




## **QCD and Monte Carlo** 4. Modern Perturbative Techniques & Tools

Fernando Febres Cordero

Universidad Simon Bolivar, Caracas, Venezuela

#### Fermilab-CERN Hadron Collider Physics Summer School

August 11-22, 2014, , Fermilab, Chicago

# THE NLO REVOLUTION

Need for Higher Orders, High Multiplicity, Whish List

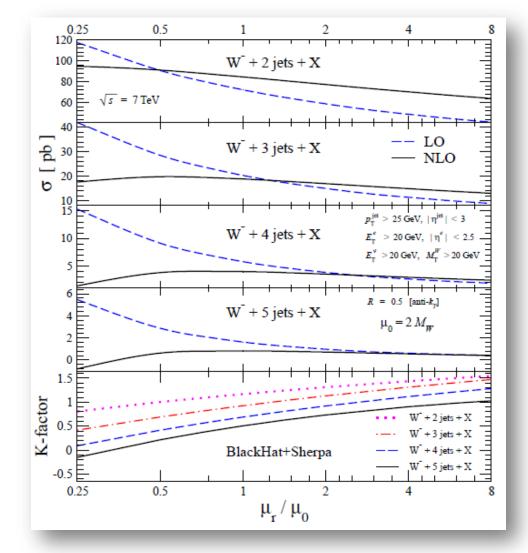
## **REVISITING GAUGE TREES**

MHV, Complexify Momenta, BCFW

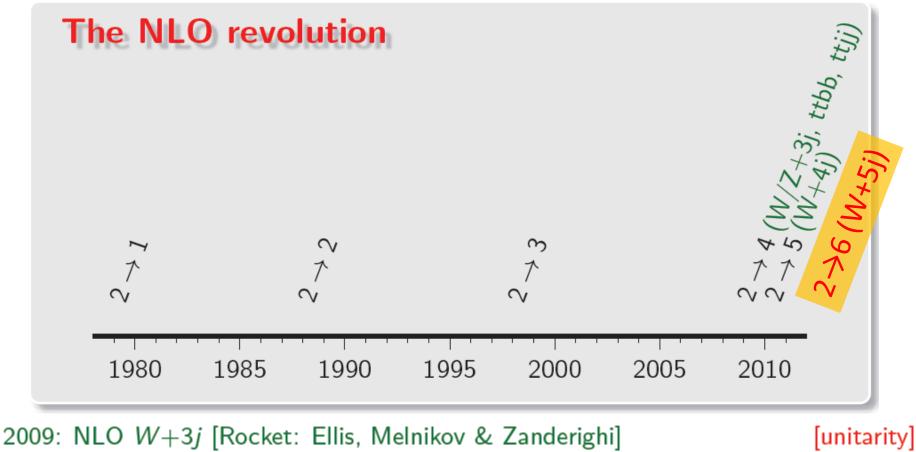
## **NLO CALCULATIONS**

Feynman Diagrams, Integral Basis, OPP, Quad Cuts Exm

## **TOOLS FOR HIGHER ORDERS**


NLO, Automation, NLO Shower, NNLO

## NLO More Important for Larger Jet Multiplicities


[Bern, Dixon, FFC, Hoeche, Ita, Kosower, Maitre, Ozeren arXiv:1304.1253]

#### W+ *n* Jet Production

- LO unphysical scale dependence is large
- It grows with jet multiplicity
- Even more, shapes of distributions modified by quantum corrections
- NLO scale uncertainty more stable over multiplicity of jets
- NLO gives first quantitative prediction for observables
- Precision QCD (down to few percent uncertaity) needs NNLO!







2009: NLO W+3j [BlackHat: Berger et al]

- 2009: NLO *tībb* [Bredenstein et al]
- 2009: NLO  $t\bar{t}b\bar{b}$  [HELAC-NLO: Bevilacqua et al]
- 2009: NLO  $q\bar{q} \rightarrow b\bar{b}b\bar{b}$  [Golem: Binoth et al]
- 2010: NLO tījj [HELAC-NLO: Bevilacqua et al]
- 2010: NLO Z+3j [BlackHat: Berger et al]

2010: NLO W+4j [BlackHat: Berger et al<sup>i</sup>]

[unitarity] [unitarity] [traditional] [unitarity] [traditional] [unitarity] [unitarity] [unitarity]

#### The Les Houches NLO Wish List Few Years ago

#### Status Les Houches 2009

| pp  ightarrow W W jet                  | Dittmaier/Kallweit/Uwer; Campbell/Ellis/Zanderighi          |  |
|----------------------------------------|-------------------------------------------------------------|--|
|                                        | Binoth/Guillet/Karg/Kauer/Sanguinetti                       |  |
| pp  ightarrow ZZ jet                   | Binoth/Gleisberg/Karg/Kauer/Sanguinetti; Dittmaier/Kallweit |  |
| $pp  ightarrow t ar{t}  b ar{b}$       | Bredenstein/Denner/Dittmaier/Pozzorini;                     |  |
|                                        | Bevilacqua/Czakon/Papadopoulos/Pittau/Worek                 |  |
| $pp  ightarrow t\overline{t} + 2$ jets | Bevilacqua/Czakon/Papadopoulos/Worek                        |  |
| pp  ightarrow Z Z Z                    | Lazopoulos/Melnikov/Petriello; Hankele/Zeppenfeld           |  |
| pp  ightarrow V V V                    | Binoth/Ossola/Papadopoulos/Pittau; Zeppenfeld et al.        |  |
| $pp  ightarrow V V bar{b}$             |                                                             |  |
| $pp  ightarrow W ~\gamma$ jet          | Campanario/Englert/Spannowsky/Zeppenfeld                    |  |
| $pp  ightarrow V V + 2  { m jets}$     | VBF: Bozzi/Jäger/Oleari/Zeppenfeld, VBFNLO coll.            |  |
| pp  ightarrow W + 3 jets               | * BlackHat coll.; Ellis/Giele/Kunszt/Melnikov/Zanderighi    |  |
| pp  ightarrow Z+3 jets                 | BlackHat collaboration                                      |  |
| $pp  ightarrow bar{b}bar{b}$           | Binoth/Greiner/Guffanti/Guillet/Reiter/Reuter               |  |
|                                        |                                                             |  |

