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MOTIVATION

Some people need more than others...




Why Motivate Yourselves?

BROWN

+ Searching for new physics is not for lighthearted:

© Some 200 searches have been done by the ATLAS and
CMS Collaborations so far, and all came empty-handed

® A likelihood for any given search to find something
Interesting is close to zero...

® ..yet, the only way to find something is to keep looking!
+ |t’s much easier to do the analysis if you are motivated
® ...not [just] by your advisor, but by the physics you are
doing!
+ Remember, every search is a potential discovery, and
only if it fails, it becomes a limit setting exercise

+ “Pier Is a disappointed bridge” - James Joyce
® Set out to build bridges, not piers!
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L] Looking for SUSY

+ See more motivational details in Jessie Shelton’s
lectures:

® What is SUSY?

® Three SUSY miracles

® Supersymmetric particle zoo
® “Natural” SUSY

+ SUSY and Higgs - the marriage made in heaven

@ What did we learn about SUSY in the aftermath of the
Higgs discovery?
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BROWN
+ A 125 GeV Higgs boson is challenging to

accommodate in (over)constrained
versions of SUSY, particularly for “natural”
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values of superpartner masses

® Started to constrain some of the simpler

models

+ Big question: if SUSY exists, can it still be
“natural’, i.e. offer a non-fine-tuned
solution to the hierarchy problem

® If not, we would be giving up at least one of

the three SUSY “miracles”
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SuperSymmetry or SuperCemetery?

BROWN

+ Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV -
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+ Excluded squarks to ~2.0 TeV and gluinos to ~1.2 TeV -
or did We'?
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What SUSY Have We Excluded?

+ We set strong limits on squarks and gluinos, and yet we have not
excluded SUSY

®© Moreover, we basically
excluded VERY LITTLE!

+ We ventured for an
“easy-SUSY” or
“lazy-SUSY” and we
basically failed to find it

® So what? - Nature could
be tough!

+ What we probed is a tiny
sliver of multidimensional
SUSY space, simply most
“convenient” from the
point of view of theory

+ All it takes to avoid these limits is to give up squark degeneracy!

Slide 8 Greg lLandsberg - CMS Results on Higgs & Beyond - Beijing 08/13/13
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“lazy-SUSY” and we

SUSY Theory phase space

Dirac

basically failed to find it geuginoe
® So what? - Nature could
be tough!

CMSSM

+ What we probed is a tiny
sliver of multidimensional
SUSY space, simply most
“convenient” from the
point of view of theory

+ All it takes to avoid these limits is to give up squark degeneracy!

T. Rizzo (SLAC Summer Institute, 01-Aug-12)
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We are at a SUSY Crossroad

+ Light 125 GeV Higgs boson strongly prefers SUSY as the fundamental explanation
of the EWSB mechanism (via soft SUSY-breaking terms and radiative corrections)

+ But what kind of SUSY?
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Implies: light stops/sbottom,
reasonably light gluinos and
charginos/neutralinos
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Likely: long-lived particles,
light neutralino, multi-TeV Z’, ...
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+ Fine-tuning: cancellation of two or more large
numbers

+In pMSSM:  m = =20, +1f2) + 5 (my, —mrly,) + O(1/ tan’ 5

|n| is small — light higgsinos

Fine-Tuning in (p)MSSM

m24y is small — lights stops (at one-loop level)
and gluinos (at two-loop level)
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Natural SUSY

+ If SUSY is natural, we should find it soon:
®© And we most likely will find it by observing 3rd generation SUSY particles

first!

+ Requires shifting of the SUSY search paradigm: going for the third
generation partners, push gluino reach, and look for EW boson partners

Papucci, Ruderman, Weiler

arXiv:1110.6926

natural SUSY
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Natural SUSY

BROWN

+ If SUSY is natural, we should find it soon:
®© And we most likely will find it by observing 3rd generation SUSY particles
first!

+ Requires shifting of the SUSY search paradig ing-for the third

generation partners, push gluino reach, a .son partners
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first!

Natural SUSY

+ If SUSY is natural, we should find it soon:
®© And we most likely will find it by observing 3rd generation SUSY particles

+ Requires shifting of the SUSY search paradigm: going for the third
generation partners, push gluino reach, and look for EW boson partners

Papucci, Ruderman, Weiler

arXiv:1110.6926
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+ Once we focus on natural SUSY, the spectra and the signatures become
rather simple — almost like “simplified model spectra”

