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WHY BOTHER? 

• Because QCD is a fundamental part of nature 

• We might come to a new era of precision QCD 

• Because the main working tools at a hadron 
machine are Jets, Missing ET, Leptons, … 

• And a possible new physics signal will show up 
on top of lots of old physics processes 

• And… because it is beautiful!! 
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Local Gauge Invariance

Start by writing the classical Fermion Lagrangian:

Lfermion = ψ̄(iγµ∂µ −m)ψ = ψ̄(i /∂ −m)ψ (1)

with {γµ, γν} = 2gµν . Notice how the global invariance ψ → e iθψ
of this Lagragian can be made local (θ → θ(x)) by replacing ∂µ
with the covariant derivative:

/Dµ = ∂µ + ieAµ (2)

where Aµ is a new field that transforms as:

Aµ(x)→ Aµ(x) +
i

e
(∂e iθ(x))e−iθ(x) (3)

For this new field we introduce a kinematic term with the use of
the field strength tensor Fµν = ∂µAν − ∂νAµ



The QED Lagrangian
We arrive then at the classical Lagrangian

Lclassical = −1

4
FµνFµν + ψ̄(i /D −m)ψ (4)

Notice that a mass term m2AµAµ for the vector field is not allowed
by gauge invariance!
We want to extract the Feynman rules for the quantum theory. In
finding the propagator of the vector field we encounter the problem
of solving:

∆µν(p)i
[
p2gνσ − pνpσ

]
= δσµ (5)

Which actually have no solution. This is a consequence of the
redundancy of gauge invariant terms in the action of our theory.
We then add a gauge fixing term to the Lagrangian:

Lgauge−fix =


− 1

2λ
(∂µAµ)2 covariant gauge

− 1

2λ
(nµAµ)2 axial gauge



The Photon Propagator

In the covariant gauge, we arrive at the equation for the photon
propagator:

∆µν(p)i

[
p2gνσ −

(
1− 1

λ

)
pνpσ

]
= δσµ (6)

which returns the propagator:

∆µν(p) =
i

p2

(
−gµν + (1− λ)

pµpν
p2

)
(7)

λ is a free parameter, the gauge parameter, and physical quantities
should not depend on it. Picking a λ we fix a gauge. Common
choices are:

λ = 1 the Feynman gauge (8)

λ→ 0 the Landau gauge (9)



Axial Gauge

Similarly we can find the propagator of the photon in an axial
gauge nµAµ = 0:

∆µν(p) =
i

p2

(
−gµν +

pµnν + nµpν
n · p

− n2 + λp2

(n · p)2
pµpν

)
(10)

Although more complicated, axial gauges have the nice properties
that in axial gauges photons have two polarization states
transverse to their momentum → physical gauge (see more later).

A common choice of gauge parameters λ and n is the so called
lightcone gauge, for which λ→ 0 and n2 = 0.



Color SU(3)

The Group SU(N)

I Group of unitary N × N matrices with determinant 1

I An element of the group M ∈ SU(N) close to the identity can
be written with the relation M = 1 + iεG , as long as G is
Hermitian and traceless

I A basis tA for Hermitian traceless N × N matrices have
N2 − 1 elements (A = 1, · · · ,N2 − 1)

I They form a Lie Algebra (su(N)) with [tA, tB ] = if ABC tC ,
where f ABC are called the structure constants of the group

I A general K ∈ SU(N) can be expressed as K = exp(iθAtA)



Color SU(3)
The particular case of SU(3) is of special interest, as it is the
gauge group that builds QCD. Commonly we write tA = λA/2,
with λA the Gell-Mann matrices:

I tA defines the dimension 3 fundamental representation of
SU(3) (quarks)

I Constructing the matrices (T A)BC = −if ABC one obtains
another set of matrices that obey the Lie Algebra

I T A defines the dimension 32 − 1 = 8 adjoint representation of
SU(3) (gluons)



QCD Lagrangian
Let’s now write the Lagrangian for QCD

LQCD = LYang−Mills + Lfermions + Lgauge−fix + Lghost (11)

Where we have:

LYang−Mills = −1

4
F A
µνF Aµν , F A

µν = ∂µAA
ν −∂νAA

µ−gs f ABCAB
µAC

ν

Lfermions =
∑

flavours

q̄i

(
i /D ij + mqδij

)
qj , Dµij = δij∂µ + igs(tAAA

µ)ij

(12)

i , j = 1, 2, 3 and A = 1, · · · , 8. These pieces of the Lagrangian are
invariant under the local SU(3) gauge transformations:

qi (x)→ q′i (x) =
(

e iθA(x)tA
)

ij
qj (x)

tAAA
µ(x) = t ·Aµ(x)→ t ·A′µ = e it·θt ·Aµe−it·θ+

i

gs

(
∂µe it·θ

)
e−it·θ

(13)



QCD Lagrangian
We want to quantize the theory, and then the need form the gauge
fixing and ghost terms.

Lgauge−fix =


− 1

2λ
(∂µAA

µ)2 covariant gauge

− 1

2λ
(nµAA

µ)2 axial gauge

(14)

If like in QED we add only gauge fixing terms, we would find that
unphysical degrees of freedom propagate for gluons. For that
reason one introduces a complex scalar field η, with Fermi
statistics:

Lghost =

{
∂µ(ηA)†(DAB

µ ηB) covariant gauge

−(ηA)†nµ(∂µηA) axial gauge
(15)

I In covariant gauges we need to include Feynman rules for the
ghost field

I In axial gauges the ghost do not couple to the gluons, and so
only physical d.o.f propagate → physical gauges (although
not so physical...)



Gluon Propagator and Polarizations

Finally we encounter the gluon propagator:

p

µ, A ν, B

−→ ∆AB
µν (p) =

iδAB

p2
dµν(p)

where the tensor dµν(p) is connected to the sum over vector
polarizations:

dµν(p) =
∑

polarizations

ε∗µεν

=


−gµν + (1− λ)

pµpν
p2

convariant gauge

−gµν +
pµnν + pνnµ

p · n
lightcone gauge



QCD Feynman Rules 
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From Ellis, Stirling and Webber 

Gluon Self Interactions  

Other Propagators  

ffV vertices 



Few Color Identities

a c

−→ tA
abtA

bc = CF δac (16)

A B

−→ Tr(tAtB) = TRδ
AB (17)

A B

−→ Tr(T AT B) = CAδAB (18)

I CF = N2−1
2N

N=3
= 4

3

I TR = 1
2

I
∑

CD f CDAf CDB = NδAB → CA = N
N=3
= 3



Few Color Identities

The Fierz Identity

tA
abtA

cd
=

1

2
δadδcb − 1

2N
δabδcd (19)

And finally an useful identity for writing amplitudes in a color
ordered way:

[tA, tB ] = if ABC tC ⇒ f ABC = −2iTr([tA, tB ]tC ) (20)
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Coupling Constant αs

In LQCD we introduced the parameter gs . The strong coupling
constant is defined by αs = g 2

s /(4π).

I A dimensionless observable R only depending on a single large
energy scale Q is computed by perturbations as a series in αs

I Although we would expect R to be a constant,
renormalization introduces a second scale µr , which makes R
generally depending on Q2/µ2

r

I But µr is an unphysical scale, then if having R depending on
Q2/µ2

r and αs we find the renormalization group equation:

µ2
r

∂

∂µ2
r

R(Q2/µ2
r , αs) =

[
µ2

r

∂

∂µ2
r

+ µ2
r

∂αs

∂µ2
r

∂

∂αs

]
R = 0 (21)

τ = log

(
Q2

µ2
r

)
, β(αs) = µ2

r

∂αs

∂µ2
r

→
[
− ∂

∂τ
+ β(αs)

∂

∂αs

]
R = 0

(22)



The Running αs

Defining αs(µ2
r ) = αs and writing

t =

∫ αs (Q2)

αs

dx

β(x)
→ ∂αs(Q2)

∂t
= β(αs(Q2))

the RGE is shown to be solved by R(1, αs(Q2))!