• done • partial results \* leading colour only

## NNLO QCD+NLO EW wishlist

| dσ @ NNLO QCD                                  |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| av s mano gon                                  | $d\sigma @ NNNLO QCD + NLO EW$                                                                                                                                                                                                                                                                                                          | H branching ratios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dσ @ NLO EW                                    | MC@NNLO                                                                                                                                                                                                                                                                                                                                 | and couplings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| finite quark mass effects @ NLO                | finite quark mass effects @ NNLO                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $d\sigma$ @ NNLO QCD (g only)                  | d $\sigma$ @ NNLO QCD + NLO EW                                                                                                                                                                                                                                                                                                          | H $p_T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dσ @ NLO EW                                    | finite quark mass effects @ NLO                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| finite quark mass effects @ LO                 |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD  | d $\sigma$ @ NNLO QCD + NLO EW                                                                                                                                                                                                                                                                                                          | H couplings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $d\sigma(gg)$ @ NLO QCD                        |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $d\sigma(VBF)$ @ NLO EW                        |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dσ @ NNLO QCD                                  | with $H \to b\bar{b}$ @ same accuracy                                                                                                                                                                                                                                                                                                   | H couplings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $d\sigma @ NLO EW$                             |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $d\sigma$ (stable tops) @ NLO QCD              | $d\sigma$ (top decays)                                                                                                                                                                                                                                                                                                                  | top Yukawa coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                | @ NLO QCD + NLO EW                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| d<br>$\sigma$ @ LO QCD (full $m_t$ dependence) | d $\sigma$ @ NLO QCD (full $m_t$ dependence)                                                                                                                                                                                                                                                                                            | Higgs self coupling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $d\sigma$ @ NLO QCD (infinite $m_t$ limit)     | d $\sigma$ @ NNLO QCD (infinite $m_t$ limit)                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                | finite quark mass effects @ NLO<br>$d\sigma$ @ NNLO QCD (g only)<br>$d\sigma$ @ NLO EW<br>finite quark mass effects @ LO<br>$\sigma_{tot}(VBF)$ @ NNLO(DIS) QCD<br>$d\sigma(gg)$ @ NLO QCD<br>$d\sigma(VBF)$ @ NLO EW<br>$d\sigma$ @ NNLO QCD<br>$d\sigma$ @ NLO EW<br>$d\sigma$ @ NLO EW<br>$d\sigma$ @ LO QCD (full $m_t$ dependence) | finite quark mass effects @ NLOfinite quark mass effects @ NNLO $d\sigma$ @ NNLO QCD (g only) $d\sigma$ @ NNLO QCD + NLO EW $d\sigma$ @ NLO EWfinite quark mass effects @ NLOfinite quark mass effects @ LO $\sigma_{tot}(VBF)$ @ NNLO(DIS) QCD $\sigma_{tot}(VBF)$ @ NLO QCD $d\sigma$ @ NNLO QCD + NLO EW $d\sigma$ @ NLO QCDwith $H \rightarrow b\bar{b}$ @ same accuracy $d\sigma$ @ NLO EW $d\sigma(top decays)$ $d\sigma$ @ LO QCD (full $m_t$ dependence) $d\sigma$ @ NLO QCD (full $m_t$ dependence) |

Table 1: Wishlist part 1 - Higgs (V = W, Z)

N. Glover, S. Dittmaier

Modern Wish List (2013) more challenging and thought out!

add a column here

precision and that

expected at 14 TeV

for current exp

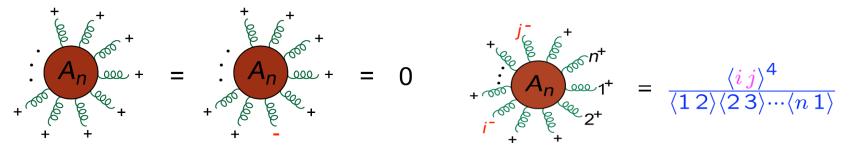
# THE NLO REVOLUTION

Need for Higher Orders, High Multiplicity, Whish List

## **REVISITING GAUGE TREES**

MHV, Complexify Momenta, BCFW

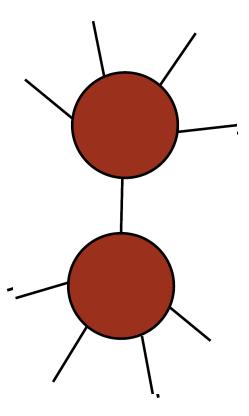
## **NLO CALCULATIONS**


Feynman Diagrams, Integral Basis, OPP, Quad Cuts Exm

## **TOOLS FOR HIGHER ORDERS**

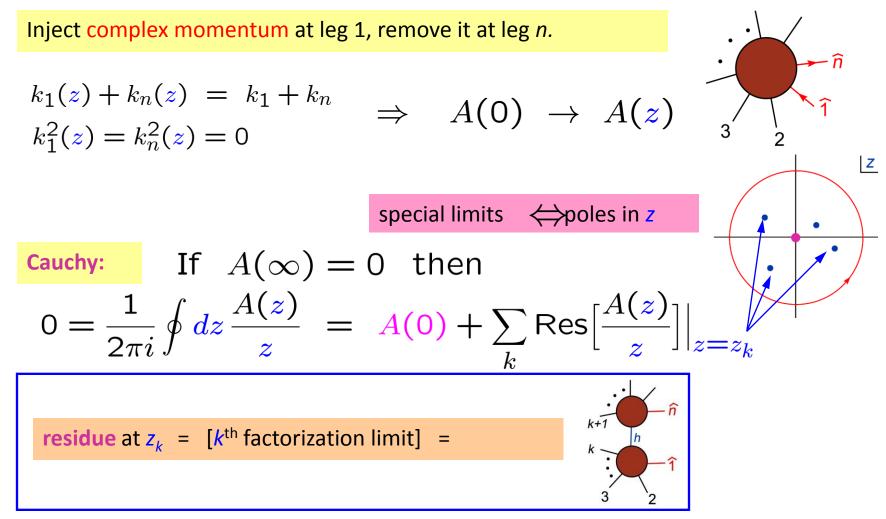
NLO, Automation, NLO Shower, NNLO

## **On-shell simplifications**

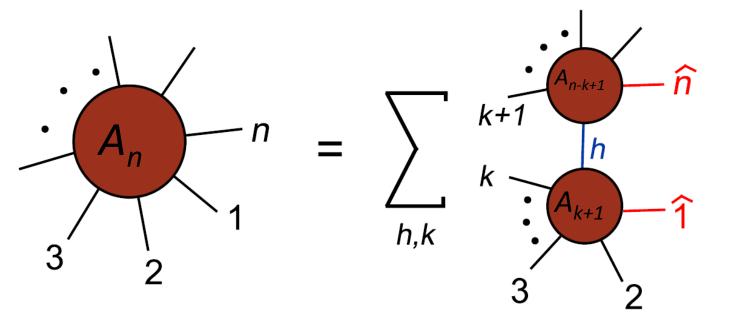

- Calculated ON-SHELL, amplitudes much simpler than expected.
- For example: some tree level all-multiplicity gluon amplitudes can fit on a page:



Park, Taylor


#### Factorization

How amplitudes "fall apart" into simpler ones in special limits




## Explore limits in complex plane





## → BCFW (on-shell) recursion relations



Britto, Cachazo, Feng, hep-th/0412308

 $A_{k+1}$  and  $A_{n-k+1}$  are on-shell tree amplitudes with fewer legs, and with momenta shifted by a **complex** amount

