

Event Reconstruction and Particle Identification

Part One

Jason Nielsen

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

Hadron Collider Physics Summer School August 18, 2014

Challenge of Event Reconstruction

Philosophy of Event Reconstruction

- High-energy colliders probe interactions on tiniest spacetime scales
- But particle lifetimes limit our experimental reach
- Two parts of reconstruction:
 - Use detector hits to track and catalog particles' passage
 - Recreate final and intermediate states of interaction
- Depend on prior knowledge of particle interactions
- Practical approach: no epistemological discussions!

Forward Evolution from "Parton-Level"

- "Parton-level" or "hard process" (in MC)
 - Typically what you see in a Feynman diagram ("quarks and leptons")
 - Time evolution through radiation and hadronization to reach...
- "Particle-level" (or "hadron level") (in event generators)
 - Color-neutral final state particles that reach detector material
 - These particles may or may not create...
- "Detector-level" hits in tracking detectors and calorimeters
 - These are specific to the experiment or the simulation, including efficiency

Reconstruction from "Detector-Level"

- "Detector-Level" hits are read out from detector to storage
 - List of silicon strips on which significant charge was deposited, and possibly the amount of charge that was collected
 - List of tracker straws, and the time when the charge was collected
 - List of calorimeter cells with amount of charge collected
- Hits are translated into low-level objects used for reconstruction
 - Clusters of silicon pixel and strip hits, representing one particle's impact
 - Clusters of calorimeter cells, intended to representing one particle's deposit
 - Global translation from local coordinate systems to global coordinates
- Reconstruction algorithms combine these objects into tracks and calibrated calorimeter clusters
- Subsequent algorithms identify "physics objects" as combinations of tracks, clusters, and vertices
 - These "physics objects" are intended to match the "particle-level" constituents of an interaction

Particle Identification

- Charged particles leave tracks due to ionization energy loss
- Photons and electrons shower in EM calo due to bremsstrahlung
- Hadrons deposit energy in EM+HAD calorimeters
- Muons and neutrinos typically escape the experiment

Outline of these 3 Lectures

Lecture 1 (Monday): particle interactions with detector material

- Charged particle interactions at a physical level
- dE/dx, Cherenkov radiation, transition radiation, time of flight
- Examples from hadron collider experiments

Lecture 2 (Thursday): particle identification algorithms

- Neutral particle identification
- Practical identification approaches and efficiency measurements
- Particle flow algorithms in theory and practice

Lecture 3 (Friday): advanced particle ID for complex signatures

- Jet clustering, jet tagging, missing E_T calculations
- Tau lepton identification
- W boson and top quark tagging

CMS Experiment

Particles' Passage through CMS

ATLAS Experiment

Particles' Passage through ATLAS

LHCb

ALICE

What is Particle ID?

- A particle's quantum numbers distinguish it from other particle species: electric charge, weak hypercharge, spin, mass
- For the most part, our particle ID differentiates particles based on their mass, which is unique to each charged particle species!
 - Electrons vs. muons (essentially the same quantum numbers, except for m)
 - Pions vs. kaons vs. protons
 - Many of the interaction differences are in fact just mass differences
- Typical detector measurements focus on energy or momentum
 - Momenta of charged particles in magnetic spectrometer
 - Energy of particles in destructive calorimeter measurements
- Special consideration is needed to infer the particle mass
 - Could depend on full knowledge of 4-momentum
 - Could consider interactions that are especially sensitive to the velocity of relativistic particles or the related Lorentz γ factor

Outline for Today

- Today: focus on charged particle identification via radiative energy loss mechanisms associated with electromagnetic interactions
 - All of these approaches are sensitive to particle's β or γ factors
 - All have been used in hadron collider experiments for purposes of PID
- Ionization energy loss through interactions with atomic electrons in material: "dE/dx"
- Cherenkov radiation from superluminal particles: particle counting and angular measurements
- Transition radiation emitted as particles pass through a boundary between materials with different refractive indices
- Time-of-Flight (TOF) measurements and technical challenges

Particle ID via Energy & Momentum

• If the goal is to calculate m, why not use the measured energy and

momentum?