+ Basically have to consider three types of spectra and related decay

modes ) ;
- h 1
t 2 )
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by Y th t

blt o ltlbl |b|t ‘
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Abbreviation Decay mode Conditions
T, & —n " myg > My + My
T, t—= byt = W0 | mz > my + Myt, Myt > Myo + Myy
Ty t—bxt = bW | mg > my + my+, My < myo + myy
Ty t— " — bW O my < my +myo, My < Mmy+ +my
g/ 3 # — e my < my +myo, my < My+ + My
Bb b — bXO
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+ Once we focus on natural SUSY, the spectra and the signatures become

rather simple — almost like “simplified model spectra”
+ Basically have to consider three types of spectra and related decay
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+ With [Ldt ~ 20/fb™" and 1 fb cross section produce 20 events;
typically 1-10 events observed after acceptance/efficiencies

gg: M(g) = 1.3 TeV

1 & — ~~ ~
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Direct Stop Signatures
BROWN
+ We will model the stop pair production via a “Simplified Model
Scenario”, i.e. zooming only on the light SUSY patrticles that matter

for this process and assuming all other SUSY particles to be heavy
+ Focus on just two Feynman diagrams representing relevant
production and decay: T — t+y°and T = b+y'
® Both result in the same signature: bbW "W +MEr

® N.B. this is the same signature as tt production (unless both W’s decay
hadronically) - gives you an idea of the dominant background
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+ Depending on the mass differences between the stop and
neutralino (chargino), several kinematic regions are defined:

 { > by = bW’ (x=0.5)

- Search for Direct Stop Production in CMS

\ 4

z 200 300 400 500 600 700
200 300 400 500 600 700 me [G eV] mg [GeV]

+ Different regions correspond to different challenges, so
search strategy generally depends on the region

+ Given that 4-body decays are enormously suppressed
kinematically, the region AM < My in the tx° mode is usually

covered by other channels, e.g. FCNC t —cy° decay

v
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Monte Carlo Samples

+ One does have to rely on MC for estimating signal acceptance

® Having signal MC is a prerequisite for any search analysis

® This analysis uses MadGraph 5 LO generator, with up to tvgo additional
partons at the matrix element level in a grid of m(t) vs. m(y )

® The decay of the stops and fragmentation are simulated with Pythla 6
generator, assuming 100% branching fraction in either the tx or bx final
state

®© Both the 2-body and 3-body decays are considered; in the case of the bx+

final state an additional mass parameter is used: m(y ) = xm(t) +
(1-x)m (X) with x = 0...1, which defines the chargino mass between the

neutralino (x=0) and stop (x=1) masses

+ One may or may not rely on MC for background estimates

® Still, it’s a good idea to have background MC samples generated

® These are generated with a combination of LO generator MadGraph 5 and
NLO generators Powheg and MC@NLO

® In some cases (e.qg., tt background) several generators are used for cross-
checks



Parton Distribution Functions

+ As usual, one has to interface MC generators with parton distribution
functions (PDFs)

+ Normally, one would like to match the order of the generator with the
same order of the PDF set

+ Thus, for MadGraph we use LO CTEQ6L1 set; for Powheg, we use
CT10 NLO PDF set, and for MC@NLO we use CTEQG6M NLO PDF set

+ Since Pythia is used for hadronization and fragmentation with all the
generators, one has to patch matrix-element jets with the parton-
shower jets, which is done using special prescription, to avoid
double-counting

+ The matching parameter defines minimum jet prt for which the matrix
elements are used to describe additional jet production; below this pr
(typically 20 GeV) the emission is described by parton showers

+ All the cross sections are normalized to the best available predictions:
NLO+NLL for the signal and NLO or NNLO for backgrounds

- Search for Direct Stop Production in CMS

Greg Landsberg






BN Single-Lepton Channel

+ Now we need to figure out what’s the best final state to
pursue the search

+ The final state depends on the W boson decay channels

® All hadronic channel has
the highest branching
fraction, but backgrounds
are huge

® Dilepton channel is clean
but the branching fraction

All jets 44%

| t+jets 15%
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compromise between frequen

+ The analysis I’'m going to describe is CMS, arXiv:1308.1586

e+jets 15%
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Event Selection
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Preselection

BROWN

+ Triggering is not an issue - standard top-quark triggers work just fine
(single-electron or single-muon trigger with the thresholds of 27 and 24 GeV,
respectively)

+ One isolated electron (pt > 30 GeV, |n| < 1.44) or muon (pr > 25 GeV, |n| <

2.1)

® |solation is defined as a scalar pt sum of all additional activity in a cone of R=0.3
around the lepton and is required to be 15% of the lepton pr and less than 5 GeV

+ Veto on a second isolated lepton (pr > 5 GeV), including hadronically
decaying t-lepton (pr > 20 GeV); also a veto on any additional isolated track
w/ pr > 10 GeV

® Reduces background from dilepton tt decays

+ At least 4 jets (anti-kt algorithm with R = 0.5), with pt > 30 GeV, [n| < 2.4

+ At least one of them is tagged as a b-jet
® Reduces W+jets background

+ ME; > 100 GeV

+ All objects are reconstructed using CMS particle-flow algorithm, which
combines the information from all the sub-detectors in an optimal way