**Trees recycled into trees!** 



# THE NLO REVOLUTION

Need for Higher Orders, High Multiplicity, Whish List

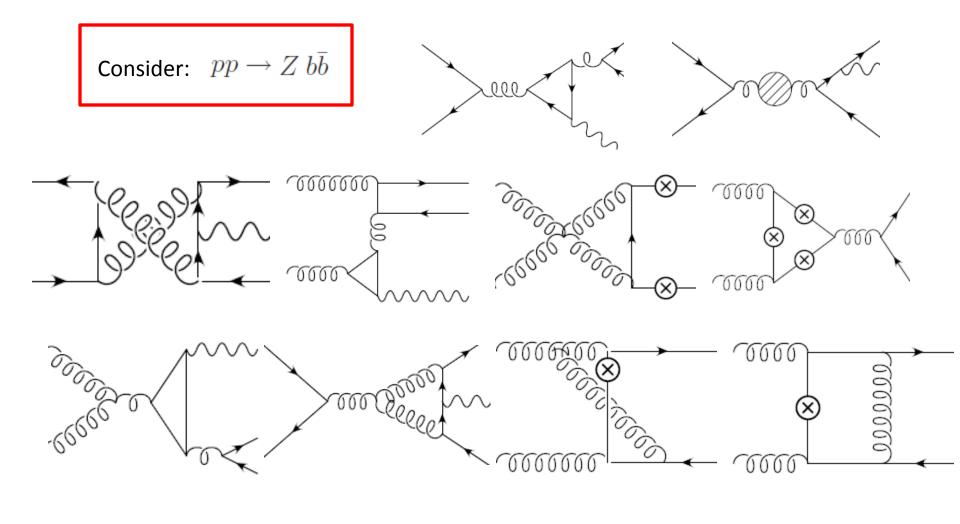
## **REVISITING GAUGE TREES**

MHV, Complexify Momenta, BCFW

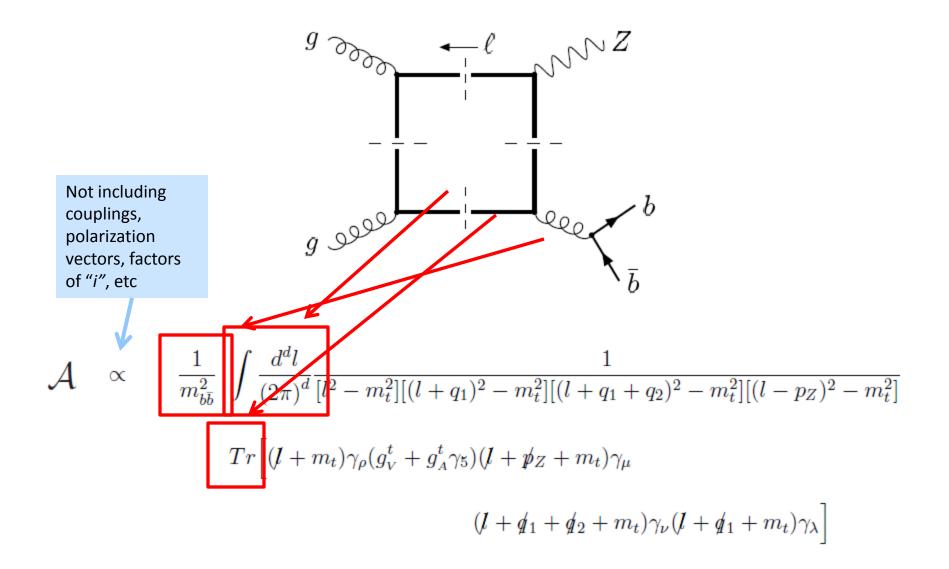
## **NLO CALCULATIONS**

Feynman Diagrams, Integral Basis, OPP, Quad Cuts Exm

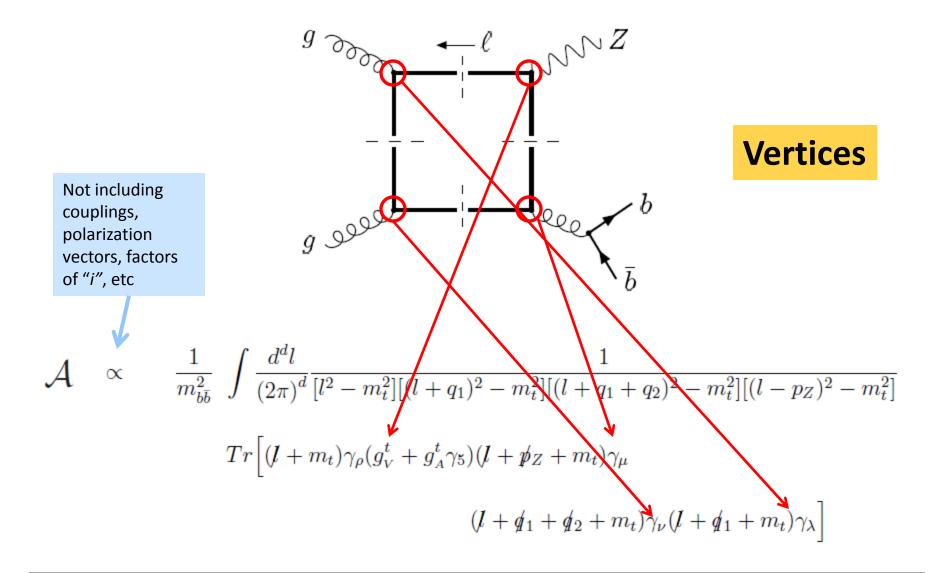
## **TOOLS FOR HIGHER ORDERS**


NLO, Automation, NLO Shower, NNLO

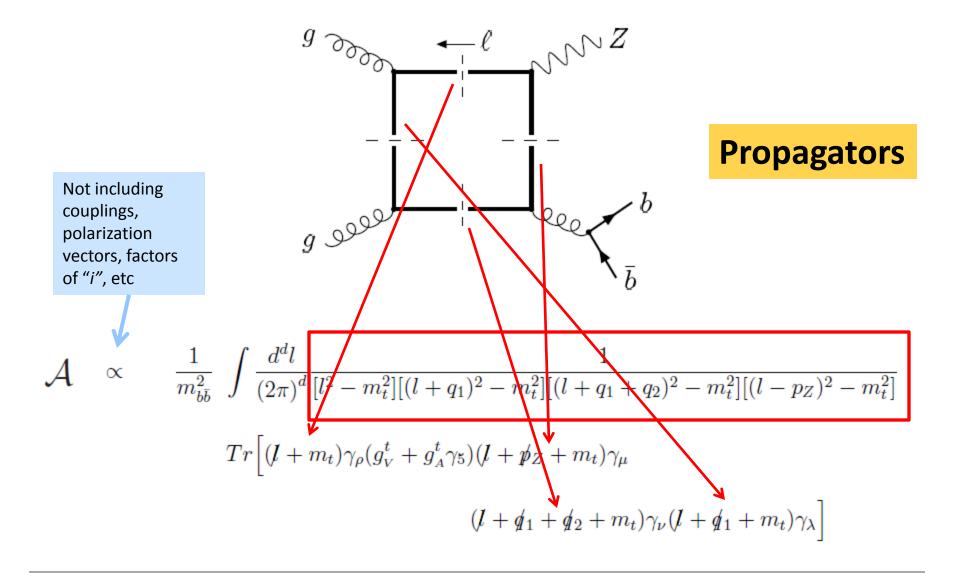
## Feynman Diagrams

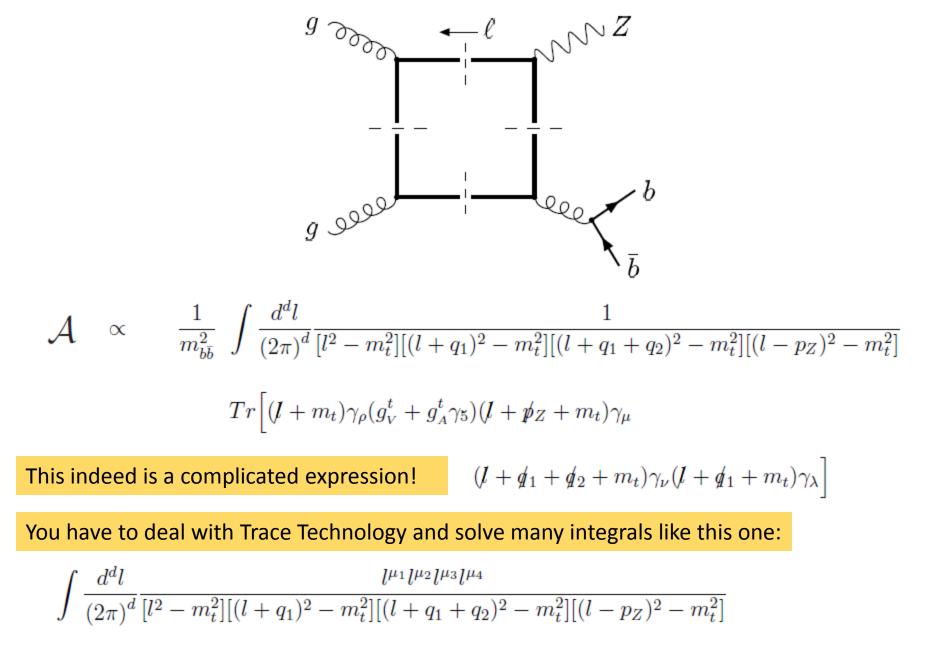

- Tool to compute amplitudes in Quantum Field Theories
- Easy to use
- In principle applies to all kind of processes and to all orders
- Tree level automation manageable (at least for up to 7/8 points in QCD)

- Complexity of calculations grow fast with number of legs and number of loops
- Introduces many nonphysical degrees of freedom which cancel in final results
