

### **Calorimetry** Lecture 1

### Jeremiah Mans University of Minnesota



# Outline



- Calorimeters in Context: Why Calorimetry?
- Principles of Calorimetry
  - Interactions with matter
  - Shower shapes and cascades
- Types of Calorimeters
  - Total Absorption, Sampling
  - Scintillation, Ionization, Cherenkov
  - Signal Detection

# What is Calorimetry Really?



- The first calorimeter which you probably met as a student was a "bomb" calorimeter
  - Measure the temperature change of a known volume of water to determine the energy released in a reaction – sharing the reaction energy with many molecules evenly to determine the total
- HEP Calorimetry has similarities
  - Convert the energy of an incoming single particle into many lowerenergy particles and count the number of particles to determine the original total







$$E_m = N E_c = E_i$$





$$E_{m} = \epsilon N E_{c}$$

$$\sigma_{E_{m}} = \sigma_{\epsilon} N E_{c} \oplus \epsilon \sigma_{N} E_{c}$$

$$\sigma_{E_{m}} = \sigma_{\epsilon} N E_{c} \oplus \epsilon \sqrt{N} E_{c}$$

August 11, 2014

HCPSS14: Calorimetry 1 (Mans)

5





### $E_{m} = \epsilon N E_{c} + E_{n} - \langle E_{n} \rangle$ $\sigma_{E_{m}} = \sigma_{\epsilon} N E_{c} \oplus \epsilon \sigma_{N} E_{c} \oplus \sigma_{n}$ $\sigma_{E_{m}} = \sigma_{\epsilon} N E_{c} \oplus \epsilon \sqrt{N} E_{c} \oplus \sigma_{n}$







# Why Calorimetry?

- Particles have high momentum and can be collected by calorimetry
  - Poor targets for calorimetry :  $\mu\,\nu$
- Particles do not have electric charge and therefore do not bend in magnetic fields or leave signals in tracking detectors
  - Poor targets for tracking :  $\gamma n K_{L} v$



HCPSS14: Calorimetry 1 (Mans)







8



### The First Black Box Particle Interactions with Matter



# **Targets and Interactions**

- Matter is a diffuse cloud of electrons with a distribution of small, high q, high mass, nuclei
- The interactions between the incoming particles and the target will determine how the N daughter particles are created
  - Electromagnetic interaction
    - Radiative interactions and ionization-type interactions
  - Strong interaction
- Which interactions have the largest cross sections and what are the relevant length scales that result?



# **Radiative Interactions**

- Cross-section is set by classical electron radius and a photon propagator integral over the unscreened nuclear charge
  - Electromagnetic radiative interactions will occur dominantly at low momentum (photon propagator 1/q<sup>2</sup>) and in regions with coherent non-zero net charge (near the nucleus)

$$\sigma_{radiative} \approx \pi r_e^2 \left[ \left( \frac{\alpha}{\pi} \right) Z^2 \int_{1/r_{atom}}^{1/r_{nucleus}^2} \frac{dq^2}{q^2} \right]$$
  
$$\sigma_{radiative} \approx 4 \alpha r_e^2 Z^2 \ln \left( \frac{r_{atom}}{r_{nucleus}} \right)$$
  
$$\sigma_{radiative} \approx 4 \alpha r_e^2 Z^2 \ln \left( \frac{183}{\sqrt[3]{Z}} \right)$$



### Mean Free Path



• What is the mean free path for an electron?

$$MFP = X_0 = \frac{1}{n\sigma}$$
$$X_0 = \frac{1}{4n\alpha r_e^2 Z^2 \ln \frac{183}{\sqrt[3]{Z}}}$$

• Photon radiation length:  $X_0^{\gamma} = \frac{9}{7}X_0$ 



## When not showering...





 In between radiative interactions, charged particles will have ionizing interations, Compton-scatters, and similar low-momentum-transfer interactions