- Search for Direct Stop Production in CMS
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b-tagging

+ Several algorithms are used 0.8 _CMS Simulation, \'s = 7 TeV

: . : o ' =

% to tag jets originating from b- g_ :Q::Q_—'Q:=O==O_—O_+=Q=_._ (b) E
I quark fragmentation 5 T . 4
S : . D : —e—
S ® Characterized by efficiency E SN o vents fleyents,  —o—
o ) —0—
S and purit . —— c quark + ¢ quark =
I p y o —— uds quark or gluon (x10) - uds quark (x10) 3
T 13 H >" =
M + CMS uses “combined 9 —
2 ” Q A =
7 secondary-vertex” (CSV) 'S e i S
I3 . . = . *—A—-g—-ﬁ-'_‘_* =
g algorithm in most of the % | T
5 search ana|yses 0 40 50 60 100 200 300 4;?0[GeV/c]
o ® Uses the significance of . 0g.CMSSimulgton\s=7Tev '
s secondary vertex separation, '§ 0.7 (d 3
o when secondary vertices are 2 0.5 W_._ E
2 found or uses individual 2 0' CSVM: QCD events ovente + 3
= tracks with large impact g 00 oD e S -
é" parameter When no ’6 0.4 —a— uds quark or gluon (x10) - uds quark (x10) _E
et . > _—
S secondary vertices are found 8 -
: : . : Q2 ==

+ Typical tagging efficiency is o =

5 E

60-70% with light-jet mis-ID
rate of ~1%
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+ “Tag-and-probe” method is used, utilizing Z(ee) and
Z(uu) events

+ Look at the Z(ll) events, apply tight requirements on
one lepton (“tag”) and very loose requirements on the

other (“probe”)
+ Estimate efficiency of standard requirements by

counting the fraction of probe leptons passing these
standard requirements

Efficiency Calculation
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All Tag-Probes

® Fit for the number of
events in the Z-peak,
by subtracting the
backgrounds
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+ Typical efficiency: 80% &k b
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Backgrounds

BROWN

+ In the regions of interest, there are four classes of
backgrounds, in decreasing significance:

® tt — Il + jets + MET, with a lost lepton (three undetected
particles, similar to the signal)

® tt — | + jets + MEr, similar to the signal, but MET comes
from a single neutrino; also some contribution from
single-top-quark production

® ttV, VV, VVV, tW - electroweak and other rare backgrounds

© W+jets

® Multijets with misidentified leptons (negligible)

+ Use hybrid method for background determination: MC
based, with validation and correction from control
regions (CR)

- Search for Direct Stop Production in CMS
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Missing Transverse Energy

BROWN
B+ Given that the signal oms (5= 8TeV, flet= 105"
= . O 2 : : . .
g signhature has three ST -
=3 invisible particles, while ~ §°3C )
4 most of the backgrounds 3 f_ T T
o _ (5 [ Preselection a (a)l (b) 1
g have one, MEr is agood g1 =:i:;
g discriminating variable 8107 EW“ _
d Dbetween the signaland =~ & g = 7 T~ 7, (650/50) x1000 -
i background
3 10°
?:; 10°
o

10
8 100 150 200 250 300 350
8 EM° [GeV]
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Transverse Mass

BROWN
+ Standard variable when dealing with signatures containing MEy
%))
S "
+ ; — _

g} + Classical example: W(lv) M = \/QpT ET(l cos A¢)

¢+ Transverse massisan _ . cus ons ooy - tos
; ot 5 [ @ semraaerm ] | 20 ]
i approximation of the & " S e B
o . . . R w 0.5~ -
] invariant mass in the 2 | R —
4 case when the Ll [ & e ot T
& longitudinal 3 S e s |
L2 Eos 117 210 I rare 4
§ mOmentum Componen‘t c T R T— 17, (650/50) x1000 7
¥ is not available (e.qg., . wd | =
CI» . 0 20 40 60 80 100 120 10° ‘ B
i due to a neutrino) M [GeV]

E + Has a sharp Jacobian peak Mr>120GeV ¢

g ith a sharp falling edge at oy oot 1S

& Wi , P , 9 9 used for signal 0 50 100 150 200 250 300

the true invariant mass my  selection My [GeV]

+ Signal has different distribution in My, as it contains three invisible
particles and therefore doesn’t have a Jacobian peak at my

)
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+ M. “stransverse mass” - a
generalization of the transverse
mass in case of a pair of
invisible particles

+ For a simplified case of no
extra jets and zero masses for
visible and invisible systems:

M+ro = min [max (m(;), m(Tz))}
(Mr2)? ~ 2Pws(1) WS(Z)U + CcoS¢12) PR +PF=pr

‘N 800
® My, ~ ME7 for symmetric soof Signal
SUSY-like topologies :
+ M kills QCD background very
efficiently:
® My, ~ O for dijets

® Mt> < MET in case of
mismeasured dijets

400

200

g




® More M+> Variables

+ The main variable used in this analysis is a variation of My, variable,
W . . . .. .
known as M 1, variable, which is the minimum mother mass compatible
with all the decay products and on-shell constraints

+ It is designed to specifically kill tt — ll+jets+MEs
background with a lost lepton

+ This is a difficult background to deal with as it looks
similar to the signal in other distributions, particularly
in transverse mass M+

+ The trick of finding the right M+, variable is how to
partition the final state particle into visible and invisible states

o5 —  tidilep
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+ Here is the definition of the M%+2 variable designed to
reconstruct tt events with a lost lepton:

(d))

3

£ - .

-§ M% — min {m consistent with: [ ﬁ{ "‘ﬁzr = Ep™, P% =0, (;m +p12)2 = p% = MI%V? ] }
E v (pr +pe +p1,)? = (P2 + pp,)* = M

4 4+ The tt events with lost lepton exhibit endpoint at my = m,
N y

(@] . . .

g Wwhile the signal has long talil o o rosn
(@) L _
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+ In the case when top quark in the t = ’[+XO decay is on-shell (i.e.,
m(t) > m; + m(xo)) the three jets from the t = Wb — jjb decay
should satisfy two mass constraints: m(jj) ~ mw and m(jjb) ~ m

+ Construct a X2 variable for each allowed combination (which

- Search for Direct Stop Production in CMS

respects b-tag jet assignments) o = 7oV, fat= 105
S 1.5+ _
L9 0-—0-0-0-0-0-¢g ¢ 0000 ¢ 000 ¢ ¢
2 (Mjjpjs — Miop)® | (M, — Mw)? g, :

X = ) T ) B0
oc. . o-. ) 7
j1j2J3 jij2 - T S
. . . o . ~ 6: Preselection ; |13la:§p (d) 1
+ Find the combination that minimizes 210 B i
the ° (x°mi e —J .
© X (X mm) -------- T— 7] (650/50) x1000
10* !

+ The szin should be small for backgrounds
with hadronic top-quark decays; it should
be larger for events w/o, e.g. W+jets
background or dilepton tt with a lost 10
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Topological Variable

=8TeV, [Ldt=1951b"

4+ Admin(MET,j1 2) - minimum azimuthal angle G e
difference between the MEr vector and two v
leading jets 2T =

£ [ rare

—_
()
>
BRI E———

weeeees T 17 (650/50) x1000 3

® Background tt events tend to be more back-
to-back as the signal events; hence top
quarks are more boosted for the background
and A¢min tends to be smaller than for the T

10°

- Search for Direct Stop Production in CMS

. min{A 4(j, E’;‘g),A ¢2(J'2, E;%"s?)} rac)

signal events S

+ Hr ratio defined as the ratio of the scalar S —
sum of pr of jets in the same hemisphere 30 v b

6
%10 I

than the MEr vector to the total scalar sum ., gk~

(@)
P
(V)
o]
(]
O
C
©
- |
8 ceeenes T 7] (650/50) 1000
-
Q)

of all jet pt (H7)

® Tends to be smaller for the signal, as visible
decay products recoil against the LSPs, so
they tend -to be OppOSIte to MET "0 0.10.20.3o.4o.5o.60.70.80|._%m01
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Topological Variables

+ Forthet — b+y" decay, b-jet comes from the stop decay, while for the background,
it comes from the top-quark decay; thus the b jet in general is harder for the signal

® Conversely, for thet = t+y° events in the 3-body region of the parameter space, b-jet is
softer than for the tt background

® Use leading b jet (b4) pt as a discriminant
® Related variable is AR(l,b,)
+ For a 3-body t = b+y" decay (m(x") - m(x®) < my), lepton py is softer and can be
used as an additional discriminating variable
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+ A number of variables have discriminating power
between the signal and various backgrounds

+ No single variable is “winning”
+ Variables are correlated

Optimization

- Search for Direct Stop Production in CMS

+ Two approaches: B
. 4/37
® Simple cut-based approach, | 02 GV
which treats each variable
: S
g independently and puts a 39/1
E cutoff on each of them <500 cm
3 ®© Multivariate approach, when S B
G all the variables are combined L7 29

in a likelihood reflecting how signal-like they are

<+ Practical implementation as a boosted decision tree via TMVA
Root package; trained on signal and backgrounds separately

Slide 36



B Signal Regions

+ Cut-based analysis: 8 signal regions (SR) per channel

g o iy _ ot f—by bWy (x=0.25)

) All SR require Mr > 120 GeV &= o S e

5 Am = m(t) - m(x° T |

S B\ (t) - m(x°) i

_g 200 200

O 100 s 100

o e A A

_8- ’230 360 4(;0 560 680 760 e [GeV] 200 300 400 500 600 700 m; [GeV]
n

15 = |2-body st { b — bWz’ (x=0.5) soot { — bj" — bWz’ (x=0.75)

i E S . aM =M, s oAM=,
e S e 5] . & s (@ .