 $\delta(m) = \frac{1}{2}\sqrt{(2\delta E)^2 + (2\delta p)^2}$

- Energy resolution is not good enough at low E
- Momentum resolution is not good enough at high p
- Remember that we need mass resolution < 100 MeV
- Or what about measuring the velocity of the particles directly?
 - Rewrite defn. of γ to find

$$\beta = \frac{1}{\sqrt{\left(\frac{mc}{p}\right)^2 + 1}} \quad \text{ and } \quad \beta = \frac{v}{c} = \frac{L}{tc} \qquad \text{to give} \quad m = \frac{p}{c}\sqrt{\frac{c^2t^2}{L^2} - 1}$$

• We will return eventually to the Time-of-Flight measurements, acknowledging the strict requirement on timing resolution $\delta t/L$

Charged Particle Energy Loss

- Three main mechanisms for energy loss from relativistic particles
- "dE/dx": ionization energy loss w/ virtual photons absorbed
 - In non-relativistic region, rate of energy loss falls as $1/\beta^2$
 - In relativistic regime ($\beta\gamma$ >4), energy loss rises as ln($\beta\gamma$)
 - Measurement of energy loss sum can be converted to measurement of $\beta\gamma$
- Cherenkov radiation: real photons emitted at characteristic angle
 - Emission occurs at all frequencies (energies) democratically
 - Angle of emission can be converted to measurement of β
 - Becomes more difficult to separate particle types as β approaches 1
- Transition radiation: real photons emitted at interface
 - Energy of the photons depends directly on $\beta\gamma$
 - Small number of photons emitted: α photons per transition
 - TR saturates at some γ_{max} dependent on distance between interfaces

Electromagnetic Interactions Dominate

- Charged particle interactions dominated by electromagnetic interactions (large cross section process)
 - Electromagnetic vs. weak force couplings, atomic cross section
 - Strong interaction range is too short, limited to nuclear cross section
- For the purposes of energy loss in detector material, we consider the cross section of a charged particle scattering on atom
 - Scattering from charges in the nucleus
 - Emitted (virtual) photons from the fields of the charged particle are most often absorbed by atomic electrons

 Happy conclusion: soft EM interactions deposit enough energy in detector but do not (usually) affect the particle's momentum vector

Soft Electromagnetic Interactions

 Emission of photons in a dispersive medium, characterized by $~\mu\epsilon=n^2$

medium, characterized by
$$~\mu\epsilon=n^2$$
 $~$ E' , p' $E=E'+\omega$ and $p=p'+k$

so that
$$\omega = v \cdot k$$

- Dispersion relation in real material $k^2 = \mu \epsilon \left(\frac{\omega}{c}\right)^2 \left[1 i\left(\frac{4\pi\sigma}{\omega\epsilon}\right)\right]$
 - A material with free electrons ("plasma") has imaginary σ .
 - Photons with $\omega > \omega_p$ have real k, satisfy wave equation, and can propagate.
 - Otherwise there is a damping term, characterized by skin depth
- Gives rise to two kinds of radiation by charged particles
 - Real emission is Cherenkov radiation
 - Virtual emission (with damping) can still interact with atoms in material

Energy Loss and Emitted Radiation

- Dispersion relation recast in terms of refractive index n (or ε)
 - Frequency-dependent behavior
- At frequencies below the absorption region, n>1 and medium is transparent: optical
- In the absorption region, imaginary part is large, and range is short (dE/dx ionization energy loss)
- At high frequencies (X-ray), there
 is little absorption, and n<1. Some
 emission can still occur: TR

$$k^{2} = \mu \epsilon \left(\frac{\omega}{c}\right)^{2} \left[1 - i\left(\frac{4\pi\sigma}{\omega\epsilon}\right)\right]$$
$$n = \frac{w}{k}$$

Argon at normal density (Allison & Wright)

HCPSS -- 2014/08/18

Spectrum of Energy Loss: dE/dx

- Elastic collisions of relativistic particles with atomic electrons
- Usually expressed as the mean 🗒 energy loss: <dE/dx>

energy loss:
• Each scatter transfers to target
$$\frac{\delta \delta}{\delta \delta}$$
 3
$$\Delta \epsilon \sim \Delta p_T^2/2m \sim (2\alpha/bv)^2/2m \frac{\delta}{\delta}$$
• Integrate over impact param.
$$d\epsilon \sim \frac{\alpha^2}{2} \left[\ln(b_{max}/b_{min})\right]$$

Integrate over impact param.
$$d\epsilon \sim \frac{\alpha^2}{mv^2} \left[\ln(b_{\rm max}/b_{\rm min})\right]$$