I Dependence in the scale Q2 in R comes from renormalization

I As long as αs small, we can compute R perturbatively and
then the β function

β(αs) = −α2
s (β0 + β1αs + · · · ) (23)

It is found

β0 =
1

12π
(11CA − 4TRnf ) =

1

12π
(11N − 2nf )

and so β(αs) < 0, that is αs(Q2) decreases for growing Q2!



The Running αs

Keeping only the
term β0, we find
the leading log
expression:

αs(Q2) =
αs(µ2)

1 + αs(µ2)β0 log( Q2

µ2 )
(24)

Compare with the
analogous QED results:

α(Q2) =
α0

1− α0
3π log( Q2

m2
e
)

(25)

Asymptotic freedom and IR slavery

In Eq. (24) a special scale Λ (∼ 300
MeV) at which the coupling diverges
→ dimensional transmutation
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• The Strong Coupling Constant is in itself not a physical observable  
• It enters the perturbative expression of experimentally 
measurable observables 
• For example it is studied in jet production cross sections, hadron 
and τ lepton decays, event shapes, etc 
• Consequently, determinations of αs depend on the availability of 
precise predictions for the related observables 
• Finally, it is customary to relate measurements at different scales 
through running to that of the value of αs(MZ

2) 

The world average value of the strong coupling constant is: 

0.1185 ± 0.0006 

As presented on the Review on Particle Physics by the PDG in 2013 
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0.1185 ± 0.0006 

Some of the most precise data on 
αs comes from hadronic τ decay, 
results from the lattice, structure 
functions in DIS, hadron production 
at lepton colliders 

Notice the different scales at which 
these observables are measured! 
The running is evident in the data!  



The problem with unphysical scales 

• Physical Observable R computed as a perturbative series in αs 
• Although αs depends on μr, in principle R should not depend on the unphysical μr  

• In practice the perturbative series of R is truncated, and computed at Fixed Order 
• If we keep only the first term on the perturbative series we call it the LO (leading 
order) approximation, two terms NLO (next-to-leading order), three NNLO (next-to-
next-to-leading order), and so on… 
• The truncated theoretical observables (RLO, RNLO, RNNLO,…) acquire then a 
dependence on μr  
• Such spurious dependence will decrease for Higher Order Calculations 
• Actually (for high enough order) the spurious dependence will be of the order of 
the higher order terms not included (as they will cancel such dependence!) 
• Then, the unphysical scale dependence CAN be used as a PROXY of the 
theoretical uncertainty of the perturbative calculation (WITH CARE, of course…)  

Similar considerations can be made for another unphysical scale that 
appears in calculations for hadron colliders, called the factorization scale μf 

(We will come back to this!) 



Top pair production example 
• R as a perturbative series in αs 
• R should in principle not depend on μr  

• Fixed Order R → RLO, RNLO, RNNLO,… 
•They acquire a spurious dependence on μr  
• Dependence decrease LO → NLO → NNLO… 
• Unphysical scale dependence CAN be 
used as a PROXY of the theoretical 
uncertainty!  
• WITH CARE!!! 

Czakon, Fiedler, Mitov, Rojo arXiv:1305.3892 

The convergence of the 
perturbative series for this 
observable is clear. Notice the 
scale band overlap. Similar 
features are found for many 
observables! 
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CARE! Special features might appear 

[Czakon, Fiedler, Mitov, Rojo arXiv:1305.3892] 

Certain processes might present special 
features that even seem to question the 
pertinence of perturbation theory, due for 
example to the presence of large K-factors 
(i.e. large (N)NLO/LO ratios) 

[Anastasiou, Dixon, Melnikov, Petriello hep-ph/0312266] 

Compare for example Drell-Yan 
Production at NNLO with Top pair 

Production at NNLO 

But this is in well understood: 
• Not so small αs  at scales of relevance 
• Opening of new (gluon) initiated 
subprocesses at  higher orders 
• Release of kinematical constrains in 
quantum corrections 



NLO the first level for quantitative predictions 
[Bern, Dixon, FFC, Hoeche, Ita, Kosower, Maitre, Ozeren arXiv:1304.1253] 

W+ n Jet Production 

• LO unphysical scale dependence is 
large 
• It grows with jet multiplicity 
• Even more, shapes of distributions 
modified by quantum corrections 
• NLO scale uncertainty more stable 
over multiplicity of jets 
• NLO gives first quantitative 
prediction for observables 
• Precision QCD (down to few 
percent uncertaity) needs NNLO! 
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•  LO/NLO ratio sensible. 