- Gauge invariance *hidden* in them


#### Loop Feynman Diagrams

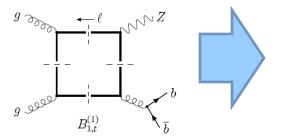



#### An Example...




#### An Example...

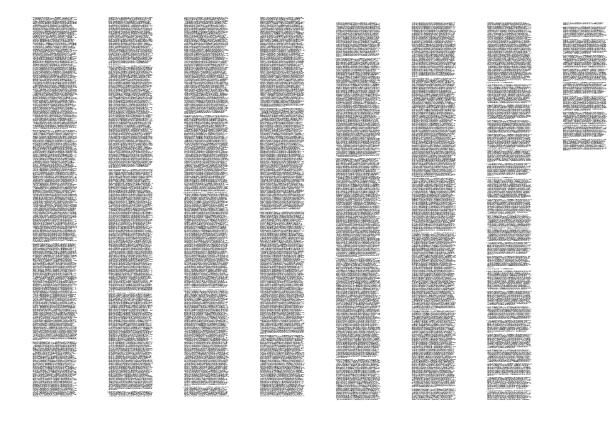



#### An Example...





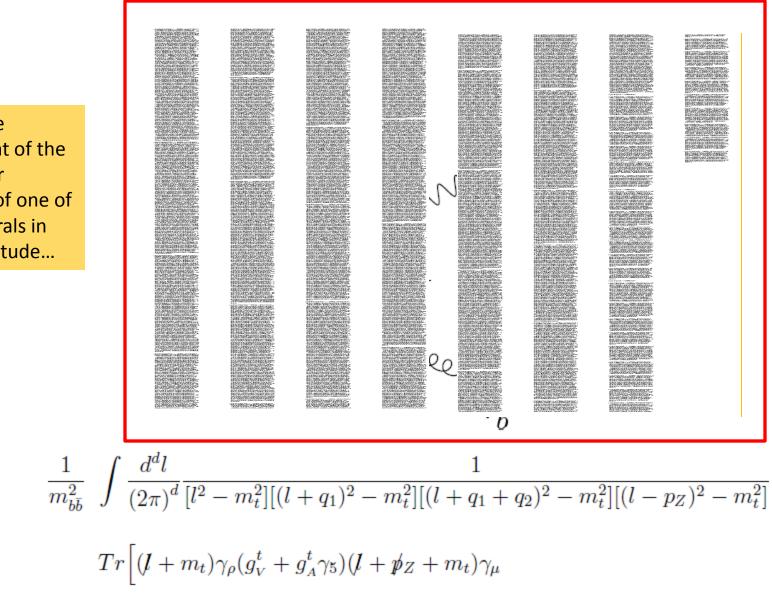
 $\equiv D4(q_1, q_2, -p_Z + q_1 + q_2, m_t, m_t, m_t, m_t)$ 


## Tensor Integrals: The Passarino-Veltman Reduction



When applying this procedure to our tensor integral of interest:

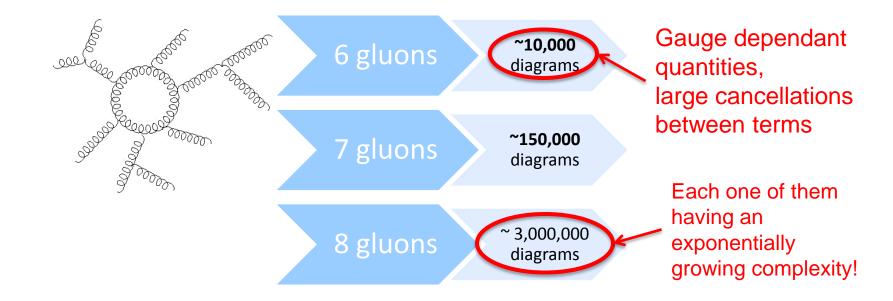
 $D4(q_1, q_2, -p_Z + q_1 + q_2, m_t, m_t, m_t, m_t)$ 


We find that ONLY the coefficient of the corresponding scalar box looks like:



Which is not only large and computer intensive, but suffers from strong numerical instabilities over PS!

And this is only a piece of a single tensor integral that appears in a single Feyman diagram... This is the coefficient of the box scalar diagram of one of the integrals in the amplitude...

