeV}$


 $\widetilde{\chi}\widetilde{\chi}$: M($\widetilde{\chi}$) \lesssim 0.6 TeV

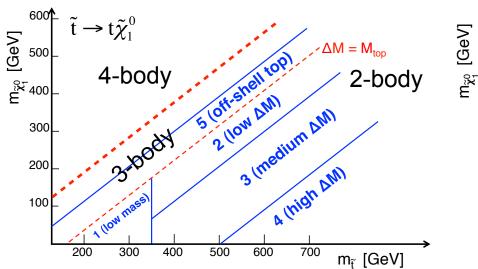
BROWN

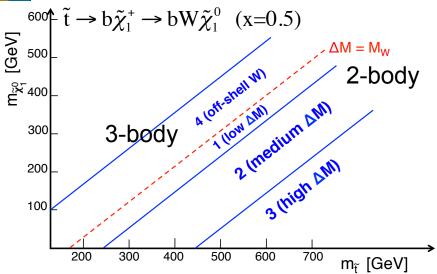
Natural SUSY Reach

♦ With ∫Ldt ~ 20/fb⁻¹ and 1 fb cross section produce 20 events; typically 1-10 events observed after acceptance/efficiencies



Direct Stop Signatures


- We will model the stop pair production via a "Simplified Model Scenario", i.e. zooming only on the light SUSY particles that matter for this process and assuming all other SUSY particles to be heavy
- ◆ Focus on just two Feynman diagrams representing relevant production and decay: $\tilde{t} \rightarrow t + \chi^0$ and $\tilde{t} \rightarrow b + \chi^+$
 - Both result in the same signature: bbW⁺W⁻+ME_T
 - N.B. this is the same signature as tt production (unless both W's decay hadronically) - gives you an idea of the dominant background



Kinematic Regions

Depending on the mass differences between the stop and neutralino (chargino), sever nematic regions are defined:

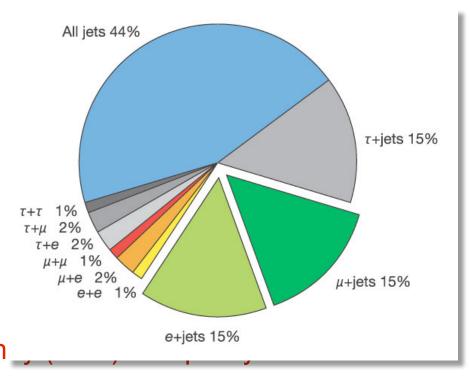
- Different regions correspond to different challenges, so search strategy generally depends on the region
- ♦ Given that 4-body decays are enormously suppressed kinematically, the region $\Delta M < M_W$ in the $t\chi^0$ mode is usually covered by other channels, e.g. FCNC $\tilde{t} \rightarrow c\chi^0$ decay

BROWN

Monte Carlo Samples

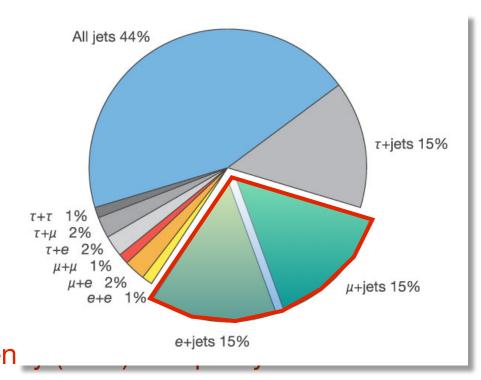
- ◆ One does have to rely on MC for estimating signal acceptance
 - Having signal MC is a prerequisite for any search analysis
 - This analysis uses MadGraph 5 LO generator, with up to two additional partons at the matrix element level in a grid of m(t) vs. m(χ^0)
 - The decay of the stops and fragmentation are simulated with Pythia 6 generator, assuming 100% branching fraction in either the $t\chi^0$ or $b\chi^+$ final state
 - Both the 2-body and 3-body decays are considered; in the case of the $b\chi^+$ final state, an additional mass parameter is used: $m(\chi^+) = xm(t) + (1-x)m(\chi^0)$, with x = 0...1, which defines the chargino mass between the neutralino (x=0) and stop (x=1) masses
- ◆ One may or may not rely on MC for background estimates
 - Still, it's a good idea to have background MC samples generated
 - These are generated with a combination of LO generator MadGraph 5 and NLO generators Powheg and MC@NLO
 - In some cases (e.g., tt background) several generators are used for crosschecks

Parton Distribution Functions


- ◆ As usual, one has to interface MC generators with parton distribution functions (PDFs)
- Normally, one would like to match the order of the generator with the same order of the PDF set
- ◆ Thus, for MadGraph we use LO CTEQ6L1 set; for Powheg, we use CT10 NLO PDF set, and for MC@NLO we use CTEQ6M NLO PDF set
- Since Pythia is used for hadronization and fragmentation with all the generators, one has to patch matrix-element jets with the partonshower jets, which is done using special prescription, to avoid double-counting
- ◆ The matching parameter defines minimum jet p_T for which the matrix elements are used to describe additional jet production; below this p_T (typically 20 GeV) the emission is described by parton showers
- ◆ All the cross sections are normalized to the best available predictions: NLO+NLL for the signal and NLO or NNLO for backgrounds

Single-Lepton Channel

- Now we need to figure out what's the best final state to pursue the search
- The final state depends on the W boson decay channels
 - All hadronic channel has the highest branching fraction, but backgrounds are huge
 - Dilepton channel is clean but the branching fraction is tiny
 - Tau channels are tough
 - Use single-lepton (e+jets, µ+jets) channels as a compromise between frequen

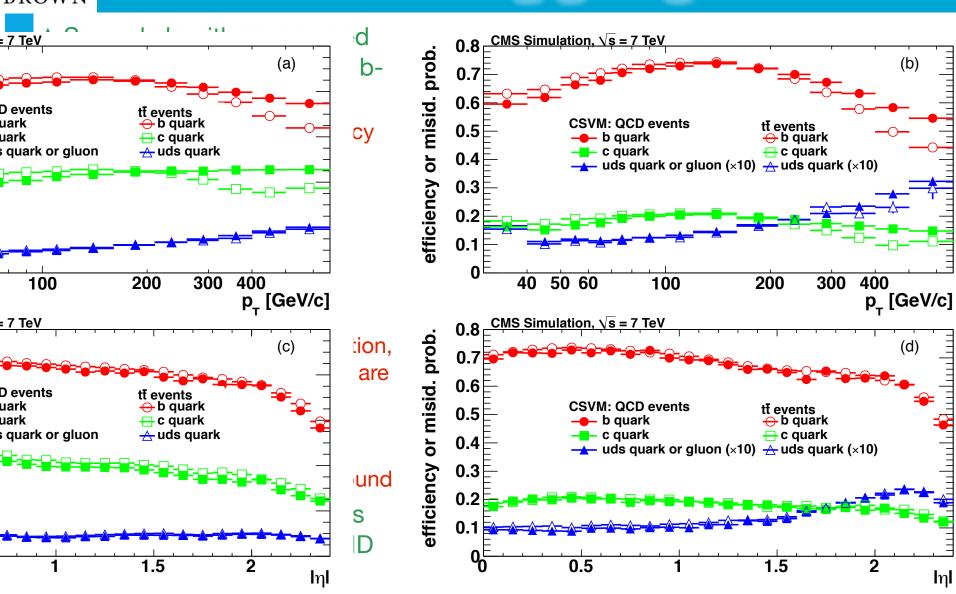


◆ The analysis I'm going to describe is CMS, arXiv:1308.1586

Single-Lepton Channel

- Now we need to figure out what's the best final state to pursue the search
- The final state depends on the W boson decay channels
 - All hadronic channel has the highest branching fraction, but backgrounds are huge
 - Dilepton channel is clean but the branching fraction is tiny
 - Tau channels are tough
 - Use single-lepton (e+jets, µ+jets) channels as a compromise between frequen