•  NLO guides scale choices 

Dynamical Scales 

8/2014 30 

At the LHC one samples large kinematical ranges! 

Fixed scales are not proper! What to choose for 
fixed order calculations? 

[Berger, Bern, Dixon, FFC, Forde, et al arXiv:0907.1984] 
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Producing X via a q̄g channel

Suppose you are studying
some production channels
of your preferred signal X

X

Start for computing the born level cross section, and then ask

how can I get extra radiation on on top of X ?

Start with adding a gluon!

I O(αs) corrections to
your signal

I Part of the real NLO
corrections

X + g



Extra gluon emission q̄g → X + g
Pay attention to the diagrams in which the extra gluon couples to
the external q̄ line:

Aq̄g→g+X =
∑

All partitions

+ · · ·︸ ︷︷ ︸
Other diagrams with g
not coupling to q̄ line

=
∑

i

Di + · · ·

In the square of the amplitude we then find:

|Aq̄g→g+X |2 =
∑

i

|Di |2 +
∑
i 6=j

D†i Dj + · · · (26)

Notice that the propagator leading to the
vertex that couples g and q̄ in diagram Dj

leads to a term like (we set mq̄ = 0 for now!):

1

(−pq̄ + pg + pX ′
j
)2

And so in Eq. 26 we find a potential divergent terms of the form
1/(2pq̄ · pg )2!



Exploring Singularities of QCD Tree Amplitudes

These (most) singular terms
come in |Aq̄g→g+X |2 from
the square of the set of
diagrams (let’s call them D1):

So let’s
explore in
detail D1

contributions!

First:

D1 = gstav̄(pq̄)γµ
/pg
− /pq̄

(pg − pq̄)2
Ãq̄g→X εµ∗ (27)

In the matrix element square, we need to deal with the sum over
polarizations of the g . We introduce a light-like vector nµ with
n · q 6= 0 and write:

∑
polarizations

εµ∗εν = −gµν +
pµg nν + pνg nµ

pg · n
(28)



Exploring Singularities of QCD Tree Amplitudes
And then, in a sum over initial and final states degrees of freedom,
we find:∑
|D1|2 = g 2

s CF

Tr

{
Ã†q̄g→X

/pg
− /pq̄

(pg − pq̄)2

[
γν/pq̄

γµ

] /pg
− /pq̄

(pg − pq̄)2
Ãq̄g→X

}
(
−gµν +

pµg nν + pνg nµ

pg · n

)
= g 2

s CF

Tr

{
Ã†q̄g→X

/pg
− /pq̄

(pg − pq̄)2

[
−γµ/pq̄

γµ +
/n/pq̄/pg

+ /pg /pq̄
/n

n · pg

]
/pg
− /pq̄

(pg − pq̄)2
Ãq̄g→X

}
(29)

Employing identities for Dirac’s γ matrices (like {γµ, γν} = 2gµν ,
γµγνγµ = −2γν , etc) we obtain the compact expresion:



Exploring Singularities of QCD Tree Amplitudes

∑
|D1|2 = g 2

s CF
2

(2pq̄ · pg )2(n · pg )
Tr

{
Ã†q̄g→X (/pg

− /pq̄
)[

(n · pq̄)/pg
+ (pq̄ · pg )/n

]
(/pg
− /pq̄

)Ãq̄g→X

}
= g 2

s CF
2

(2pq̄ · pg )(n · pg )
Tr

{
Ã†q̄g→X[

(n · pq̄)/pq̄
+ n · (pg − pq̄)(/pg

− /pq̄
) + (pq̄ · pg )/n

]
Ãq̄g→X

}
(30)

Here it comes the crucial step!