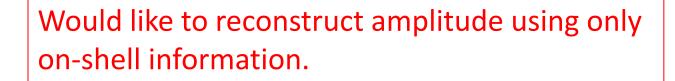

 $\propto$ 



 $(l + q_1 + q_2 + m_t)\gamma_{\nu}(l + q_1 + m_t)\gamma_{\lambda}$ 

## But, it gets worse! With the number of legs...

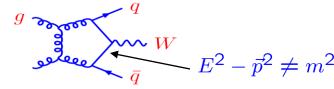
• Consider scattering of pure gluon QCD:




• A Factorial growth in the number of terms, particularly bad for large number of partons.

Are there alternative ways to this Feynman diagrams MESS?!

## Think off-shell, work on-shell!


 Vertices and propagators involve unphysical gauge-dependent off-shell states.



• Feynman diagram loops have to be off-shell because they encode the uncertainty principle.

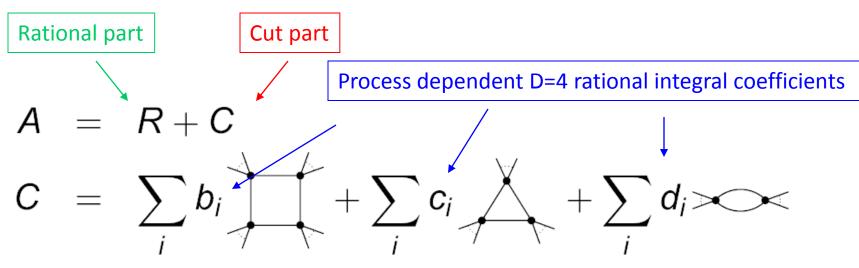
Fact: Off-shellness is essential for getting the correct answer.

• Keep particles on-shell in intermediate steps of calculation, not in final results. Bern, Dixon, Dunbar, Kosower



 $\Delta E \Delta t \geq \frac{\hbar}{2}$ 




No officer, I don't know how fast I was going. But I know exactly where I am.

-Werner Heisenberg at traffic stop

#### The result: one-loop basis.

See Bern, Dixon, Dunbar, Kosower, hep-ph/9212308.

All external momenta in D=4, loop momenta in  $D=4-2\varepsilon$ (dimensional regularization)



- Cut Part from unitarity cuts in 4 dimensions
- Rational part from on-shell recurrence relations

#### Unitarity: an on-shell method of calculation.

Bern, Dixon, Kosower

$$-i(T-T^{\dagger}) = T^{\dagger}T.$$

Cutting loops = sewing trees:

$$\operatorname{Im} T^{1-\operatorname{loop}} = \sum_{j \in B} c_j \operatorname{Cut} \mathcal{I}_j.$$

$$4 \qquad \ell_1 = p \qquad 1$$
  
Sewing: 
$$4 \qquad \ell_1 = p \qquad 1$$
  
$$3 \qquad \ell_2 = p - k_1 - k_2$$

Cutting: 2x  $\frac{i}{p^2 + i\varepsilon} \longrightarrow 2\pi \, \delta^{(+)}(p^2)$ 

Equation:

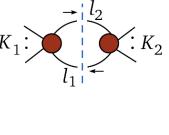
And

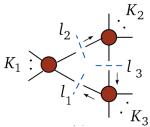
$$\sum_{j \in B} c_j \operatorname{Cut} \mathcal{I}_j = \int \frac{dp^4}{(2\pi)^4} 2\pi \delta^{(+)} (\ell_1^2 - m^2) 2\pi \delta^{(+)} (\ell_2^2 - m^2)$$

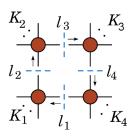
$$A_4^{\text{tree}} (-\ell_1, 1, 2, \ell_2) A_4^{\text{tree}} (-\ell_2, 3, 4, \ell_1).$$
NOT:  $A = \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Number} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Num} \\ \text{of diags.}} \int \frac{dp^4}{(2\pi)^4} \sum_{\substack{\text{Nu}$ 

# Generalized Unitarity: isolate the leading discontinuity.

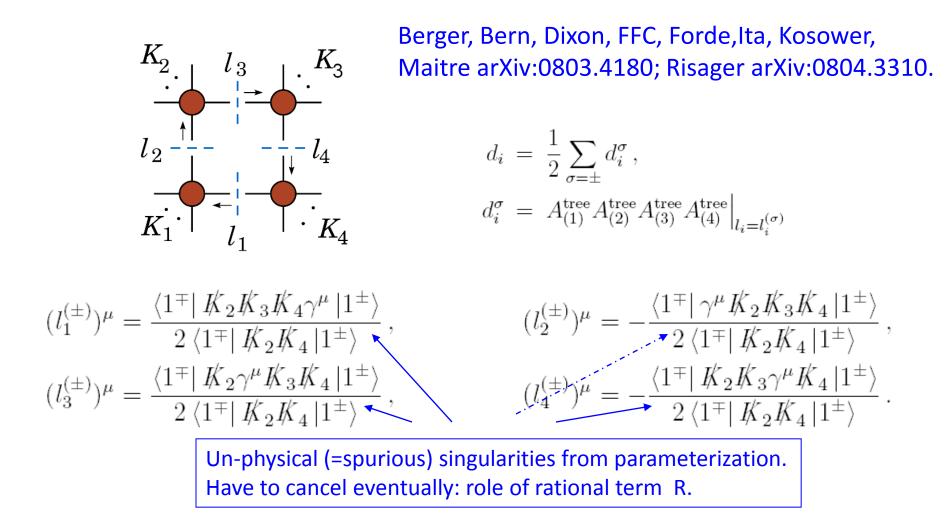
Cutting: n x


$$\frac{i}{p^2 + i\varepsilon} \longrightarrow 2\pi \,\delta^{(+)}(p^2)$$

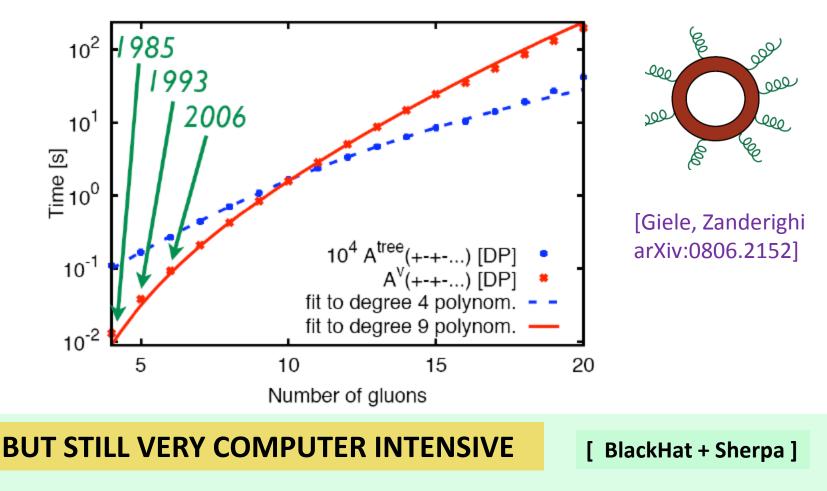

More cuts, more trees, less algebra:


 Two-particle cut: product of trees contains subset of box-, triangle- and bubble-integrals.
 (Bern, Dixon, Kosower, Dunbar)

•Triple-cut: product of three trees contains triangle- and box-integrals. (Bern, Dixon, Kosower)

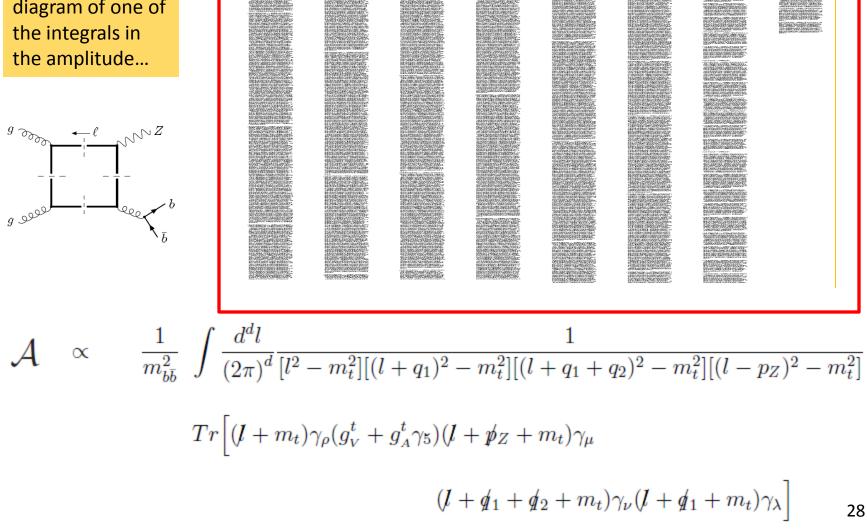

•Quadruple-cut: read out single box coefficient. (Britto, Cachazo, Feng)



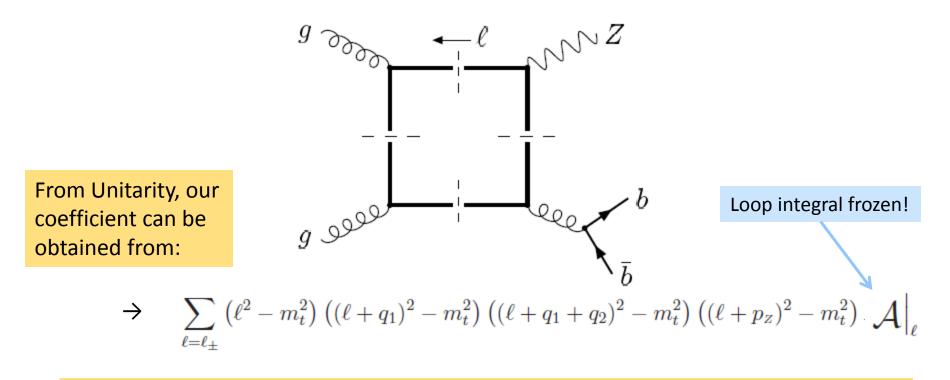





#### Boxes: the simplest cuts




### A Powerful Technique!




#### **NTUPLES: STORE THE MORE INFORMATION YOU CAN DURING YOUR COMPUTATION!**

This is the coefficient of the box scalar diagram of one of the integrals in the amplitude...



#### Now, use unitarity! The Quad Cut!



Where the sum is over the two solutions of the (simple) algebraic on-shell conditions

$$\left\{\ell \mid \ell^2 = m_t^2, \ (\ell + q_1)^2 = m_t^2, \ (\ell + q_1 + q_2)^2 = m_t^2, \ (\ell + p_z)^2 = m_t^2\right\}$$

## On-Shell Techniques in action @ LHC! Z+Jets at the LHC

 $\rightarrow$  4.6 fb<sup>-1</sup>

 $\rightarrow$  Inclusive cross section for each multiplicity

→Good agreement with NLO results

 $\rightarrow$  Good statistical error control for six jet events

 $\rightarrow$  Electron/muon channel shown

These calculations made within an automated framework (BlackHat+SHERPA) based on On-Shell/Unitarity techniques! Experimentalist with access to NTuples  $\mathfrak{I}(Z/\gamma^*(\to \Gamma^{\uparrow}\Gamma) + \ge N_{jet})$  [pb]  $Z/\gamma^*(\rightarrow I^{\dagger}I)$ +jets (I=e.u) ⊬ Data 2011 (√s = 7 TeV) = 10<sup>5</sup>  $L dt = 4.6 \text{ fb}^{-1}$ ALPGEN anti-k, jets, R = 0.4 10<sup>4</sup> SHERPA  $p_{\tau}^{jet} > 30 \text{ GeV}, |v_{\tau}^{jet}| < 4.4$ MC@NLO  $10^{3}$ BLACKHAT + SHERPA 10 10 10 NLO / Data + SHERPA 0.8 0.6 MC / Dati 0.8 0.6 MC / Data SHERPA 0.8 0.6 >0 N<sub>iet</sub>

arXiv:1304.7098 [hep-ex]

# THE NLO REVOLUTION

Need for Higher Orders, High Multiplicity, Whish List

## **REVISITING GAUGE TREES**

MHV, Complexify Momenta, BCFW

## **NLO CALCULATIONS**

Feynman Diagrams, Integral Basis, OPP, Quad Cuts Exm

## **TOOLS FOR HIGHER ORDERS**

NLO, Automation, NLO Shower, NNLO

#### MCFM v1

→ FORTRAN based Parton Level NLO Montecarlo

→ First released in 2000, with a compilation of analytically computed NLO QCD corrections
 → Originally included a handful of processes (W/Z production, W/Z+jet, W/Z+bb, Weak Vector Boson Pairs and Higgstrahlung processes)

→ Meant to make available important calculations to the larger experimental and theory community

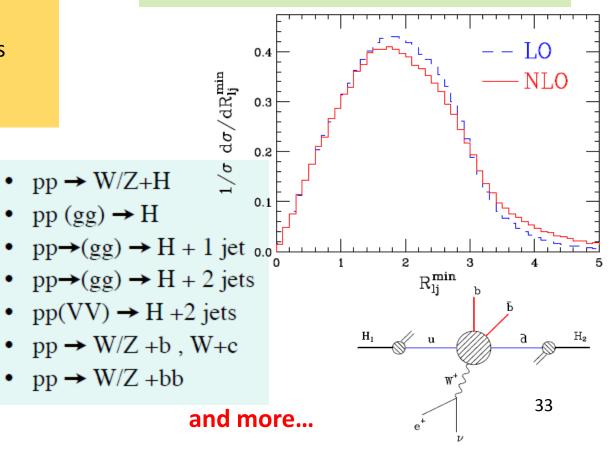
→ Easy access to multiple observables

John Campbell, Keith Ellis



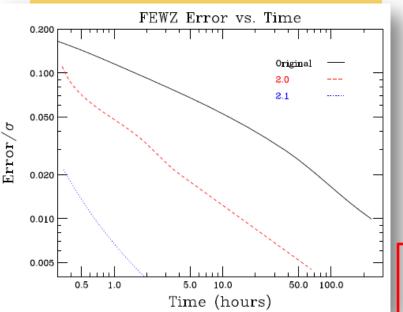
#### MCFM v6.8

→ Widely used by experimental collaborations and theorist
 → Leading in analytical computations of state of the art calculations