### Electromagnetic Shower Development



• In the first radiation lengths of a shower, radiative processes dominate, resulting in a large multiplication of photons, electrons, and positrons  $e^{-}$ 



- As the average particle energy drops, Compton scattering, photoelectric, and ionization processes dominate
  - In the final count of particles, there 100x as many liberated atomic electrons as positrons
- Finally, particle energies fall to the point where they are absorbed in atomic systems and the density of particles starts to fall

# Shower Max



- At the shower maximum, the amplification rate becomes unity. "Shower max" is the plane in the shower development which has the largest number of particles flowing through it.
  - Average particle energy: E<sub>c</sub> (Pb = 7.2 MeV, Fe = 22 MeV)
  - Number of particles :  $N_{max} = E_i / E_c$
  - Location of shower max :  $L_{max} \sim ln (E_i/E_c) X_0$
  - Total path length of particles :  $L_{tot} \sim N_{max} X_0/ln 2$
- Energy of the initial particle can be determined from N<sub>max</sub> or L<sub>tot</sub> (which is proportional to N<sub>max</sub>)

# Shower Profile (Cu)





# **Transverse Shower Profile**



- Moliere radius: characteristic transverse size of an electromagnetic shower
  - r<sub>m</sub> = (21 MeV/E<sub>c</sub>) X<sub>0</sub>
- Calorimeter transverse segmentation should be somewhat finer than Moliere radius
  - Using energy distribution in neighboring cells, shower position with the peak cell can be determined to within 5% of the cell size



# What about muons and hadrons?

 Radiative processes are suppressed by m<sup>-2</sup> for muons and protons  $\sigma_{radiative} \approx 4 \alpha r_e^2 Z^2 \ln\left(\frac{183}{\sqrt[3]{Z}}\right)$  $r_e \propto \frac{1}{m_e}$  $\frac{\sigma_{radiative}}{\sigma_{radiative}} = \left(\frac{m_e}{m_f}\right)^2$ 

- Additional suppression for pions
- For hadrons, strong interactions are more important
  - $\sigma(pp) \sim 40$  mb and  $\sim$ constant with q<sup>2</sup>
  - σ(πp) ~ 26 mb [2/3 σ(pp)]
- Wide array of processes with different rates
  - Pion production, nuclear fission, neutron capture, nucleus excitation...
     Hadron calorimetry is complex!



# **Material Properties**



| Material        | Z   | Density<br>[g/cm <sup>3</sup> ] | X <sub>0</sub> [cm] | λ <sub>int</sub> [cm] | E <sub>c</sub> [MeV] |
|-----------------|-----|---------------------------------|---------------------|-----------------------|----------------------|
| Fe              | 26  | 7.9                             | 1.8                 | 17                    | 22                   |
| Cu              | 29  | 9.0                             | 1.4                 | 15                    | 19                   |
| Pb              | 82  | 11                              | 0.6                 | 17                    | 7.6                  |
| W               | 74  | 19                              | 0.4                 | 9.6                   | 8.1                  |
| U               | 92  | 19                              | 0.3                 | 11                    | 6.5                  |
| Plastic         | ~2  | 1.0                             | 42                  | 80                    | ~92                  |
| Liquid<br>Argon | 18  | 1.4                             | 14                  | 84                    | 32                   |
| Quartz          | ~10 | 2.3                             | 12                  | 43                    | 44                   |
| Si              | 14  | 2.3                             | 9.4                 | 46                    | 40                   |
| Al              | 13  | 27                              | 8.9                 | 39                    | 42                   |

# Pion Cascade



• Primary pion interaction with nuclei is

$$\pi + N \rightarrow a \pi^{+} + b \pi^{-} + c \pi^{0} + X$$

- No requirement for charge conservation (charge exchange with nucleons)
- Equal amounts of  $\pi^+$ ,  $\pi^-$ ,  $\pi^0$  produced on average
- When a neutral pion is produced, it rapidly decays to two photons and initiates an electromagnetic shower: **one-way street**  $\pi^{\circ} \rightarrow yy$





 In the simplest model, 2/3 of the energy goes into electromagnetic energy at each stage

$$f_{em} = 1 - \left(\frac{2}{3}\right)^{E/E_0}$$

- The electromagnetic energy fraction increases as the initial energy increases
- Since other processes are present, a more-complex model fits better:

$$f_{em} = 1 - \left(\frac{E}{E_0}\right)^{k-1}$$

• And there are fluctuations!