◆ The analysis I'm going to describe is CMS, arXiv:1308.1586


BROWN

Preselection

- ◆ Triggering is not an issue standard top-quark triggers work just fine (single-electron or single-muon trigger with the thresholds of 27 and 24 GeV, respectively)
- ♦ One isolated electron (p_T > 30 GeV, $|\eta|$ < 1.44) or muon (p_T > 25 GeV, $|\eta|$ < 2.1)
 - Isolation is defined as a scalar p_T sum of all additional activity in a cone of R=0.3 around the lepton and is required to be 15% of the lepton p_T and less than 5 GeV
- ♦ Veto on a second isolated lepton ($p_T > 5$ GeV), including hadronically decaying τ -lepton ($p_T > 20$ GeV); also a veto on any additional isolated track w/ $p_T > 10$ GeV
 - Reduces background from dilepton tt decays
- ♦ At least 4 jets (anti-k_T algorithm with R = 0.5), with p_T > 30 GeV, |η| < 2.4
- ◆ At least one of them is tagged as a b-jet
 - Reduces W+jets background
- → ME_T > 100 GeV
- ◆ All objects are reconstructed using CMS particle-flow algorithm, which combines the information from all the sub-detectors in an optimal way

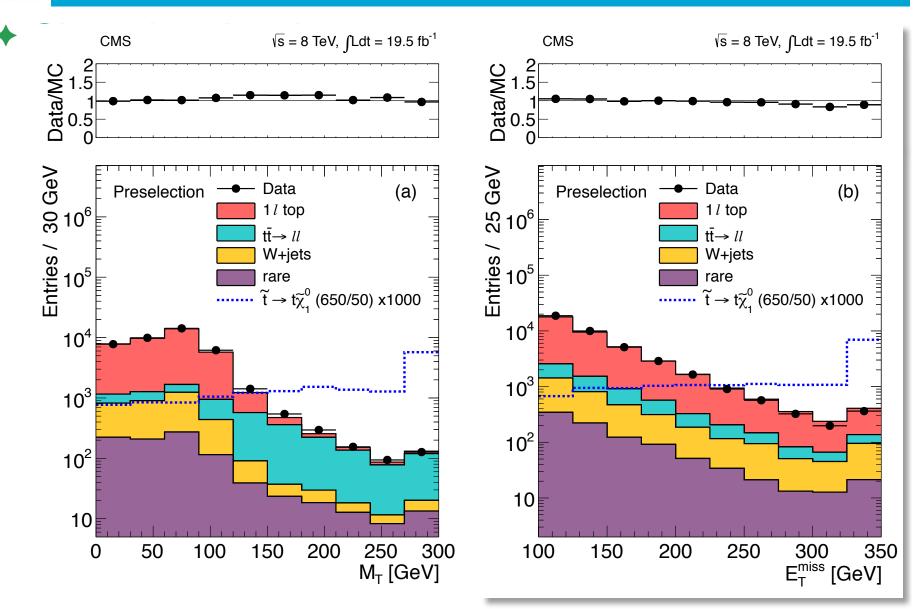
b-tagging



BROWN

Efficiency Calculation

- "Tag-and-probe" method is used, utilizing Z(ee) and Z(μμ) events
- ◆ Look at the Z(II) events, apply tight requirements on one lepton ("tag") and very loose requirements on the other ("probe")
- Estimate efficiency of standard requirements by counting the fraction of probe leptons passing these standard requirements
 - Fit for the number of events in the Z-peak, by subtracting the backgrounds
- ◆ Typical efficiency: 80%

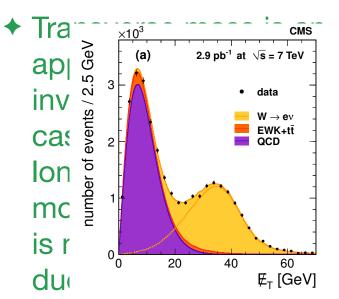


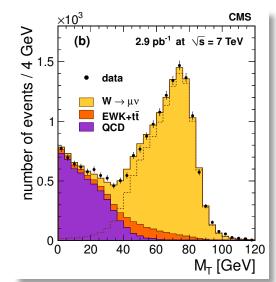
Backgrounds

- In the regions of interest, there are four classes of backgrounds, in decreasing significance:
 - tt → II + jets + ME_T, with a lost lepton (three undetected particles, similar to the signal)
 - tt → I + jets + ME_T, similar to the signal, but ME_T comes from a single neutrino; also some contribution from single-top-quark production
 - ttV, VV, VVV, tW electroweak and other rare backgrounds
 - W+jets
 - Multijets with misidentified leptons (negligible)
- Use hybrid method for background determination: MC based, with validation and correction from control regions (CR)

BROWN

Missing Transverse Energy

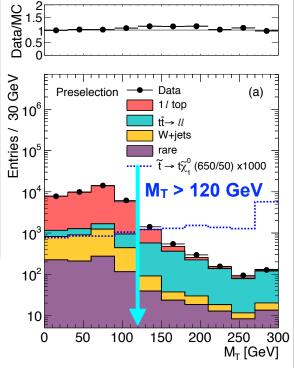




Transverse Mass

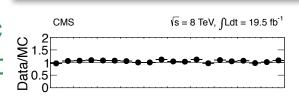
- ◆ Standard variable when dealing with signatures containing ME_T
- Classical example: W(Iv)

$$M_{\rm T} = \sqrt{2p_{\rm T} E_{\rm T} (1 - \cos \Delta \phi)}$$



 $M_T > 120 \text{ GeV}$

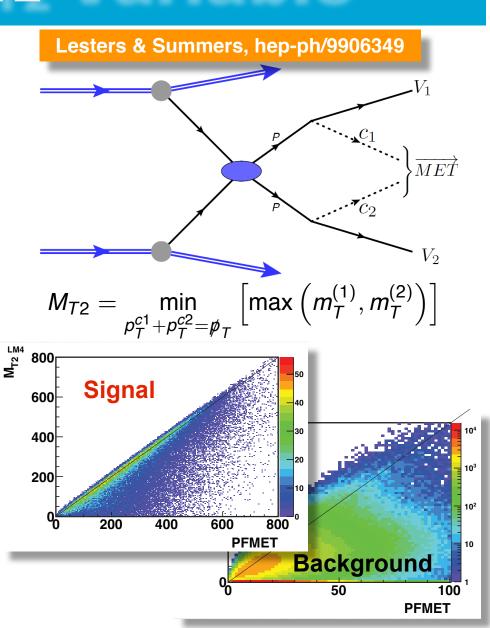
requirement is


used for signal

selection

 $\sqrt{s} = 8 \text{ TeV}, \int Ldt = 19.5 \text{ fb}^{-1}$

- Has a sharp Jacobian peak with a sharp falling edge at the true invariant mass mw
- ◆ Signal has different distribution in M_T, as it c particles and therefore doesn't have a Jacok

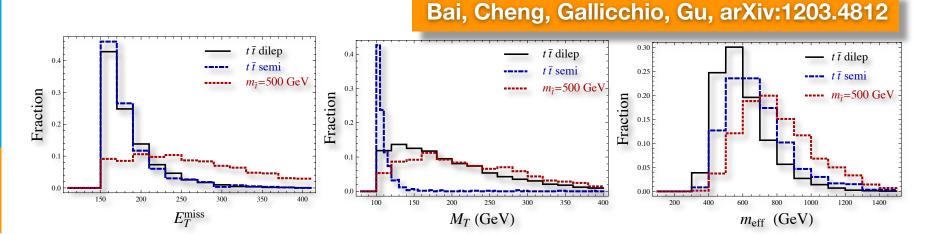


The M_{T2} Variable

- ◆ M_{T2}: "stransverse mass" a generalization of the transverse mass in case of a pair of invisible particles
- For a simplified case of no extra jets and zero masses for visible and invisible systems:

$$(M_{T2})^2 \simeq 2p_T^{vis(1)}p_T^{vis(2)}(1+cos\phi_{12})$$

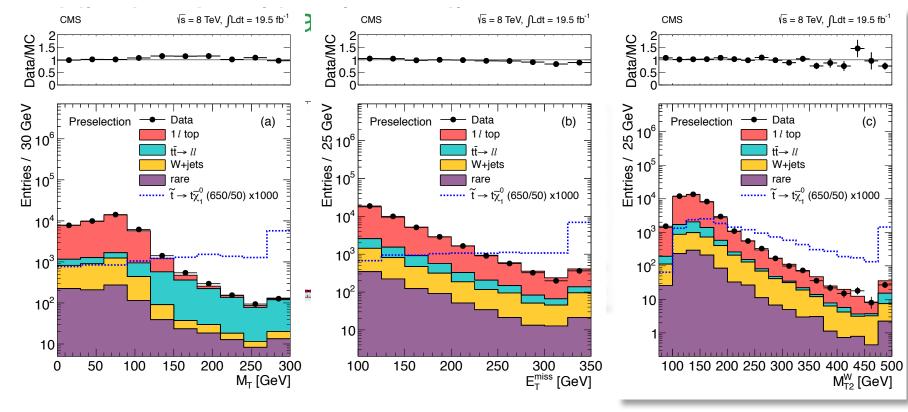
- M_{T2} ~ ME_T for symmetric SUSY-like topologies
- → M_{T2} kills QCD background very efficiently:
 - M_{T2} ~ 0 for dijets
 - M_{T2} < ME_T in case of mismeasured dijets