Sum over all collisions

$$\frac{dE}{d(\rho x)} \sim \left(\frac{NZ}{A}\right) d\epsilon \quad \text{or} \quad \begin{array}{c} \frac{0.1 \quad 1.0 \quad 10}{\text{Muon momentum (GeV)}} \\ \frac{dE}{d(\rho x)} \sim \left(\frac{NZ}{A}\right) \alpha^2 \lambda_e \left(\frac{1}{\beta^2}\right) \ln() \\ \frac{1.0 \quad 10}{\text{Proton momentum (GeV)}} \\ \frac{1.0 \quad 10}{\text{Pr$$

Bethe-Bloch Calculation

Full quantum mechanical calculation is found in many places

$$\langle dE/dx \rangle \sim \frac{ze}{\beta^2} \left(\ln \frac{\sqrt{2m_e c^2 E_{\text{max}}} \beta \gamma}{I} - \frac{\beta^2}{2} - \frac{\delta}{2} \right)$$

- Note the logarithmic rise with γ (relativistic rise) and the density effect correction (dependent on $\beta\gamma$)
- Bethe regime: ionization energy loss dominates
- Strong dependence on b, weak dependence on γ
 - Limited at high γ
 - − Useful for PID when βγ < ≈ 3
- At very high $\beta \gamma$, radiative energy losses dominate

Minimum Ionizing Particles

- According to simplified form $dE/d(\rho x)\sim 1/\beta^2$, minimum mean energy loss <dE/dx> occurs at β =1 (ignoring relativistic rise)
 - Typical rules-of-thumb: 1.5 MeV/(g/cm²) for Z/A=1; muon loses 1.2 GeV/m in a thick iron absorber like the CMS return yoke or the ATLAS TileCal
- Ionization energy loss remains roughly constant at high momentum
- MIP serves as standard candle for detector design
 - Energy transferred to atomic electrons, inducing charge in detectors
- Ensure sufficient signal by using dense materials
 - Subject to limitations on scattering angles

dE/dx in Gaseous Detectors

- Must assume that total ionization is proportional to energy loss
- Large number of measurements ensures good dE/dx resolution
 - ALICE TPC samples ionization up to 159 times for each track
 - Mean free path for relativistic particles is approx. 300 μm in Ar
- Calibrated energy loss distributions allow effective measurement of $\beta\gamma$ for each particle, combined with p to allow PID

dE/dx in Silicon Detectors

- Band gap in silicon is only 3.6 eV, so many more electrons are produced than in gaseous detectors, but usually fewer samplings
- Characteristic Landau distribution of energy loss
 - 90% of collisions result in energy loss less than the mean (<dE/dx>)
 - Most Probable Value of energy loss is more commonly used for calibration
 - Need a large number of sampling to approach the distribution

Example of dE/dx in New Particle Searches

- CMS search for heavy stable charged particles (HSCP/CHAMP)
 - Could be a new lepton with q≠1e and coupling only through U(1)
- Two striking detector signatures for these particles
 - Long time of flight, as measured with CMS muon system (skip for now)
 - If charge is unusual (i.e. ≠1e), then anomalous dE/dx measurements

26

Cherenkov Radiation

- Fields of charged particle interact with dispersive medium (n≠1)
 - Instead of Huygens construction, try alternative particle-based derivation

Dispersion relation gives
$$k^2 - \frac{n^2 \omega^2}{c^2} = 0 \rightarrow k = \frac{\omega n}{c}$$

– And then the angle is defined by $\frac{k}{n} = \beta k \cos \theta_c$

$$\frac{k}{n} = \beta k \cos \theta_c$$

$$\cos \theta_c = \frac{1}{n\beta}$$

- In this Cherenkov regime (low energy), the permittivity ε is real, and so is n. (This is not true for dE/dx.) If v < c, then no radiation in continuous medium.
- Note that photons are effectively constrained to this angle of emission

Cherenkov Radiation: Frequency and Direction

 Both frequency and direction are set by the particle β, index of refraction, and length of radiator (full derivation in Green's book)

$$\frac{d^2 N_c}{d\omega d \cos \theta} = \frac{\alpha}{c} \left(\frac{\sin \delta}{\delta}\right)^2 \sin^2 \theta \frac{L^2}{\lambda}$$

- Where δ is phase difference (Fraunhofer) $\delta = \left(\frac{1}{n\beta} \cos\theta\right) \frac{\pi L}{\lambda}$
- If the radiator length L is long, then (sinδ/δ) gives a delta function at a single characteristic Cherenkov angle; otherwise there is a spread in $\cos\theta$.
- Other relations
 - Cherenkov angle $heta_c \sim rac{1}{\gamma_{
 m threshold}^2} rac{1}{\gamma^2}$
 - Maximum Cherenkov angle $heta_c^{
 m max} = 1/\gamma_{
 m threshold}$
 - Maximum number of photons $~N_c^{
 m max} \sim 1/2 \gamma_{
 m threshold}^2$