→ Large amount of procceses included. Still analytical handmade calculations

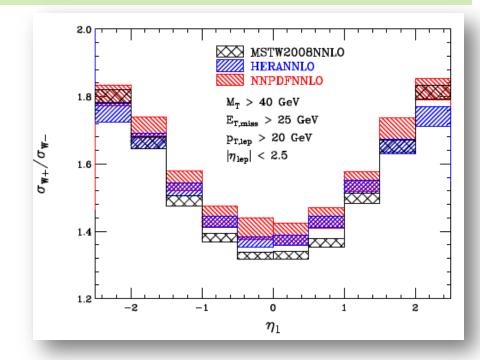
- $pp \rightarrow W/Z$
- $pp \rightarrow W+Z, WW, ZZ$
- $pp \rightarrow W/Z + 1$  jet
- $pp \rightarrow W/Z + 2 jets$
- $pp \rightarrow t W$
- $pp \rightarrow tX$  (s&t channel)
- $pp \rightarrow tt$

John Campbell, Keith Ellis, Ciaran Williams


#### http://mcfm.fnal.gov/

arXiv:1208.0566 [hep-ph], arXiv:1107.5569 [hep-ph], arXiv:1105.0020 [hep-ph], arXiv:1011.6647 [hep-ph] ...




## FEWZ v3

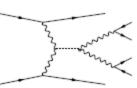
→ Parton Level Montecarlo of
 fully exclusive NNLO QCD
 calculation of W/Z production
 (including decaying products)
 → Reference for Drell-Yan studies
 at Hadron Colliders
 → Important recent
 improvements on convergence of
 numerical integration for
 observables



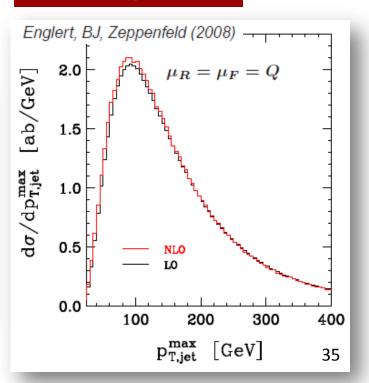
Frank Petriello, Seth Quackenbush, Ryan Gavin, Ye Li

http://gate.hep.anl.gov/fpetriello/FEWZ.html arXiv:1208.5967 [hep-ph], arXiv:1201.5896 [hep-ph] arXiv:1011.3540 [hep-ph] ...




Recently Catani, Cieri, Ferrara, de Florian and Grazzini have presented a similar/alternative code **DYNNLO** (see for example arXiv:0903.2120 [hep-ph]) <u>http://theory.fi.infn.it/grazzini/dy.html</u>

## VBFNLO v2.7.0


→Flexible Parton Level
 Montecarlo at NLO-QCD
 → Meant for processes with EW bosons

→ Includes calculations for CPodd and CP-even Higgs boson production Arnold, Bellm, Bozzi, Campanario, Englert, Feigl, Frank, Figy, Jäger, Kerner, Kubocz, Oleari, Palmer, Rauch, Rzehak, Schissler, Schlimpert, Spannowsky, Zeppenfeld

http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/ arXiv:1404.3940 [hep-ph], arXiv:1207.4975 [hep-ph] arXiv:1107.3149 [hep-ph] arXiv:1106.4009 [hep-ph] ...



#### EW VVjj production



it can simulate:

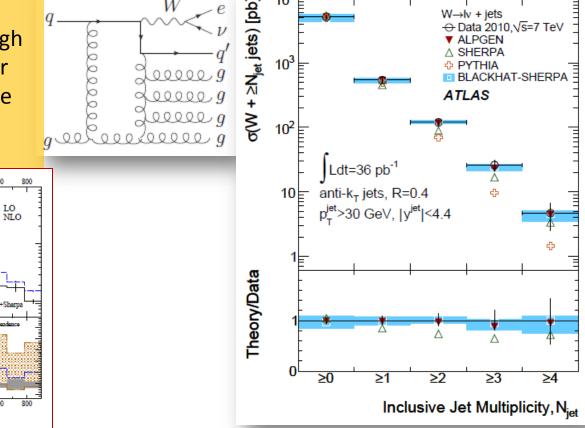
- various weak vector boson fusion processes
- double and triple weak boson production processes
- double weak boson production processes in association with a hard jet
- Higgs production via gluon fusion in association with two jets

## BlackHat + SHERPA

→Automated implementation of on-shell and unitarity techniques
to NLO QCD computations
→ Focus on state of the art
processes with large amount of
jets (V+1,2,3,4,5 jets, pure QCD
2,3,4 jet production)
→ Access to calculations through
NTUPLES: Flexible to allow user
defined scale variations, change
of PDFs, extract any IR safe
observable, etc

[ pb/ GeV

, HP


) 10 Siets + X

H<sub>r</sub><sup>jet</sup>

[GeV]

<u>http://blackhat.hepforge.org/</u> (private release, ntuples available) <u>http://sherpa.hepforge.org/trac/wiki</u> arXiv:1304.1253 [hep-ph], arXiv:1206.6064 [hep-ph], arXiv:1112.3940 [hep-ph], arXiv:1108.2229 [hep-ph] ...

Bern, Dixon, FFC, Hoeche, Ita, Kosower, Maitre



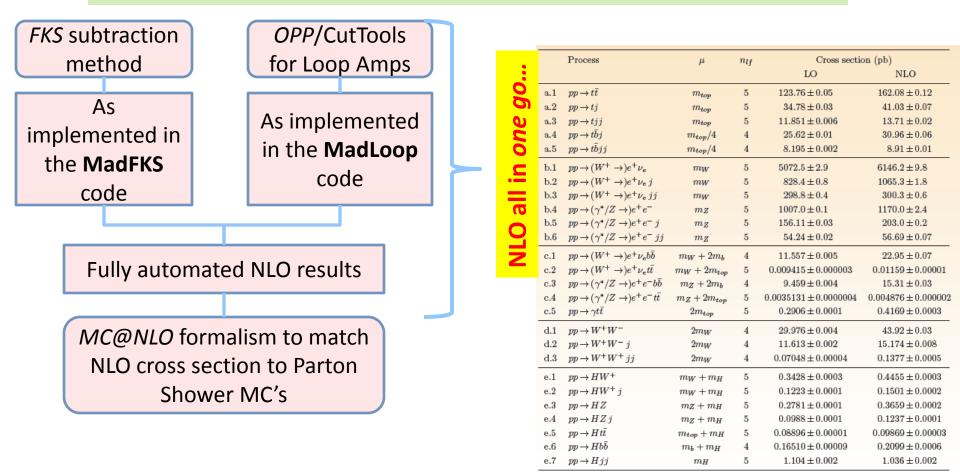
#### **BHS NTUPLES in BRIEF**

- Files containing
  - Kinematic Information
  - Information needed to change factorization and renormalization scales and PDFs
  - Information for multiple jet algorithms (different R's, f-parameters, etc)
- Publically available
  - C++ library to read and handle them
- •W/Z+0,1,2,3,4(,5) jets at the LHC
  - Already used by LHC's collaborations!