More M_{T2} Variables

♦ The main variable used in this analysis is a variation of M_{T2} variable, known as M^{vv}_{T2} variable, which is the minimum mother mass compatible with all the decay products and on-shell constraints

- It is designed to specifically kill tt → II+jets+ME_T background with a lost lepton
- → This is a difficult background to deal with as it looks similar to the signal in other distributions, particularly in transverse mass M_T
- The trick of finding the right M_{T2} variable is how to partition the final state particle into visible and invisible states

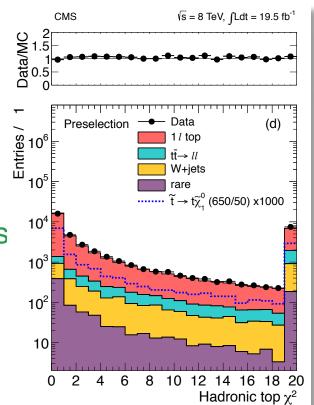

BROWN

MW_{T2} Variable

Here is the definition of the M^W_{T2} variable designed to reconstruct tt events with a lost lepton:

$$M_{T2}^{W} = \min \left\{ m_y \text{ consistent with: } \begin{bmatrix} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{\text{miss}}, \ p_1^2 = 0, \ (p_1 + p_\ell)^2 = p_2^2 = M_W^2, \\ (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{bmatrix} \right\}$$

◆ The tt events with lost lepton exhibit endpoint at m_y = m_t,

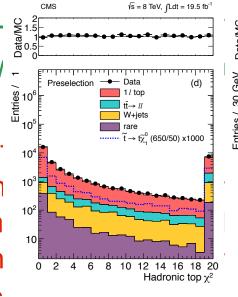


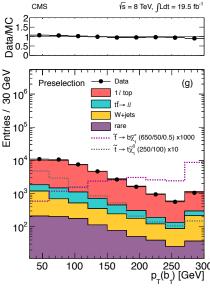
Kinematic Fit

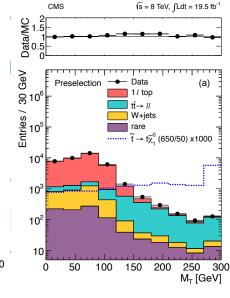
- In the case when top quark in the $\tilde{t} \rightarrow t + \chi^0$ decay is on-shell (i.e., $m(\tilde{t}) > m_t + m(\chi^0)$) the three jets from the $t \to Wb \to jjb$ decay should satisfy two mass constraints: m(jj) ~ m_W and m(jjb) ~ m_t
- Construct a χ^2 variable for each allowed combination (which respects b-tag jet assignments)

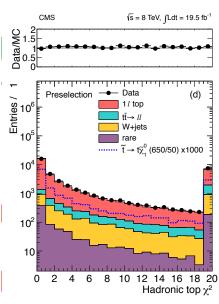
$$\chi^2 = \frac{(M_{j_1 j_2 j_3} - M_{\text{top}})^2}{\sigma_{j_1 j_2 j_3}^2} + \frac{(M_{j_1 j_2} - M_{\text{W}})^2}{\sigma_{j_1 j_2}^2}$$

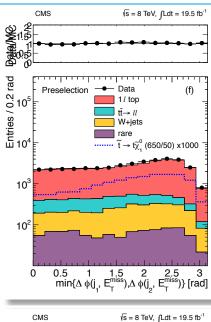
- Find the combination that minimizes the χ^2 (χ^2_{min})
- ♦ The χ^2_{min} should be small for backgrounds with hadronic top-quark decays; it should be larger for events w/o, e.g. W+jets background or dilepton tt with a lost lepton

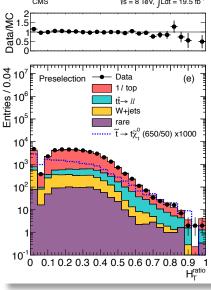


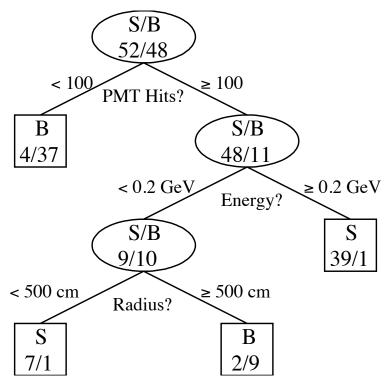

Greg Landsberg - Search for Direct Stop Production in CMS


- Δφ_{min}(ME_T,j_{1,2}) difference betv
 leading jets
 - Background to-back as the quarks are mand Δφ_{min} tenesignal events
- ♦ H_T ratio defined sum of p_T of je so than the ME_T v so of all jet p_T (H_T)

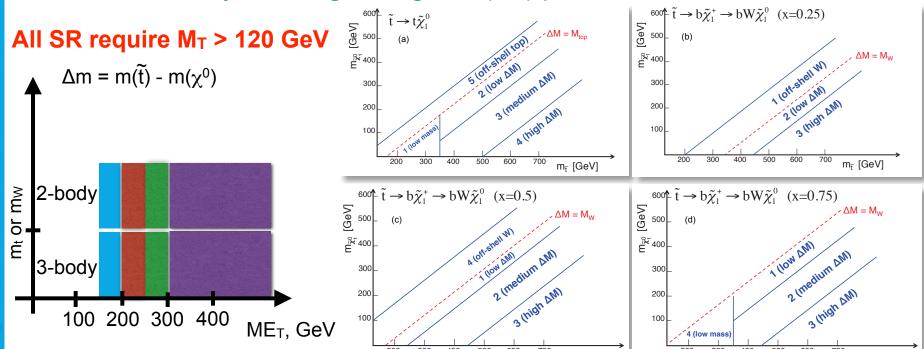

 H_T ratio defined so that sum of p_T of jets so that sum of p_T of jets so that sum of all jet p_T (H_T)


 H_T ratio defined so that sum of jets s
 - Tends to be s
 decay produce
 they tend to I





Optimization


- A number of variables have discriminating power between the signal and various backgrounds
- No single variable is "winning"
- Variables are correlated
- Two approaches:
 - Simple cut-based approach, which treats each variable independently and puts a cutoff on each of them
 - Multivariate approach, when all the variables are combined in a likelihood reflecting how signal-like they are
 - * Practical implementation as a boosted decision tree via TMVA Root package; trained on signal and backgrounds separately

Signal Regions

Cut-based analysis: 8 signal regions (SR) per channel

- ◆ BDT analysis: signal regions based on the BDT output value; several networks are trained depending on the phase space probed
- ♦ Each BDT has single SR (BDT > x), except for $t\chi^0$, region 1 and $b\chi^+$, x = 0.5, region 2, each of which has 2 working points (tight and loose)
 - 6 SR for $t\chi^0$ and 12 SR for the $b\chi^+$ analysis

Signal Selection

◆ The following selections are used for signal regions:

	$\widetilde{\mathfrak{t}} o \mathfrak{t} \widetilde{\chi}_1^0$		$\widetilde{\mathfrak{t}} o b \widetilde{\chi}^+$			
		Cut-l	pased	Cut-bas		pased
Selection	BDT	Low ΔM	High ΔM	BDT	Low ΔM	High ΔM
Emiss (CoV)	yes	> 150, 200,	> 150, 200,	yes	> 100, 150,	> 100, 150,
$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	_	250, 300	250, 300	_	200, 250	200, 250
$M_{\mathrm{T2}}^{\mathrm{W}}$ (GeV)	yes		>200	yes		>200
$\min \Delta \phi$	yes	>0.8	>0.8	yes	>0.8	>0.8
$H_{ m T}^{ m ratio}$	yes			yes		
Hadronic top χ^2	(on-shell top)	<5	< 5	-		
Leading b-tagged jet p_T (GeV)	(off-shell top)			yes		>100
$\Delta R(\ell, \text{leading b-tagged jet})$				yes		
Lepton $p_{\rm T}$ (GeV)				(off shell W)		