If we explore the regions were our diagrams diverge (i.e. were
(2pq̄ · pg )→ 0), this occurs either because g is soft or because

g turns collinear to q̄!



Collinear Singularities in QCD
Characterize the collinear region with the help of the Sudakov
parameterization (k⊥ is a space-live vector ⊥ to both pg and pq̄):

pg = (1− z)pq̄ + βnµ − kµ⊥ (31)

where picking β = −k2
⊥/(2(1− z)(n · pq̄)) ensures p2

g = 0.

We are going to let k⊥ go to zero, and with it have a measure of
how collinear is our configuration! We get:

∑
|D1|2 = g 2

s CF
2

(2pq̄ · pg )(n · pg )
Tr

{
Ã†q̄g→X[

(n · pg )

(1− z)
/pq̄
− (pg · n)z

(1− z)
(/pg
− /pq̄

)−
k2
⊥

2(pg · n)
/n

]
Ãq̄g→X

}
(32)



Collinear Singularities in QCD

Now, with the use of the simple identity:

/pq̄
=

1

z

(
−(/pg

− /pq̄
)− /k⊥ −

k2
⊥

2(1− z)(n · pq̄)
/n

)
we find:∑

|D1|2 = 2g 2
s CF
−1

k2
⊥

Tr

{
Ã†q̄g→X[

(−1

z
− z)(/pg

− /pq̄
) +O(k2

⊥)

]
Ãq̄g→X

}
(33)

And notice that in the collinear limit (k2
⊥ going to zero), the

singular piece approximates the full amplitude square:

∑
|Aq̄g→g+X |2

k2
⊥→0

≈
∑
|D1|2 (34)



Collinear Singularities in QCD

And then we encounter an interesting relation!

∑
|Aq̄g→g+X |2

k2
⊥→0

≈ 2g 2
s CF
−1

k2
⊥

1 + z2

z
Tr

{
A†q̄g→X (/pg

− /pq̄
)Aq̄g→X

}
= 2g 2

s CF

(
− 1

k2
⊥

)
1 + z2

z

∑
|Aq̄g→X |2 (35)

Now suppose that you are interested in the behavior of the
differential cross section around the collinear limit. Notice that you
can factorize the Lorentz Invariant Phase-Space of the collinear
gluon like:

d3pg

(2π)3

1

2Eg

k2
⊥→0

≈ 1

16π2

dz

(1− z)
d(−k2

⊥)
dφ

2π
=

1

16π2

dz

(1− z)
d(−k2

⊥)

(36)
Where in the last step we implicitly integrate the azimuthal angle.



Collinear Factorization in QCD

We arrive to this important collinear relation:

d σ̂q̄g→g+X

k2
⊥→0

≈
dk2
⊥

k2
⊥

dz

z

αs

2π

1 + z2

1− z︸ ︷︷ ︸
P̃qq(z)

d σ̂q̄g→X (37)

I The function P̃qq(z) is associated to the so called
Altarelli-Parisi splitting function for a q to turn into a collinear
q (and a g).

I Notice that as written, P̃qq(z) has a divergence for z → 1,
which is actually associated with a soft divergence.

I This is commonly regulated in order to avoid double counting
when soft divergences are treated separately.



Collinear Factorization in QCD

We have found a picture of the factorization of our process
q̄g → g + X when the g goes collinear with the q̄ like:

2

k2
⊥→0

∝ P̃qq(z)

2

Comments

I If g goes collinear with the initial state gluon we find a similar
result. Also for any other colored parton in the final state an
associated relation is found.

I In such cases corresponding Splitting functions appear.

I Notice that integration over dk2
⊥/k2

⊥ is divergent, so there is
need of a regularization procedure!



Mass regularization of Collinear Divergences
Consider a collinear splitting g → q′q̄′, and suppose the quarks q′

have a mass m > 0. In such situation one finds that, up to powers
of m2, the singular transverse integral changes according to:

d |k2
⊥|

|k2
⊥|

m>0−→
d |k2
⊥|

|k2
⊥|+ m2

(38)

Which then allows to integrate down to k2
⊥ = 0, returning a

log(Q2/m2) (Q2 some large scale).