Practical Cherenkov Detectors

- Cherenkov detector fall into two main classes:
 - Threshold detectors: measure intensity (number) of particles above some β
 - Imaging detectors: measure angles of emitted photons, in addition to number
 - Both types have been used in LHC experiment (following pages)
- Ring-Imaging Cherenkov detectors focus photons emitted in radiator
 - Photons with common emission angle form rings on focal plane

- Challenge to reconstruct overlaps
- Separation power between particles:

$$P_{\theta_c} = \frac{c^2}{2p^2 \langle \sigma_{\theta_c} \rangle \sqrt{n^2 - 1}} \left| m_1^2 - m_2^2 \right|$$

 This favors ultra-low n radiators (hightemperature gases and even aerogel)

Cherenkov Detectors for Counting

- Particles with β >1/n, above Cherenkov threshold, yield a narrow single-particle peak in the light output (no Landau fluctuations)
- Number of particles can be translated to number of interactions per bunch crossing and then to inst. luminosity
- This approach is limited by saturation of the counter occupancy

J. Nielsen (UCSC)

HCPSS -- 2014/08/18

Cherenkov Detectors for PID

- Ring Imaging Cherenkov detectors measure number of photons and Cherenkov angle, from which mass is calculated
 - Special optics focus all photons emitted at a common angle to a point
- K/π separation over a wide momentum range (up to 50 GeV)
 - Separation at high momentum requires very small n: $\cos \theta_c = 1/\beta n$

Transition Radiation

- For very short radiator length L, diffractive effects allow radiation at sub-threshold β with real (but small) emission angles
 - Diffraction broadening to achieve this implies very high frequencies
 - The very high frequencies are interesting a striking experimental signature
- Transition radiation from a thin radiator scales as γ , not β
 - Makes it a uniquely valuable approach for PID at high momentum
 - Unfortunately the rate of emission is much lower than for Cerenkov radiation
 - Experimental challenge to implement thin foils and high-Z gas for absorption
- J.D. Jackson: "the fields must reorganize themselves as the particle approaches and passes through the interface. In this process, some pieces of the fields are shaken off as transition radiation."
 - In more detail, D. Green suggests thinking of an image charge approaching boundary and then changing direction as the particle passes through

Transition Radiation Coherence

Optical path length difference varies as

$$\delta = \frac{\omega L}{2c} \left(n \cos \theta - \frac{1}{\beta} \right)$$

- Diffraction peak is centered on Cherenkov angle $1/\beta n$
- Angular width of the emitted radiation is $\Delta\theta^{\lambda}/L$
 - Since we are looking for the broadened distribution, small L are required
 - There is some minimum L required to avoid destructive interference

Tuning TR Detector Parameters

- What is the right foil thickness and number of foils?
- Use some rules-of-thumb that come from full derivation:
 - Number of photons $N_{
 m TR} \sim lpha$ (yes, that lpha!)
 - Energy of emitted photons

$$E_{\gamma} \sim \hbar\omega \sim \gamma\hbar\omega_p/3$$

– Typical emission angle $\langle \theta_c \rangle \sim 1/\gamma$

- For typical γ factors of 1000, emission is in keV (X-ray) regime
- To avoid destructive interference, need foils > $O(10 \mu m)$ thick
- Since each foil yields on average α photons, need 1/ α foils to collect at least 1 photon
 - Unfortunately we can't simply add more foils, because they are not transparent to the X-ray radiation emitted

ATLAS TR Tracker (TRT) Design

- Transition radiators: fiber mats in barrel, planar foils in endcap detectors
 - Orientation of cylindrical fibers not crucial
 - Fiber mats are simple for construction
- TR (and dE/dx from simple ionization) read out in gas-filled straw tubes
 - Tubes interspersed with radiating foils (15μm thickness)
 - Tubes operate in high-gain regime (10⁴)
 - Only issue is high occupancy because each straw tube extends length of detector

- Even 6 keV photons interact via photoelectric effect: use high-Z gas like Xenon to maximize the interaction cross section
- Read out ToT for each straw as well as "high-threshold" bit for TR

"High Threshold" e/π Separation

- Since electrons have higher γ for a given momentum, expect more detected TR than for pions
 - High threshold set at 6 keV; compare to typical TR photon energy 6-15 keV
 - Low threshold is 300 eV for dE/dx
 - HT fraction limited by # of TR photons
- Turn-on of TR seen for electrons
 - $-\gamma = 1000$ gives 6 keV TR photons
 - Non-zero pion probability due to Landau fluctuations in dE/dX; slight rise with γ due to relativistic rise
- We'll see in next lecture how this information is used for e/γ PID