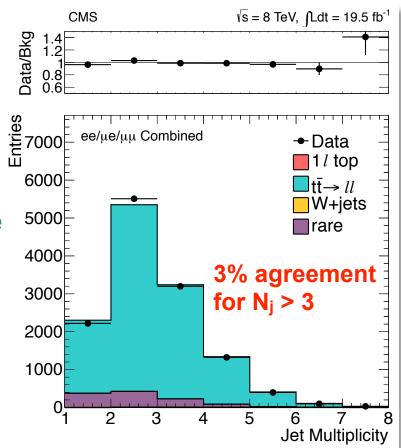
- ◆ BDT analysis uses more inputs, in a more complete way and offers ~40% improvement in the sensitivity w.r.t. the cut-based analysis
- ◆ The main result is therefore based on the BDT analysis, with the cut-based analysis used as a cross-check

Control Regions

- ◆ The analysis uses three control regions:
 - CR-2l requires 2 OS leptons
 - Dominated by tt dilepton events
 - CR-It requires single lepton and an additional track or a hadronically decaying tau lepton
 - Dominated by the tt semileptonic and dilepton events
 - CR-0b requires no b-tagged jets
 - Dominated by the W+jets background
- ◆ CR do not include M_T > 120 GeV cut; use M_T distribution after BDT or cut-based selections as the test of accuracy of the background predictions and correct them if needed
- To minimize uncertainties from tt cross section, integrated luminosity, efficiency, etc., we normalize the MC-based predictions in the low- M_T region (50 < M_T < 80 GeV) after subtracting rare backgrounds, and then extrapolate to the $M_T >$ 120 GeV signal region

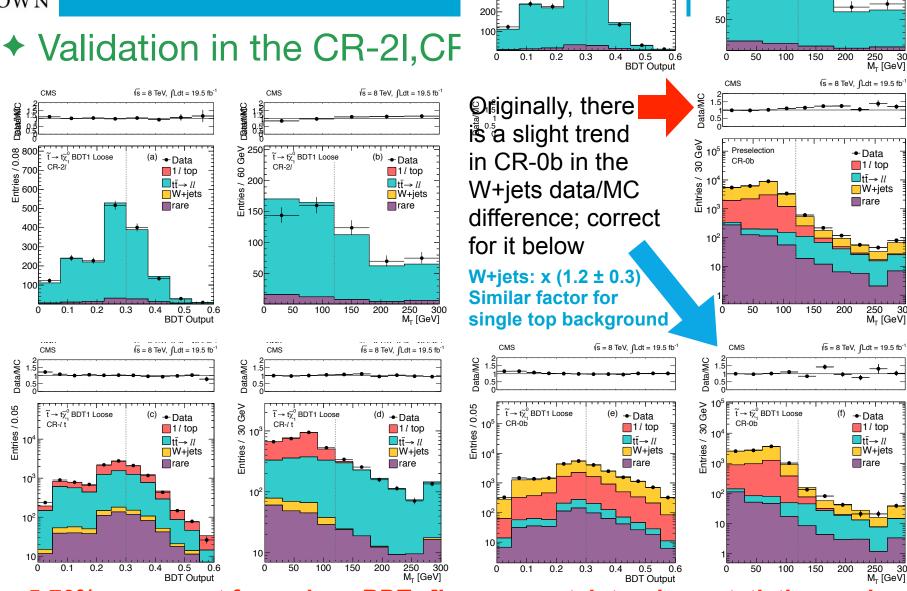
Validation I: ISR/FSR

◆ The main background is from dilepton tt events; they only have two tree-level jets, both from b-quarks


◆ The preselection requires four or more jets with at least one

b-tag

◆ Two extra jets for the dominant background must come from ISR or FSR - need to ensure correct modeling


 Test with a CR-2l control sample requiring two OS leptons and at least one b-tagged jet

 For the ee and μμ channels, require the dilepton mass away from the Z-peak

Greg Landsberg - Search for Direct Stop Production in CMS

Validation II:

t → tχ BD I1 Loose

600E

500

300

(a) → Data

 $\blacksquare 1 l top$

W+jets

rare

t → tχ BDT1 Loose

CR-2l

200

^(D) → Data

1 l top

W+jets

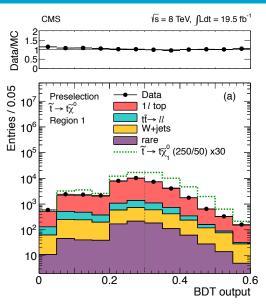
rare

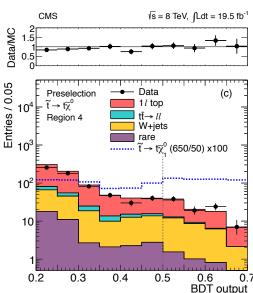
5370% agreement for various BDTs [large uncertainty where statistics are low]

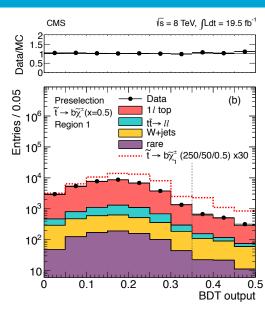
Systematic Uncertainties

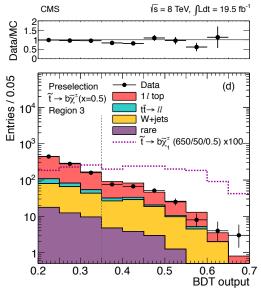
 Here are the main systematic uncertainties for the tχ⁰ analysis:

 $\widetilde{\mathrm{t}}
ightarrow \mathrm{t} \widetilde{\chi}_1^0$


Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5
$M_{\rm T}$ -peak data and MC (stat)	1.0	2.1	2.7	5.3	8.7	3.0
${ m tar t} ightarrow \ell\ell \ { m N}_{ m jets} \ { m modeling}$	1.7	1.6	1.6	1.1	0.4	1.7
$t\bar{t} \rightarrow \ell\ell$ (CR- ℓ t and CR- 2ℓ tests)	4.0	8.2	11.0	12.5	7.2	13.8
2nd lepton veto	1.5	1.4	1.4	0.9	0.3	1.4
$tar{t} ightarrow \ellar{\ell}$ (stat.)	1.1	2.8	3.4	7.0	7.4	3.3
W+jets cross section	1.6	2.2	2.8	1.7	2.7	2.2
W+jets (stat.)	1.1	1.9	2.0	4.6	10.8	5.2
W+jets SF uncertainty	8.3	7.7	6.8	8.1	9.7	8.6
$1-\ell$ top (stat.)	0.4	0.8	0.8	1.4	4.4	1.2
$1-\ell$ top tail-to-peak ratio	9.0	11.4	12.4	19.6	28.5	9.1
Rare processes cross section	1.8	3.0	4.0	8.1	15.7	0.7
Total	13.4	17.1	19.3	27.8	38.4	20.2






Results: Preselection

- After adjustments, based on data/MC comparison in the CR, the agreement in the signal region looks good
- ◆ The figure shows the agreements between the data and background predictions in the BDT output for four out of 16 BDTs used in the analysis
- Similar agreement is found for other BDTs
- ◆ Only event preselection is applied; no M_T > 120 GeV requirement used

Results: BDT, $t\chi^0$

Here are the results of the counting experiment in all the signal regions:

$t o t \chi_1^\circ$								
Sample	BDT1-Loose	BDT1-Tight	BDT2	BDT3	BDT4	BDT5		
$\overline{ ext{t}ar{ t}} o \ell\ell$	438 ± 37	68 ± 11	46 ± 10	5 ± 2	0.3 ± 0.3	48 ± 13		
1ℓ top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12		
W + jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2		
Rare	47 ± 23	11 ± 6	10 ± 5	3 ± 1	1.0 ± 0.5	4 ± 2		
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18		
Data	728	104	56	8	2	76		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 (250/50)$	285 ± 8.5	50 ± 3.5	28 ± 2.6	4.4 ± 1.0	0.3 ± 0.3	34 ± 2.9		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^{\dagger} (650/50)$	12 ± 0.2	7.2 ± 0.2	9.8 ± 0.2	6.5 ± 0.2	4.3 ± 0.1	2.9 ± 0.1		