## BHSntuples (publicly) Available

| Process                                                                 | <i>n</i> -tuple file sets   |
|-------------------------------------------------------------------------|-----------------------------|
| $W^{\pm}(\rightarrow e^{\pm  (\overline{\nu})}) + 0, 1, 2 \text{ jets}$ | B001, I001, R001, V001      |
| $W^{\pm}(\rightarrow e^{\pm} \overline{\nu}) + 3 \text{ jets}$          | B001, I001, R001, V001–V002 |
| $W^-(\to e^-\bar{\nu}) + 4$ jets                                        | B001, I001, R001, V001      |
| $W^+(\rightarrow e^+\nu) + 4$ jets                                      | B001, I001, R001–R005, V001 |
| $Z(\to e^+e^-) + 0, 1, 2$ jets                                          | B001, I001, R001, V001      |
| $Z(\rightarrow e^+e^-) + 3$ jets                                        | B001, I001, R001, V001–V002 |
| $Z(\rightarrow e^+e^-) + 4$ jets                                        | B001, I001–I003, R001–R006, |
|                                                                         | V001–V006                   |
| n  jets  (n = 1, 2, 3, 4)                                               | B001, I001, R001, V001      |

Which you can access/download from:

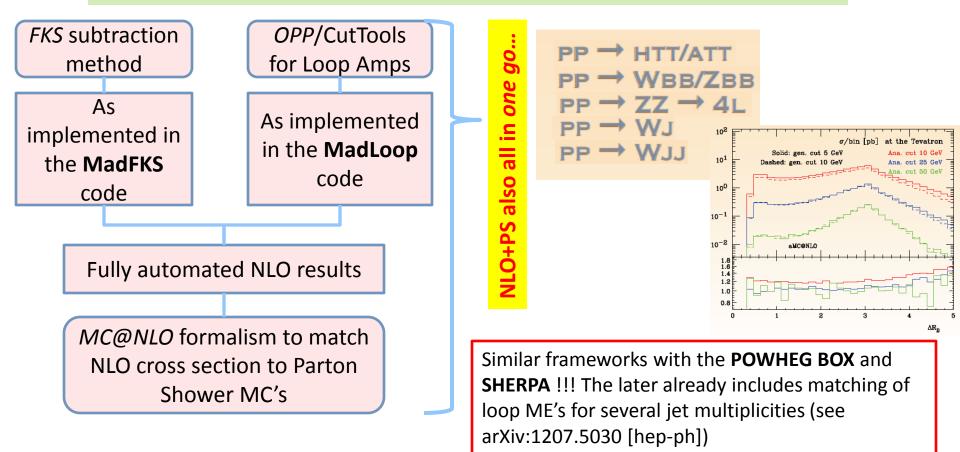

From the web: https://blackhat.hepforge.org/trac/wiki/Availability From CASTOR: /castor/cern.ch/d/dmaitre/BHSNtuples/PROCESS/ENERGY/PART From the LHC Grid: /grid/pheno/BHSNtuples/PROCESS/ENERGY/PART

## The MadGraph5\_aMC@NLO Framework

 $\rightarrow$  Collaborative Project for public automated MC tools for event generators with NLO precision for the LHC (built around MadGraph). Handles QCD (LO/NLO) and BSM (LO)

Alwall, Artoisenet, Frederix, Frixione, Fuks, Hirschi, Maltoni, Mattelaer, Pittau, Serret, Stelzer, Torrielli, Zaro

http://amcatnlo.web.cern.ch/ arXiv:1405.0301 [hep-ph], arXiv:1110.5502 [hep-ph] ...




## The MadGraph5\_aMC@NLO Framework

 $\rightarrow$  Collaborative Project for public automated MC tools for event generators with NLO precision for the LHC (built around MadGraph). Handles QCD (LO/NLO) and BSM (LO)

Alwall, Artoisenet, Frederix, Frixione, Fuks, Hirschi, Maltoni, Mattelaer, Pittau, Serret, Stelzer, Torrielli, Zaro

http://amcatnlo.web.cern.ch/ arXiv:1405.0301 [hep-ph], arXiv:1110.5502 [hep-ph] ...



## And much (much) more...

→ HRes (de Florian, Ferrera, Grazzini, Tommasini) NNLO and NNLL gg fusion production of Higgs (with decay modes!)

→ NLOJET++ (Nagy) C++ library to compute jet cross sections in lepton colliders, DIS and hadron colliders

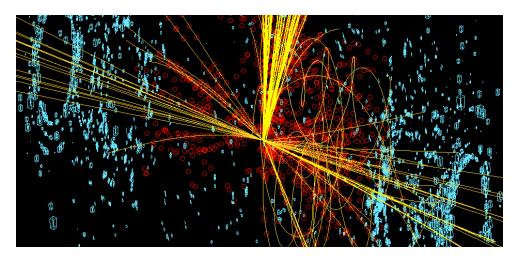
→ FastNLO (Kluge, Rabbertz, Wobisch) provides computer codes and tables of precomputed perturbative coefficients for various observables at hadron colliders

→ The PHOX family (Aurenche, Binoth, Fontannaz, Guillet, Heinrich, Pilon, Werlen) provides NLO corrections to processes involving Photons, hadrons and jets → **GoSam** (Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano) Public package for general QCD & EW 1-loop amps SM & BSM

→ **CompHEP** (Boos, Bunichev, Dubinin, Dudko, Edneral, Ilyin, Kryukov, Savrin, Semenov, Shertsnev) Public package for automated LO computations from Lagrangians to final distributions (Built it QED, SM, Fermi, MSSM, SUGRA, ...)

→ **SAMURAI** (Mastrolia, Ossola, Reiter, Tramontano) Automated implementation to compute loop multi-leg amplitudes within the Ddimensional Unitarity approach

→ **CutTools** (Pittau) Automated approach to loop amps/integrals using OPP algorithm


 $\rightarrow \dots$ 

 $\rightarrow \dots$ 

CHECK OUT <u>http://www.hepforge.org/downloads/</u> for a large amount of available programs for High Energy Physics!

## Summary

- Our tools for full description of LHC events have proven to perform well
- Still continue improvement of our QCD understanding will be needed to tackle new (precision) challenges at the new LHC run
- We are living an exciting time in particle physics, and your work will contribute to the progress of our understanding of nature at the high-energy frontier