### Hadron-Shower Fluctuations





# Where does the energy go?



- For the hadronic part of the shower, energy goes into both visible and invisible places
  - O(60%) : Ionizing particles (protons, pions : visible)
  - O(10%) : Evaporation neutrons (somewhat visible, sometimes late)
  - O(30%) : Nuclear binding energy and recoil (invisible)

Nuclear "star" initiated by 30 GeV proton, as observed in photographic emulsion



### **Transverse Shower Development**





FIG. 2.34. Lateral profiles for 300 GeV  $\pi^-$  interactions in a block of uranium, measured from the induced radioactivity at a depth of  $4\lambda_{int}$  inside the block. The ordinate indicates the decay rate of different radioactive nuclides, produced in nuclear reactions by different types of shower particles. Data from [Ler 86].

# $f_{EM}$ and invisible energy



- As the f<sub>EM</sub> rises, the fraction of energy lost invisibly will decrease
- As there are more neutrons than protons in heavy nuclei,  $\pi^+$  will convert into  $\pi^0$  more efficiently than  $\pi^-$

$$\pi^+ n \rightarrow \pi^0 p$$
$$\pi^- p \rightarrow \pi^0 n$$



### The Second and Third Black Boxes Measuring the particles produced



August 11, 2014

# Principle of Measurement



- The basic principle of measurement in calorimetry is to determine the total number or path length of particles produced in the shower
  - Subject to ~linear proportionality (e.g. charged particles only or a fixed nominal fraction of the path lengths)



# Total absorption calorimetry



 Transparent crystals including a heavy element in the matrix



- A fraction of ionization energy will produce visible light through scintillation
  - Measurement of the amount of light produces the energy measurement => requirement for a photodetector

# **Resolution Calculation**



- For a 1 GeV photon using CMS's PbWO<sub>4</sub>
  - ~100,000 photons/GeV => 0.3%
- Not all photons are detected many are absorbed before reaching the photodetector or do not produce a signal
  - 4% of photons become PE (4000) => 1.6%
- Fluctuations in the photodetector generate an additional factor of  $\sqrt{2}$  1.6%\*2 => 2.2%
- Limit the lateral sum to keep the number of channels contributing to the electronic noise to 25, the containment fluctuations add 1.5% in quadrature

=> 2.7%

# Sampling Calorimetry





- Materials appropriate for total-absorption calorimetry are very expensive
  - Financially impossible for hadron calorimetry!
- Alternative: separate the roles of a cheap dense material for shower development and a lighter material for signal measurement

# Resolution in a sampling calorimeter



• To first order, energy loss is entirely within the absorber, with the active material counting the number of produced secondaries.



- ATLAS electromagnetic calorimeter is a sampling calorimeter with lead as the primary absorber and liquid argon as the active material
- For lead,  $E_c = 7.8$  MeV, so a

1 GeV electron will produce an average of 128 secondaries. Each lead layer has a width of X0/3, resulting in three measurements of each final secondary

$$\sigma_{min} = \frac{1}{\sqrt{384}} = 5.1\%$$

Additional effects raise resolution to 10%

# Tools for building a calorimeter



- Modern HEP detectors use electronics to collect and process data (e.g. triggering)
- Active materials
  - Noble liquids and silicon sensors allow direct collection of ionziation charge
  - Crystals, plastic and liquid scintillators produce light
  - Cerenkov radiation can also be used
- Light-handling tools
  - Phototransducers: conversion of visible and nearvisible light into electrical signals
  - Photon collection hardware