Results: Cut-Based, $t\chi^0$

Similar results in the eight SR for the cut-based analysis:

		0		9		
Sample	$E_{\rm T}^{\rm miss} > 150{\rm GeV}$	$E_{\rm T}^{\rm miss} > 200{\rm GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 250\mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 300{\rm GeV}$		
		Low ΔM Selection				
<u> </u>	101 15		17 5			
$tar{t} o \ell\ell$	131 ± 15	42 ± 7	17 ± 5	5.6 ± 2.5		
1ℓ top	94 ± 47	30 ± 19	9 ± 6	3.1 ± 2.4		
W + jets	10 ± 3	5 ± 1	2 ± 1	1.0 ± 0.4		
Rare	16 ± 8	7 ± 4	4 ± 2	1.8 ± 0.9		
Total	251 ± 50	83 ± 21	31 ± 8	11.5 ± 3.6		
Data	227	69	21	9		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 (250/50)$	108 ± 3.7	32 ± 2.0	12 ± 1.2	5.2 ± 0.8		
$\widetilde{t} \to t \widetilde{\chi}_1^0 \ (650/50)$	8.0 ± 0.1	7.2 ± 0.1	6.2 ± 0.1	4.9 ± 0.1		
High ΔM Selection						
$\overline{\mathrm{t}ar{\mathrm{t}}} ightarrow \ell \ell$	8 ± 2	5 ± 2	3.2 ± 1.4	1.4 ± 0.9		
1ℓ top	13 ± 6	6 ± 4	3.0 ± 2.2	1.4 ± 1.0		
W + jets	4 ± 1	2 ± 1	1.5 ± 0.5	0.9 ± 0.3		
Rare	4 ± 2	3 ± 1	1.8 ± 0.9	1.0 ± 0.5		
Total	29 ± 7	17 ± 5	9.5 ± 2.8	4.7 ± 1.4		
Data	23	11	3	2		
$\widetilde{\mathfrak{t}} \to \mathfrak{t} \widetilde{\chi}_1^0 \ (250/50)$	10 ± 1.1	4.6 ± 0.8	2.3 ± 0.5	1.4 ± 0.4		
$\widetilde{t} \rightarrow t \widetilde{\chi}_1^0 (650/50)$	4.9 ± 0.1	4.7 ± 0.1	4.3 ± 0.1	3.7 ± 0.1		
,	1			_		

Results: BDT, $b\chi^{+}$

 Also, no excess in the chargino channel BDT analysis:

	$\iota \to b \chi \cdot \chi =$	= 0.23	
Sample	BDT1	BDT2	BDT3
$tar{t} ightarrow \ell\ell$	18 ± 4	2.2 ± 1.3	1.2 ± 1.0
1ℓ top	10 ± 5	4.0 ± 1.8	1.5 ± 0.8
W + jets	3 ± 1	2.0 ± 0.7	0.7 ± 0.3
Rare	4 ± 2	1.6 ± 0.8	1.0 ± 0.5
Total	35 ± 6	9.8 ± 2.4	4.4 ± 1.4
Data	29	7	2
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+ (450/50/0.25)$	19 ± 2.9	11 ± 2.2	5.2 ± 1.5
$\widetilde{\mathrm{t}} \to \mathrm{b} \widetilde{\chi}^+ \ (600/100/0.25)$	8.8 ± 0.8	7.5 ± 0.8	5.6 ± 0.7

 $\widetilde{t} \rightarrow b\widetilde{v}^{+} v = 0.25$

 $\widetilde{t} \rightarrow b\widetilde{\chi}^+ \ x = 0.5$

Sample	BDT1	BDT2-Loose	BDT2-Tight	BDT3	BDT4
$\overline{ ext{t}} ightarrow \ell \ell$	40 ± 5	21 ± 4	4 ± 2	6 ± 2	100 ± 16
1ℓ top	24 ± 10	15 ± 7	4 ± 3	4 ± 2	33 ± 12
W + jets	5 ± 1	5 ± 1	2 ± 1	3 ± 1	5 ± 1
Rare	8 ± 4	8 ± 4	3 ± 1	4 ± 2	8 ± 4
Total	77 ± 12	50 ± 9	13 ± 4	17 ± 4	146 ± 21
Data	67	35	12	13	143
$\widetilde{t} \to b \widetilde{\chi}^+ \ (250/50/0.5)$	45 ± 7.6	24 ± 5.2	5.7 ± 2.4	5.2 ± 2.6	55 ± 8.1
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (650/50/0.5)	3.5 ± 0.4	9.5 ± 0.7	5.6 ± 0.5	8.3 ± 0.6	3.2 ± 0.4

 $\widetilde{\mathbf{t}} \to \mathbf{b} \widetilde{\chi}^+ \ x = 0.75$

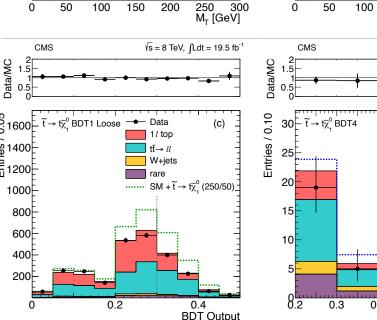
Sample	BDT1	BDT2	BDT3	BDT4
$\overline{ ext{t}} ightarrow \ell \ell$	37 ± 5	9 ± 2	3.1 ± 1.3	248 ± 22
1ℓ top	17 ± 9	6 ± 5	1.6 ± 1.6	188 ± 70
$W + \overline{jets}$	4 ± 1	4 ± 1	1.6 ± 0.6	22 ± 6
Rare	4 ± 2	4 ± 2	1.8 ± 0.9	20 ± 10
Total	61 ± 10	22 ± 6	8.1 ± 2.3	478 ± 74
Data	50	13	5	440
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+ \ (250/50/0.75)$	115 ± 13	21 ± 5.6	8.0 ± 3.7	518 ± 28
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+ \ (650/50/0.75)$	3.9 ± 0.4	8.4 ± 0.6	6.8 ± 0.6	5.5 ± 0.5

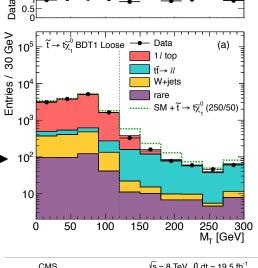
Results: Cut-Based, bχ⁺

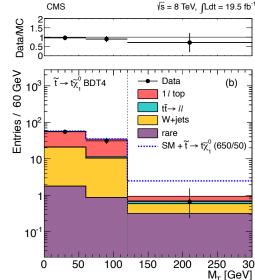
... or cut-based analysis:

Sample	$E_{\rm T}^{\rm miss} > 100{\rm GeV}$	$E_{\rm T}^{\rm miss} > 150{\rm GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 200\mathrm{GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 250\mathrm{GeV}$		
Low ΔM Selection						
$\overline{t}ar{t} o \ell\ell$	875 ± 57	339 ± 23	116 ± 14	40 ± 9		
1ℓ top	658 ± 192	145 ± 70	41 ± 24	14 ± 9		
W + jets	59 ± 15	21 ± 5	8 ± 2	4 ± 1		
Rare	70 ± 35	33 ± 17	16 ± 8	8 ± 4		
Total	1662 ± 203	537 ± 75	180 ± 28	66 ± 13		
Data	1624	487	151	52		
$\widetilde{\mathfrak{t}} ightarrow b\widetilde{\chi}^+ (450/50/0.25)$	47 ± 3.3	33 ± 2.7	19 ± 2.0	8.7 ± 1.4		
$\widetilde{\mathrm{t}} \rightarrow \mathrm{b} \widetilde{\chi}^+ \ (600/100/0.25)$	15 ± 0.7	13 ± 0.7	11 ± 0.6	7.9 ± 0.5		
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (250/50/0.5)	419 ± 17	157 ± 9.9	52 ± 5.4	21 ± 3.4		
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+ (650/50/0.5)$	14 ± 0.6	13 ± 0.5	11 ± 0.5	8.4 ± 0.4		
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (250/50/0.75)	854 ± 26	399 ± 18	144 ± 10	56 ± 6.4		
$\widetilde{t} \rightarrow b\widetilde{\chi}^+ (650/50/0.75)$	17 ± 0.7	16 ± 0.6	13 ± 0.6	11 ± 0.5		
	Hig	h ΔM Selection				
$t \bar t o \ell \ell$	25 ± 5	12 ± 3	7 ± 2	2.9 ± 1.5		
1ℓ top	35 ± 10	15 ± 6	6 ± 3	2.7 ± 1.8		
W + jets	9 ± 2	5 ± 1	2 ± 1	1.8 ± 0.6		
Rare	9 ± 5	7 ± 3	4 ± 2	2.4 ± 1.2		
Total	79 ± 12	38 ± 7	19 ± 5	9.9 ± 2.7		
Data	90	39	18	5		
$\widetilde{t} \to b \widetilde{\chi}^+ (450/50/0.25)$	30 ± 2.7	23 ± 2.3	15 ± 1.8	7.3 ± 1.3		
$\widetilde{\mathrm{t}} \to \mathrm{b} \widetilde{\chi}^+ \ (600/100/0.25)$	11 ± 0.6	9.7 ± 0.6	8.4 ± 0.6	6.1 ± 0.5		
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+$ (250/50/0.5)	37 ± 4.8	23 ± 3.8	11 ± 2.6	5.0 ± 1.7		
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+ (650/50/0.5)$	11 ± 0.5	9.8 ± 0.5	8.6 ± 0.4	6.7 ± 0.4		
$\widetilde{\mathrm{t}} ightarrow \mathrm{b} \widetilde{\chi}^+ \ (250/50/0.75)$	32 ± 5.2	23 ± 4.4	11 ± 2.9	3.6 ± 1.4		
$\widetilde{t} \rightarrow b\widetilde{\chi}^+ (650/50/0.75)$	9.2 ± 0.5	8.4 ± 0.5	7.5 ± 0.4	6.3 ± 0.4		

BDT Outputs for $t\chi^0$ SR


CMS


Here are the BDT outputs for the loosest (left column) and tightest (right column) SR:


> M_T distribution after the BDT selection

BDT distribution after -

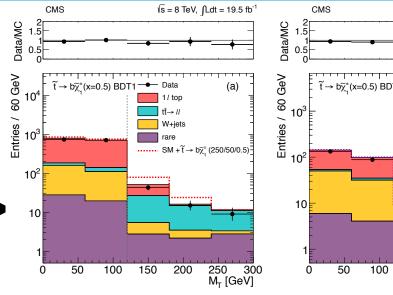
g 1400 1200 1000 the $M_T > 120$ GeV selection

tt→ ll W+jets

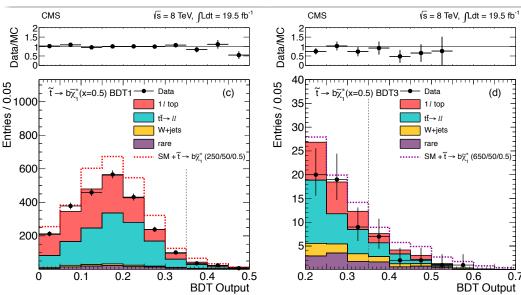
SM + $\widetilde{t} \rightarrow t \widetilde{\chi}_{..}^{0} (650/50)^{-1}$

0.6

BDT Output



BDT Outputs for $b\chi^+$ SR


Here are the BDT
 outputs for the loosest
 (left column) and tightest
 (right column) SR for the

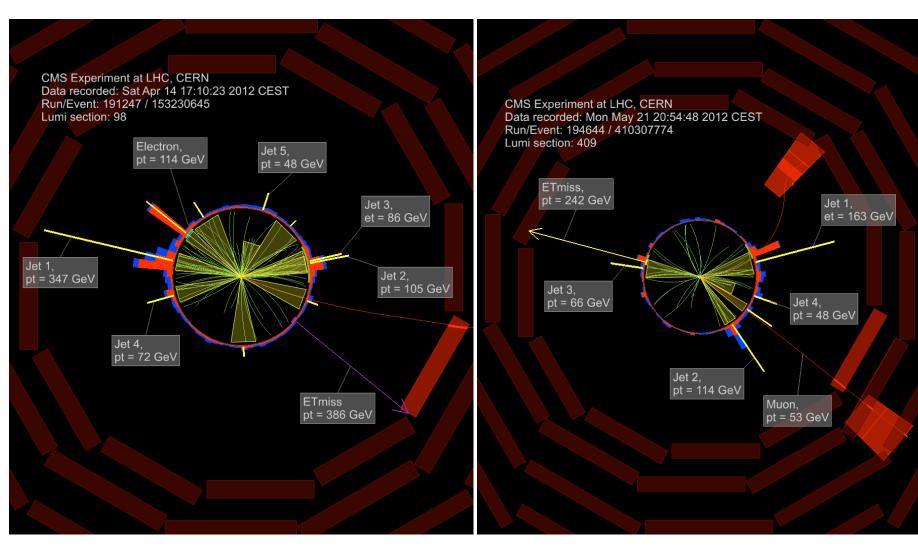
x = 0.5 case:

M_T distribution after the BDT selection

 $\sqrt{s} = 8 \text{ TeV}, \ \ \text{$/ \text{Ldt} = 19.5 fb}^{-1}$

..... SM + $\widetilde{t} \rightarrow b\widetilde{\chi}^{\pm}$ (650/50/0.5)

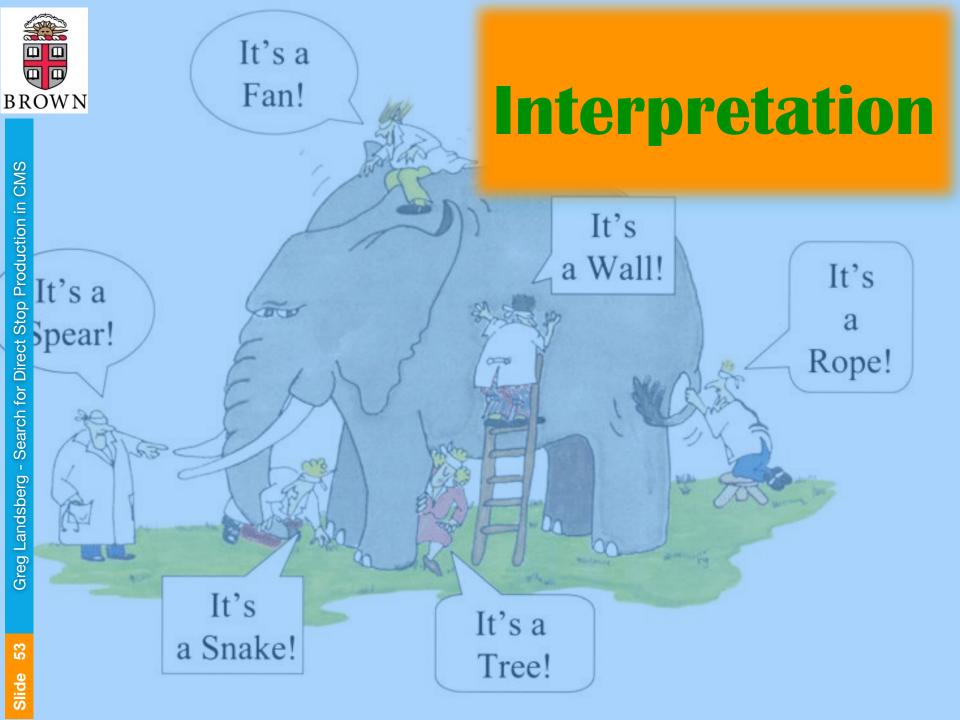
200


M_⊤ [GeV]

150

BROWN

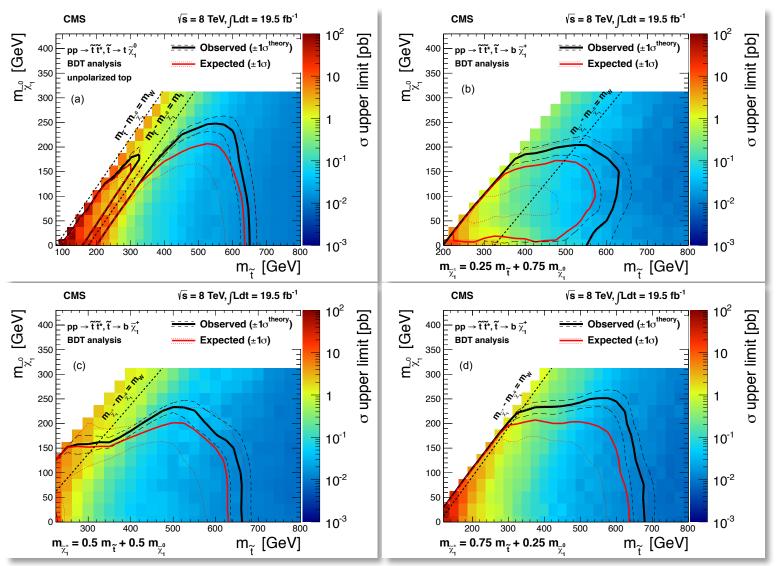
Candidate Events


Here is how the signal would've looked like...