I The divergence is now explicit in the log of the (small) mass.

I Although a useful regularization procedure for collinear
divergences with quark masses, we can’t do the proper with
gluon masses (as we would explicitly break gauge invariance).

I If the quark mass is of relevance for your studies (e.g. certain
b quark studies) large logarithms might be present!

I Soft divergences are not regularized by m.



The d = 4− 2ε Trick

A way to regularize divergences in gauge theories is the procedure
called Dimensional Regularization. Preservation of gauge
invariance, regularization of both soft and collinear divergences
(and also UV!), extraction of divergences as poles in a Laurent
series, are some of the properties that makes it a standard in
perturbative calculation in gauge theories!

A simple idea...∫
d3r

1

|~r |3
→
∫ r2

r1

|~r |2d |~r | 1

|~r |3
→ log

(
r2

r1

)
r1→0−→ ∞

⇓∫
d3−2εr

1

|~r |3
→
∫ r2

r1=0
|~r |2−2εd |~r | 1

|~r |3
ε<0−→ −1

ε
r
|ε|
2



Volume Integrals in d Dimensions

But how to get a grasp of continuous dimensions?
(Most of the time) Just don’t!

Recursive (d − 1) Solid Angle Calculation

I d = 2⇒
∫

dΩ1 =
∫

dφ = 2π, polar coordinates in IR2

I d = 3⇒
∫

dΩ2 =
∫

dφ sin(θ)dθ = 4π, spherical coord in IR3

I d = 4⇒
∫

dΩ3 =
∫

dφ sin(θ′)dθ′ sin2(θ)dθ = 2π2

I d ⇒
∫

dΩd−1 =
∫

dΩd−2 sind−2(θ)dθ = 2πd/2/Γ(d/2)

I The space dimension is then a parameter in your calculation
and amplitudes become a Laurent series in ε

I By the KLN theorem, ε poles will cancel off phys. observables
I To keep integral dimensions correctly, one introduces a

dimensionful parameter µ, the regularization scale (which gets
identified with µr and µf ), d4p → µ2εdd=4−2εp



Spitting Functions in Dimensional Regularization

We can then go ahead and revisit our collinear factorization in d
dimensions. We would find a similar picture, with the leading order,
d dimensional, massless, unregulated, averaged over polarizations
Splitting functions P̂ij (z) for the spitting process i → jk:

Altarelli-Parisi Splitting Functions

I P̂qq(z) = CF

(
1+z2

1−z − (1− z)ε
)

I P̂qg (z) = CF

(
1+(1−z)2

z − (z)ε
)

I P̂gq(z) = TR

(
1− 2z(1−z)

1−ε

)
I P̂gg (z) = CA

(
z

1−z + 1−z
z + z(1− z)

)



QCD General Factorization in Soft and Collinear Limits
Some of the most important properties for tree level QCD
amplitudes are indeed their factorizing behavior when soft and
collinear limits are taken. We are ready to enunciate these relations
(and you can prove them before the discussion session!)

I For a process like a(pa) + b(pb)→ i1(p1) + · · ·+ in(pn) we
write the QCD tree level amplitude like
A({ca, sa, pa}, {cb, sb, pb}; {c1, s1, p1}, · · · , {cn, sn, pn}) ≡
A2,n

I Construct a ket |a, b; 1, · · · , n〉2,n in color and spin space such
that the coefficient of a given element in color and spin space
|{ca, sa}, {cb, sb}; {c1, s1}, · · · , {cn, sn}〉 would be this
amplitude

I With this notation you get the relation:∑
colors,spins

|A2,n|2 = 2,n 〈a, b; 1, · · · , n|a, b; 1, · · · , n〉2,n



Collinear Limits

Consider the final state splitting (ij)→ ij . Employing the Sudakov
parameterization:

pµi = zpµ+kµ⊥−
k2
⊥

2zp · n
nµ, pµj = (1−z)pµ−kµ⊥−

k2
⊥

2(1− z)p · n
nµ

We can then generalize our previous collinear relation to:

2,n+1 〈a, b; 1, · · · , n + 1|a, b; 1, · · · , n + 1〉2,n+1

k2
⊥→0
−→

4πµ2εαs

pi · pj 2,n

〈
a, b; 1, · · · , n + 1︸ ︷︷ ︸

i , j replaced by(ij)

∣∣∣P̂(ij),i (z , k⊥, ε)
∣∣∣a, b; 1, · · · , n + 1︸ ︷︷ ︸

i , j replaced by(ij)

〉
2,n

Here P̂(ij),i (z , k⊥, ε) can in general be polarization dependent (spin
correlations!). If the splitting parton was in the initial state, we
reproduce our previous result (with the extra 1/z factor).



Soft Limits in QCD

Soft divergences appear when a final state gluon momenta goes to
zero. Let’s introduce a dimensionless parameter λ to parameterize
the soft limit:

pµj = λqµ

Then, in the limit λ→ 0 it is found:

2,n+1 〈a, b; 1, · · · , n + 1|a, b; 1, · · · , n + 1〉2,n+1 −→

−8πµ2εαs

λ2

∑
i

1

pi · q
∑
k 6=i

pk · π
(pi + pk ) · q

2,n

〈
a, b; 1, · · · , n + 1︸ ︷︷ ︸

j removed

∣∣∣Cki

∣∣∣a, b; 1, · · · , n + 1︸ ︷︷ ︸
j removed

〉
2,n

The last amplitude is a color correlated amplitude, in which the
operator Cki represents an insertion of the color degrees of freedom
of a gluon between the partons k on the left and i on the right.



IR Limits in QCD Processes

I After two partons go collinear, square of QCD amplitudes
factorize into a lower point amplitudes times a divergent term
and a Splitting function. Spin correlations remain.

I If a final state gluon goes soft, square of QCD amplitudes
produce a divergent term times a color correlated amplitude.

I These divergences are commonly regulated using dimensional
regularization.

I In the same spirit of what we studied, multi-particle
divergences appear in QCD amplitudes. Later in this set of
lectures we will employ them to further our understanding of
gauge theory amplitudes!



LARGE PT W POLARIZATION IN FACTORIZATION 
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Finding W Polarization In An Odd Place 
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Leptonic ET in W + 3 jets at LHC 

– W+/W- transverse lepton ratios trace a remarkably       large 
left-handed W polarization at large pT(W) 
– independent of number of jets  
– stable under QCD corrections 
– will be useful to separate W + n jets from top, maybe also 
from new physics 

[Bern, Dixon, FFC, Hoeche, Ita, et al. arXiv:0907.1984, arXiv:1103.5445] 

BlackHat: [arXiv:1103.5445] 
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W+n>1 Jet polarization from Factorization? 

Left handed 
component 

Right handed 
component 

Scalar 
component 
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[Bern, Dixon, FFC, Hoeche, Ita, et al. arXiv:1103.5445] Indeed properties from the 
W+1 j amps explain the 
polarization at large PT, a 
region where factorized 
configurations are common 
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CMS W POLARIZATION MEASUREMENT 

arXiv:1104.3829 [hep-ex] 
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Polarized W’s at CMS 

→ In arXiv:1104.3829 [hep-ex] CMS reports 
finding left handed polarized W’s 
→ Employs 36 pb-1 of data collected in 2010 
→ Data published in the plane ( fL - fR ) vs. f0 
→ Results agree with BlackHat’s prediction 
→ Results shown here for W+, but similar 
results for W- 

Theory predictions by BlackHat+SHERPA 
collaboration arXiv:1103.5445 [hep-ph] 

Excellent theory/experiment agreement within 
both statistical and total uncertainties 
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Summary 

• QCD is present in all studies performed at 
Hadron Colliders 

• We presented the QCD Lagrangian and its 
Feynman Rules 

• We showed how the strong coupling constant 
runs and presented recent measurements 

• The factorizing properties of QCD amplitudes 
were discussed in detail with some implications 

• We will continue exploring QCD properties and 
techniques used to describe the messy 
environment of a hadron collider machin 
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