# Silicon-based Calorimetry





- Charged particles passing through a silicon diode will produce electron/hole pairs which will be swept apart by the strong electric fields in the diode and can be collected to determine the fluence
  - Silicon/tungsten calorimeters were used extensively for luminosity measurements at LEP



**Electric Field** 

# **Cherenkov Radiation**







- Cherenkov radiation is produced when a charged particle passes through a medium at faster than the local speed of light
  - Used as a particle identification technique comparing *v* and *p* to determine *m*
- For calorimetry, generally only electrons are relevant.
  - For quartz (n=1.485), minimum KE = 0.1 MeV, minimum KE = 220 MeV
  - Cerenkov calorimeters count the path length of high-energy electrons in showers : very non-linear response for hadrons

# High Voltage Devices







**Photomultiplier Tube** Internal gain 10<sup>4</sup>-10<sup>7</sup>, very sensitive

to magnetic fields, requires O(1kV) power supply, small sensitivity to radiation, moderate PDE (<50%)





#### Vacuum phototriode

Internal gain 5-15, can operate in magnetic field parallel to device body, requires O(1kV) power supply, PDE <20%

# Silicon Phototransducers





**PIN diode** No internal gain, robust to magnetic fields, moderate sensitivity to radiation, PDE up to 90%+



Avalanche Photodiode Internal gain 50-1000, robust to magnetic fields, sensitive to highly-ionizing radiation, PDE ~80%







**SiPM/MPPC** Internal gain 10<sup>4</sup> - 10<sup>7</sup>, robust to magnetic fields, limited radiation sensitivity, linearity determined by pixel count, PDE 20%-50%



# Silicon Phototransducers





**PIN diode** No internal gain, robust to magnetic fields, moderate sensitivity to radiation, PDE up to 90%+



**Avalanche Photodiode** Internal gain 50-1000, robust to magnetic fields, sensitive to highly-ionizing radiation, PDE ~80%







SiPM/MPPC Internal gain 10<sup>4</sup> - 10<sup>7</sup>, robust to magnetic fields, limited radiation sensitivity, linearity determined by pixel count, PDE 20%-50%



### Hybrid Device: HPD









#### HPD

Internal gain ~2000, can be operated in magnetic fields parallel to electric field Requires O(8000V) over gap of ~4 mm (2 MV/m)

# Light-Handling Tools



- Light in scintillators is produced isotropically, which makes it hard to concentrate onto the (expensive) area of a photodetector
  - Lagrange invarient:  $A_1 \Omega_1 = A_2 \Omega_2$
- Elegant light-guide designs have been produced over the years to transfer the maximum surface area from a scintillator plane to a phototube



# Cheating Lagrange



- Particularly for hermetic colliders detectors, light guides and phototubes are problematic
- If the wavelength of the light is increased (energy is lost), the Lagrange invarient does not apply
- Use of wavelength-shifting systems (particularly "WLS" fibers) is widespread in collider detector design and can allow extreme compression of photodetector area
  - With significant, but uniform, loss of light



# Bibliography



- Calorimetry: Energy Measurements in Particle Physics by Richard Wigmans, 2000.
  - Big, verbose, Expensive, but excellent
- The Physics of Particle Detectors by Dan Green, 2005
  - Sufficiently detailed and comprehensive, not just calorimetry, less expensive
- Particle Detectors by Grupen and Shwartz, 2011
  - Nice coverage of historical development and modern devices, not just calorimetry, similar in cost to D. Green book
- Particle Data Booklet
  - Lots of Important Results but Few Explanations, Free!

### Tomorrow...



 Tomorrow we are going to bring these elements together to talk about existing and planned calorimeters for LHC and HL-LHC

• Some new issues which we'll touch on:

- Pileup and event spacing
- Radiation damage