BROWN Res

Results: Summary

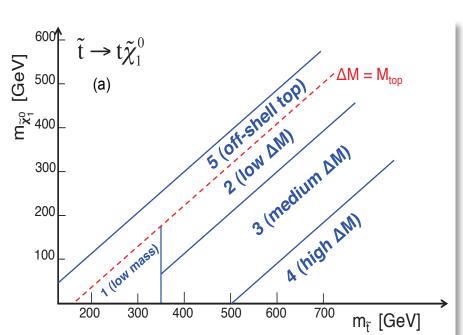
- ◆ The data agree with the SM background prediction corrected for the data/MC discrepancies in the CR within 1.0-1.5 standard deviations in all the search regions, both for the cut-based and BDT analyses
- + Having seen no evidence for stop production, we proceed in interpreting our results in terms of limits on the stop production cross section, as a function of the stop mass, neutralino mass, and the x parameter in case of the bχ⁺ decay channel
- ◆ The limits are set from the counting experiment in the most sensitive signal region for any given mass point
- ◆ In general could be improved by combining several search regions, but as the improvement is small (SR are largely overlapping) go for a simpler analysis
- ◆ Further improvement could generally be achieved by the shape-based analysis, but this requires a much more sophisticated treatment of the systematic uncertainties, not possible with the present statistics
- ◆ Will ultimately be used for Run 2, once statistics increase significantly

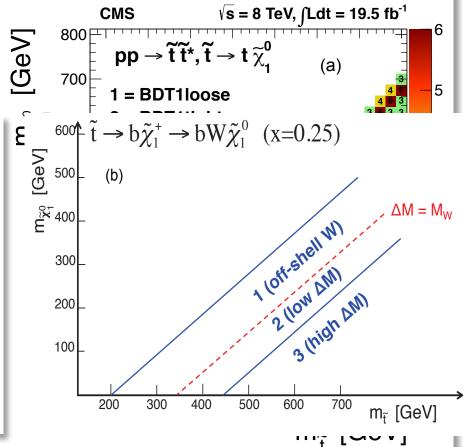

Interpretation

- ◆ Use the LHC-style CL_s method (see Daniel Whiteson's lectures) to set 95% CL limits
- Use standard convention of treating experimental and theoretical uncertainties:
 - Uncertainties are propagated into the limits via nuisance parameters, represented typically by log-normal distributions
 - Experimental uncertainties are shown as ±1 standard deviation band around the expected limits
 - Theoretical uncertainties (renormalization/factorization scale variation, PDFs, etc.) are shown as ±1 standard deviation band around the observed limits

BROWN

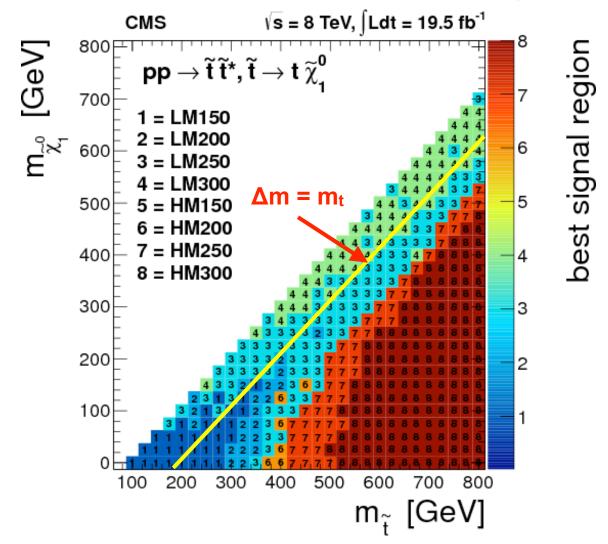
Limits

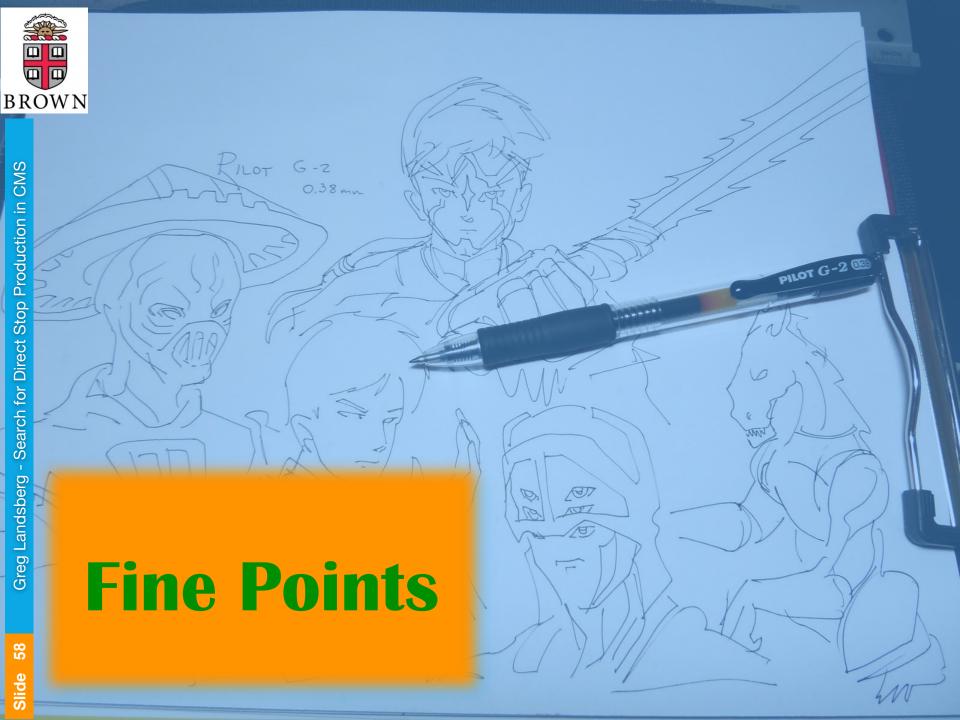

Here are the limits in four scenarios studied:



Most Sensitive SRs

- Which region does the sensitivity come from?
- In most parts of the phase space the best SR matches the a priori optimization

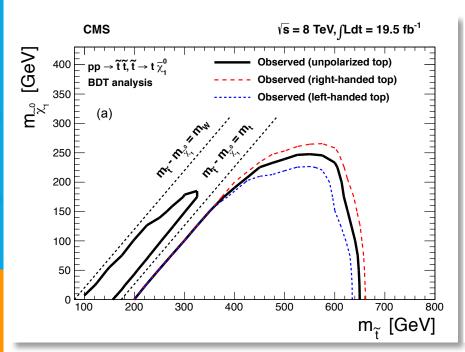


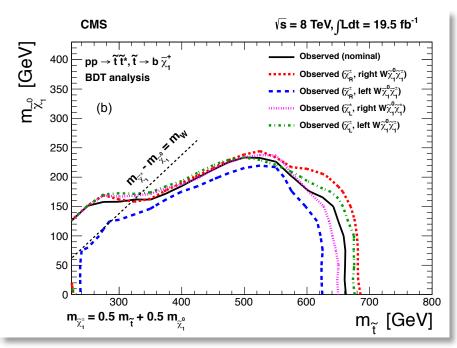

1 111 ~ () () 7 5)