N = 3400 2 400|-

=4 E € €

| |3-body »

C(})B — 200 V® 200f-
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i + BDT analysis: signal regions based on the BDT output value; several
(@) . .

i networks are trained depending on the phase space probed

+ Each BDT has single SR (BDT > x), except for tx°, region 1 and by*, x =
0.5, region 2, each of which has 2 working points (tight and loose)

® 6 SR for ty° and 12 SR for the by* analysis
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Signal Selection

+ The following selections are used for signal regions:

o
P
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n

5 t— )] t— by "

= Cut-based Cut-based

_5 Selection BDT Low AM High AM BDT Low AM High AM
§ EMiss (GeV) yes > 150,200, > 150, 200, yes > 100,150, > 100, 150,
3 T 250, 300 250, 300 200, 250 200, 250
o MY (GeV) yes >200 yes >200
| minA¢ yes >0.8 >0.8 yes >0.8 >0.8

) H%atlo yes yes

o Hadronic top x? (on-shell top) <5 <5

= Leading b-tagged jet pr (GeV) | (off-shell top) yes >100

5 AR(¢leading b-tagged jet) yes

= Lepton pr (GeV) (off shell W)

5

&

+ BDT analysis uses more inputs, in a more complete
way and offers ~40% improvement in the sensitivity
w.r.t. the cut-based analysis

+ The main result is therefore based on the BDT
analysis, with the cut-based analysis used as a
cross-check
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Greg Landsberg
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Control Regions

+ The analysis uses three control regions:
®© CR-2l requires 2 OS leptons
“+ Dominated by tt dilepton events

®© CR-It requires single lepton and an additional track or a hadronically
decaying tau lepton
<+ Dominated by the tt semileptonic and dilepton events

®© CR-0b requires no b-tagged jets
* Dominated by the W+jets background
+ CR do not include Mt > 120 GeV cut; use Mt distribution after
BDT or cut-based selections as the test of accuracy of the
background predictions and correct them if needed

+ To minimize uncertainties from tt cross section, integrated
luminosity, efficiency, etc., we normalize the MC-based
predictions in the low-Mt region (50 < Mt < 80 GeV) after
subtracting rare backgrounds, and then extrapolate to the My >
120 GeV signal region



+ The main background is from dilepton tt events; they only
have two tree-level jets, both from b-quarks

+ The preselection requires four or more jets with at least one
b—’[ag CMS (s=8TeV, [Ldt=19.5b"

+ Two extra jets for the dominant
background must come from

Data/Bkg

e]e] —_
oo BN \FEN

- Search for Direct Stop Production in CMS

ISR or FSR - need to ensure £7000}- ee/ie/un Combined «Data
. C 1/t
correct modeling "~ 60007 Eﬁfv:"l:
. » +jets
+ Test with a CR-2I control sample 5000 Wrare

requiring two OS leptons and 4000F
at least one b-tagged jet 3000
4+ For the ee and uu channels,

require the dilepton mass :
away from the Z-peak TR %S e Muttplity

3% agreement :
for N;>3 E

Greg Landsberg




Greg Landsberg - Search for Direct Stop Production in CMS

+ Validation in t
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Systematic Uncertainties

+ Here are the main systematic uncertainties for the

%
= .

g tyoanalysis:

< t— tx)

o Sample BDT1-Loose BDT1-Tight BDT2 BDT3 BDT4 BDT5
3 Mrt-peak data and MC (stat) 1.0 2.1 2.7 5.3 8.7 3.0
< tt — £ Njets modeling 1.7 1.6 1.6 1.1 0.4 1.7
2 tt — ¢¢ (CR-/t and CR-2/ tests) 4.0 8.2 11.0 12.5 7.2 13.8
o 2nd lepton veto 1.5 1.4 1.4 0.9 0.3 1.4
£ tt — £/ (stat.) 1.1 2.8 3.4 7.0 7.4 3.3
5 Wets cross section 1.6 2.2 2.8 1.7 2.7 2.2
< Wets (stat.) 1.1 1.9 2.0 4.6 10.8 5.2
s Wjets SF uncertainty 8.3 7.7 6.8 8.1 9.7 8.6
2 1 — / top (stat.) 0.4 0.8 0.8 1.4 4.4 1.2
> 1 — 7 top tail-to-peak ratio 9.0 11.4 12.4 19.6 28.5 9.1
z Rare processes cross section 1.8 3.0 4.0 8.1 15.7 0.7
g Total 13.4 17.1 19.3 27.8 38.4 20.2
O}
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Results: Preselection