BROWN

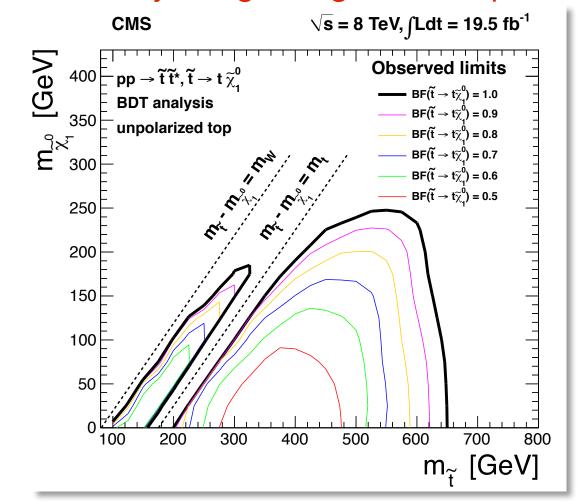
Most Sensitive SRs: Cut-Based

Similar situation for the cut-based analysis:

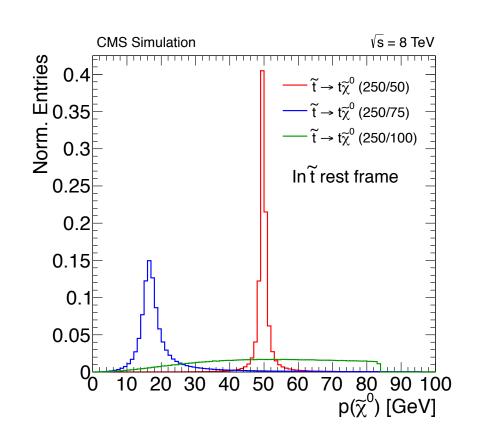


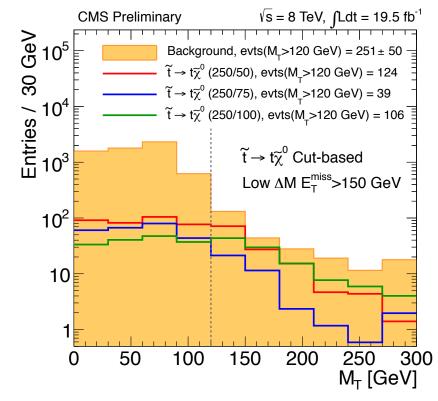


Fine Points: Polarization


- Top quark in the stop decay may be produced polarized
- ◆ The main limits correspond to the case of no polarization
- ◆ Important to study the effect of polarization
- ◆ The effect turns out to be not so large: 10-20 GeV in the limits

Fine Points: Branching Fraction


- ♦ What if B(\tilde{t} → $t\chi^0$) is less than 100%?
 - Conservative analysis, ignoring other stop decays

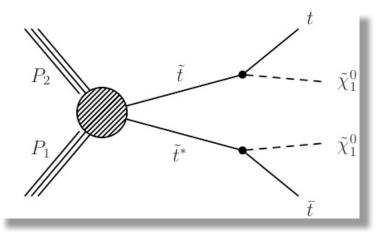


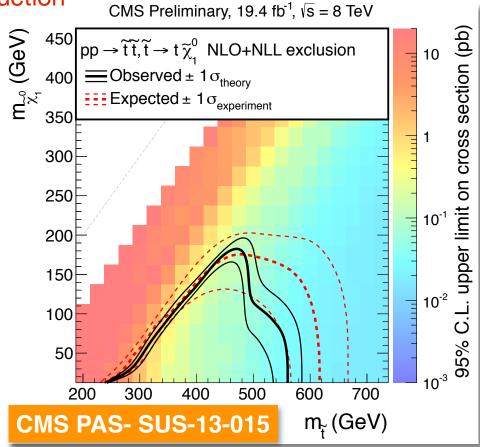
ine Points: Sensitivity Near

- ♦ Reduced sensitivity in region $\Delta m = m(\tilde{t}) m(\chi^0) \sim m_t$
- ♦ Momentum of the χ^0 is reduced in the 'compressed' region → reduced source of ME_T which is the main discriminator from background
- ◆ Results in a reduced M_T acceptance

62

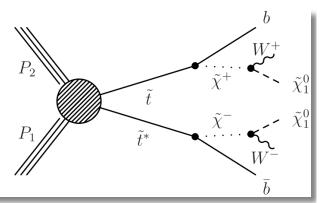
Slide

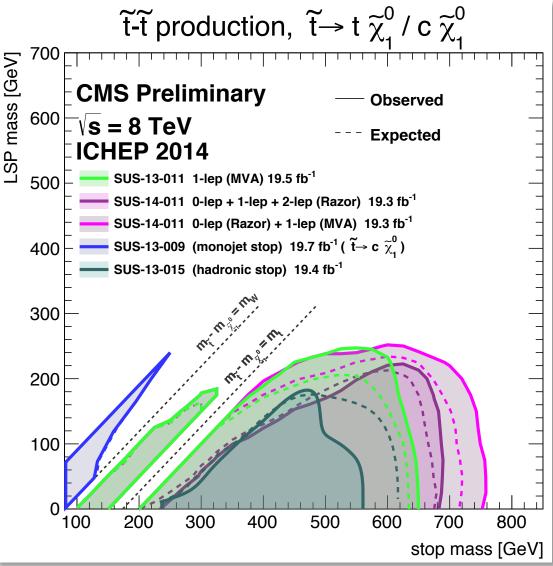




Direct Stop: All Hadronic

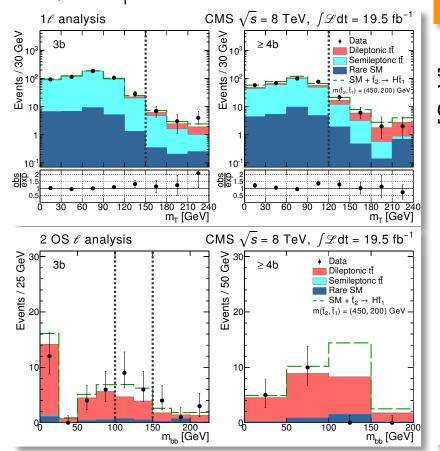
- ◆ This is quite sensitive, and yet the toughest channel at the LHC
- → Simple reinterpretation of the existing analyses is not sensitive enough
- → Requires a dedicated optimized tour-de-force analysis:
 - Top-quark full or partial reconstruction
 - W+jets and tt with τ_h and lost leptons (from W(μν)+jets with embedded τ_h), invisible Z decays (from Z(μμ)), and multijets (made negligible)



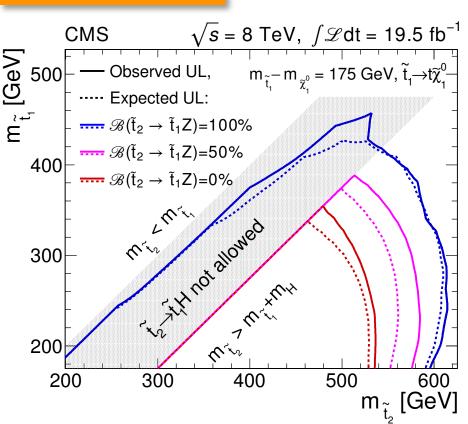


64

Direct Stop: Summary



Stop Decays via Higgs/Z


◆ Probing compressed spectrum in the stop to top + neutralino decays by looking for the heavier stop production with the decay in the lightest stop and a Z or Higgs boson

Results in additional boost of decay products probing

 $M(\widetilde{t}_1) - M(\chi_1^0) \approx 175 \text{ GeV}$

CMS, arXiv:1405.3886

BROWN

Conclusions

- Direct stop pair production is a classic example of a sophisticated search analysis:
 - Well-motivated
 - Uses advanced kinematic variables
 - Uses both cut-and-count and modern multivariate techniques
 - Combines several channels
 - Offers high sensitivity to a broad class of models
- ◆ Unfortunately, the search came empty-handed, but it set stringent limits on stop production and covered large fraction of "natural" phase space
- ◆ The analysis will remain a flagship SUSY search in Run 2 and will either result in a discovery or significant limits on the very "natural" SUSY possibility!

Thank You!