BROWN

. cMs (s=8TeV, [Ldt=19.5fb" cMs s=8TeV, [Ldt=19.5fb"
+ After adjustments, based ¢.: 7. -
L] L] E 1i._ T | 4(\! 17 — — —
on data/MC comparison in &%
. 0 EHH\‘_“w‘_‘.‘_w‘”w”‘w”” 0 FT \_\_\.Lw T T T
the CR, the agreement in  Siwfred ma i, @ 4 G e e i ® 3
. - $igL ot S g7 F reent B
the signal region looks =10 = = oL = ;
w 1000 e T- t;zf (250/50) x30 w E e T— b, (250/50/0.5) x30 3

good

+ The figure shows the
agreements between the
data and baCkground 0 0.2 0.4 0.6 0 01 02 03 B%?_Outpgt.s

BDT output'
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. _ 0 R i SN - B L=t S

+ Similar agreement is found g [ roes BREL L g0 s BRI

ook pr—r . & 3l -?f % (650/50/0.5) x100_]

for Other BDTS 10 = t_>txé1 (650/50) x100 % 10 - e b7, ( 5) -

+ Only event preselection is ’ “
applied; no My > 120 GeV 10

reqUIrement used 0.2 0.3 0.4 0.5 0.6 0.7 (;.2 0.3 0.4 0.5 0.6 0.7

BDT output BDT output
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Results: BDT, t/°

+ Here are the results of the counting experiment in all
the signal regions:

t— tx)

Sample BDT1-Loose BDT1-Tight BDT?2 BDT3 BDT4 BDT5
tt — 0/ 438 + 37 68 £11 46 + 10 542 03+03 48+13
14 top 251 +93 37 +17 22 +12 4+3 0.8+0.9 30+ 12
W +jets 27 +7 7+2 6+t2 2+1 0.8+0.3 5+2
Rare 47 + 23 11+6 10£5 341 1.0+£0.5 442
Total 763 + 102 124 + 21 85+ 16 13+4 29+4+1.1 87 + 18
Data 728 104 56 8 2 76
t— tXO (250/50) 285 £ 8.5 50+ 3.5 2826 44+10 03x03 34429
t— tf({} (650/50) 12 +0.2 7.2 4+0.2 98+02 65+02 43+£01 29+0.1
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Results: Cut-Based, t\°

+ Similar results in the eight SR for the cut-based analysis:

Sample EMIsS > 150GeV ~ EMSS > 200GeV  EMUSS > 250GeV  EXUSS > 300 GeV
Low AM Selection
tt — 00 131 +15 42 +£7 17 +£5 56425
14 top 94 + 47 3019 916 31+24
W + jets 1043 5+1 2+1 1.0£0.4
Rare 16 -8 714 4+2 1.8+£09
Total 251 £ 50 83 + 21 318 11.5+3.6
Data 227 69 21 9
t— tx} (250/50) 108 3.7 32+2.0 124+1.2 524038
t— t)?glj (650/50) 8.0+0.1 72+0.1 6.2+0.1 49+0.1
High AM Selection
tt — 00 8+2 5+2 32+14 1.4+£09
14 top 13+6 614 3.0+22 14+1.0
W + jets 4+1 2+1 1.5+£0.5 09403
Rare 4+2 3+1 1.8+£09 1.0£0.5
Total 29+7 17 +£5 9.5+2.38 47+14
Data 23 11 3 2
t— tx} (250/50) 10+1.1 4.610.8 23405 14+04
t— tf(%l) (650/50) 49+0.1 47+0.1 43+0.1 3.7+0.1
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Results: BDT, b *

t—=by" x=1025

4+ Also, no excess
iIn the chargino
channel BDT

analysis:

Sample BDT1 BDT2 BDT3

tt — 00 18+4 22+13 1.2+1.0

14 top 10£5 40+138 1.5+08

W +jets 3+1 20£07 0.7+£0.3

Rare 4+2 1.6+£0.8 1.0+£0.5

Total 35+6 98+24 44+14

Data 29 7 2

t— bx™ (450/50/0.25) 19+29 11+22 52+15

t— bx™ (600/100/0.25) 8.8+0.8 75+0.8 56£0.7
t—=bytx=05

Sample BDT1 BDT2-Loose BDT2-Tight = BDT3 BDT4

tt — 00 40+5 21+4 4+2 6+2 100 £ 16

14 top 24410 15+£7 443 442 33+12

W +jets 5+1 5+1 2+1 3+1 5+1

Rare 8+4 8+4 3+1 442 8§+4

Total 77 £12 50+9 13+4 17+4 146+21

Data 67 35 12 13 143

t—bx™ (250/50/0.5) 45+7.6 24452 57+24 52+£26 55£81

t— bx™ (650/50/0.5) 35+04 9.5+07 56+05 83+£06 32+04
t—= byt x=075

Sample BDT1 BDT2 BDT3 BDT4

tt — 00 37+5 9+2 31+13 248 +22

14 top 17£9 6+5 1.6+1.6 188 £ 70

W +jets 4+1 4+1 1.6+0.6 22+6

Rare 442 442 1.8+09 20+10

Total 61+10 22+6 81+23 478 +£74

Data 50 13 5 440

t — by ™ (250/50/0.75) 115+13 21+5.6 8.0+£37 518 +28

t— bx ™ (650/50/0.75) 39+04 84+£0.6 6.8 £0.6 55+05
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Results: Cut-Based, by"

+ ... or cut-based analysis:

BROWN

()]
= Sample Emiss > 100GeV ~ EMsS > 150GeV  EXISS > 200GeV ~ EMSS > 250 GeV
(&
8 Low AM Selection
Z tt — 00 875 + 57 339 £ 23 116 + 14 40+9
3 1/ top 658 + 192 145 + 70 41+24 1449
o W + jets 59 + 15 2145 8+2 441
o Rare 70 4 35 33+17 16+8 8+4
§ Total 1662 + 203 537 + 75 180 £ 28 66 + 13
D Data 1624 487 151 52
3 t — by (450/50/0.25) 47+33 33+£27 19+2.0 87+t14
5 T— byt (600/100/0.25) 15+ 0.7 134+0.7 11+06 7.9+0.5
5 T— byt (250/50/0.5) 419 +17 157 £9.9 52 +54 21 +34
e T— byt (650/50/0.5) 14+ 0.6 13405 11405 8.4+0.4
o t— by (250/50/0.75) 854 + 26 399 + 18 144 + 10 56 + 6.4
3 t — bx T (650/50/0.75) 17 +0.7 16 + 0.6 13+ 0.6 11405
é) High AM Selection
o tt — 00 25+5 12+3 7E2 29+15
z 14 top 35+ 10 15+6 6+3 27+18
S W +jets 942 541 241 1.84+0.6
; Rare 945 7+3 442 24+12
O Total 79 + 12 38 L7 19+5 99+27
O Data 90 39 18 5
t — by ' (450/50/0.25) 30 +27 23+23 15+1.8 73+13
T — by ™ (600/100/0.25) 11406 9.7+0.6 84+06 6.1+05
T — by " (250/50/0.5) 37+48 23438 11426 50+1.7
T— byt (650/50/0.5) 11405 9.8+05 8.6+0.4 6.7 +0.4
T— byt (250/50/0.75) 32+52 23 +4.4 11429 36+14
T— byt (650/50/0.75) 92405 8.4+05 7.5+ 0.4 6.3+0.4
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BDT Outputs for t° SR

+ Here are the BDT o TR | g e
outputs for the loosest &+~ T g4t
(left column) and tightest §,°ﬁ“=“% ? §1°”“*?B°” Eﬁ ©

10° 10 -
Mr distribution after __, ¢ o™= = f

the BDT selection
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BDT Outputs for by" SR

cMs ls=8TeV, [Ldt=19.51" cMs (s=8TeV, [Ldt=19.51b"

+ Here are the BDT 28 1 g -
5 05 - ; * T 5 05 ————
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CMS Experiment at LHC, CERN

Data recorded: Sat Apr 14 17:10:23 2012 CEST
Run/Event: 191247 / 153230645 CMS Experiment at LHC, CERN

Data recorded: Mon May 21 20:54:48 2012 CEST
Run/Event: 194644 / 410307774

Electron, Jets, Lumi section: 409

pt= 114 GeV pt=48 GeV

Lumi section: 98

ETmiss, ;
Jet 3, pt = 242 GeV Jet 1,

et = 86 GeV s et = 163 GeV

Jet 1, - N\ =
pt = 347 GeV Jet 2,
= 5 pt = 105 GeV Jet 3, . y
pt = 66 GeV . / Jet 4,
AN N pt = 48 GeV

Jet 4,
pt=72 GeV

Jet 2,
pt = 114 GeV
ETmiss

Muon,
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Results: Summary

+ The data agree with the SM background prediction corrected for the
data/MC discrepancies in the CR within 1.0-1.5 standard deviations in
all the search regions, both for the cut-based and BDT analyses

+ Having seen no evidence for stop production, we proceed in
interpreting our results in terms of limits on the stop production cross
section, as a function of the stop mass, neutralino mass, and the x
parameter in case of the bx+ decay channel

+ The limits are set from the counting experiment in the most sensitive
signal region for any given mass point

+ In general could be improved by combining several search regions,
but as the improvement is small (SR are largely overlapping) go for a
simpler analysis

+ Further improvement could generally be achieved by the shape-based
analysis, but this requires a much more sophisticated treatment of the
systematic uncertainties, not possible with the present statistics

+ Will ultimately be used for Run 2, once statistics increase significantly

- Search for Direct Stop Production in CMS

Greg Landsberg
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® Interpretation

+ Use the LHC-style CLs method (see Daniel
Whiteson’s lectures) to set 95% CL limits

+ Use standard convention of treating experimental
and theoretical uncertainties:

® Uncertainties are propagated into the limits via nuisance
parameters, represented typically by log-normal
distributions

®© Experimental uncertainties are shown as +1 standard
deviation band around the expected limits

® Theoretical uncertainties (renormalization/factorization
scale variation, PDFs, etc.) are shown as +1 standard
deviation band around the observed limits
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+ Here are the limits in four scenarios studied:

g CMS Vs =8TeV, [Ldt=19.5 fb" CcMS Vs =8 TeV, [Ldt =19.5 fb”
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+ Which region does the sensitivity come from?

4+ In most parts of the phase space the best SR matches
the a priori optimization
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Most Sensitive SRs: Cut-Based
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. + Similar situation for the cut-based analysis:
3 cMS Vs =8 TeV, [Ldt = 19.5 fb”
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BROWN
+ Top quark in the stop decay may be produced polarized
+ The main limits correspond to the case of no polarization
+ Important to study the effect of polarization

+ The effect turns out to be not so large: 10-20 GeV in the
limtis

Fine Points: Polarization
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+ What if B(t = tx9) is less than 100%?

® Conservative analysis, ignoring other stop decays
\'s=8TeV, [Ldt=19.5fb"

unpolarized top

N . S . 'rd 0,
. s/*,;, — BF(t— tx1) =0.5
¢ g

- Search for Direct Stop Production in CMS

Greg Landsberg
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Fine Points: Sensitivity Near m,

BROWN

+ Reduced sensitivity in region Am = m(t) - m(x°) ~ my

+ Momentum of the X° is reduced in the ‘compressed’ region = reduced
source of MEt which is the main discriminator from background

+ Results in a reduced Mt acceptance
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Direct Stop: All Hadronic

+ This is quite sensitive, and yet the toughest channel at the LHC
+ Simple reinterpretation of the existing analyses is not sensitive enough
+ Requires a dedicated optimized tour-de-force analysis:

® Top-quark full or partial reconstruction

®© W+jets and tt with T, and lost < 450
leptons (from W(uv)+jets with

CMS Preliminary, 19.4 fb!, (s = 8 TeV
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Greg Landsberg - Search for Direct Stop Production in CMS
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Direct Stop: Summary

LSP mass [GeV]

~
o
o

600

500

400

300

200

100

-t production, t—t 5{? /c 52?

_|IIII|IIII|IIII|IIII|IIII|IIII|IIIII
-CMS Preliminary — Observed

:_ s=8 TeV -~~~ Expected
"ICHEP 2014

|~ SUS-13-011 1-lep (MVA) 19.5 fb"’
| == SUS-14-011 O-lep + 1-lep + 2-lep (Razor) 19.3 fb™
— === SUS-14-011 0-lep (Razor) + 1-lep (MVA) 19.3 fb™

| —— SUS-13-009 (monojet stop) 19.7 b (T ¢ %,)
=== SUS-13-015 (hadronic stop) 19.4 fb™
S
A -
&‘\"' //&'jo

1
|'IIII|II

100 200 300 400 500 600 700 800
stop mass [GeV]




S
)
I LL

BROWN

Stop Decays via Higgs/Z

+ Probing compressed spectrum in the stop to top + neutralino i
decays by looking for the heavier stop production with the A \t .
decay in the lightest stop and a Z or Higgs boson X;
+ Results in additional boost of decay products probing 7 8
M) - M(R) = 175 GeV ' :
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BROWN
+ Direct stop pair production is a classic example of a
sophisticated search analysis:
® Well-motivated
® Uses advanced kinematic variables
® Uses both cut-and-count and modern multivariate techniques
®© Combines several channels
® QOffers high sensitivity to a broad class of models
+ Unfortunately, the search came empty-handed, but it set

stringent limits on stop production and covered large
fraction of “natural” phase space

+ The analysis will remain a flagship SUSY search in Run 2
and will either result in a discovery or significant limits on
the very “natural” SUSY possibility!

- Search for Direct Stop Production in CMS
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