Time of Flight Principles

• If particles have the same (or known) momenta, their masses can be distinguished by using β to calculate $\gamma \approx p/m$

$$\beta = \frac{v}{c} = \frac{L}{tc} \qquad \text{ but also } \qquad \beta = \sqrt{1 - \frac{1}{\gamma^2}} \cong 1 - \frac{1}{2\gamma^2}$$

This allows us to solve for t in terms of L and p:

$$t = \frac{L}{c} \left(1 + \frac{1}{2\gamma^2} \right) \cong \frac{L}{c} \left(1 + \frac{m^2}{2p^2} \right)$$

And to distinguish the flight times for two particles of mass m₁, m₂

$$\Delta t \cong \frac{L}{c} \left(\frac{m_1^2 - m_2^2}{2p^2} \right)$$

- Strict requirements on time resolution, due to practical limits on L/p²
- This is due to the fact that all particles' β values tend to 1 at high p

Fast Detectors and Electronics

- Typical required time-of-flight resolution: O(100 ps)
 - For K/π separation with p = 1 GeV and L = 1 m, need Δt =100 ps
- Physical processes in detectors occur on typical timescale O(ns):
 - Plastic scintillator fluorescence mechanism is typical O(ns)
 - Electron drift time in Resistive Plate Chamber gaps is O(ns)
 - Charge mobility in silicon: 300μm in O(10 ns)
 - The overall width in time of the collected charge is not as important as an absolute measurement of where the distribution is in time.
- The overall width in time of the collected charge is not as important as an absolute measurement of where the distribution is in time.

TOF Detector at CDF

- Provided K/ π separation for flavor tagging in B-mixing analysis
- Cylindrical array of scintillator bars located at r=1.4 m

$$t = t_{\rm hit} - \frac{d}{v_{\rm bar}} - t_0$$

J. Nielsen (UCSC)

HCPSS -- 2014/08/18

TOF for Forward Detectors at LHC

Targeting diffractive physics, including Higgs

- Must tag proton remnants at very low angle
 - Proposed detectors lie 220 m from IP
- At this distance, it becomes difficult to know which proton belongs to which central event back at the IP
 - At highest event rates, there may even be accidental coincidences

- Precision TOF can give the location over the PV in z
 - For z-vertex separation of 3 mm, need 10 ps timing resolution
- Proposed detectors include finely-segmented readout or extra silicon detectors for precision position measurements

Recent TOF advances: Fast Silicon Detectors

- Silicon detectors are unity gain; depend on thickness to generate sufficient ionization signal
- Carrier mobility and depletion depth limit timing resolution
- New idea to realize silicon detectors with gain, like gaseous detectors
 - Depends on high electric field, carefully shaped to avoid field breakdown near implanted structures
- With increased gain (now at 14x), can reduce detector thickness and improved timing resolution
- Proposed for forward detectors at LHC, providing time and position

http://dx.doi.org/ 10.1016/j.nima.2014.05.006 41

HCPSS -- 2014/08/18

Future: TOF + Cherenkov?

- Leverage extremely fast Cherenkov emission into a TOF system
 - TORCH detector for LHCb upgrade and HPS detectors for CMS
- Benefits of Cherenkov-based PID and TOF-based PID combined

Or use combined system to improve TOF measurement with instantaneous radiation mechanism

Summary of Today's Topics

- Event reconstruction: unwinding detector-level to particle-level
- Charged particle identification is really "mass calculation"
- Charged particles interact electromagnetically with material
 - dE/dx: virtual photons ionize atomic electrons
 - Cherenkov radiation: real photon emission when v > c/n; sensitive to b
 - Transition radiation: real photon emission sensitive to g
 - Note: these techniques are used only for charged particle ID, since they depend on electromagnetic interactions with material
- Time-of-flight measurements for particle ID and vertex association
 - These also depend on material interactions of charged particles
- Practical examples of detectors sensitive to these interactions in hadron collider experiments at Fermilab and CERN

Plan for Tomorrow

- Neutral particle ID techniques (γ , π^0 , K, Λ ,...)
 - V0 identification with tracking detectors
 - Photon vs. Electron shower shapes
 - Converted photon reconstruction
 - Isolation requirements and calculations
- Muon reconstruction
 - Combined reconstruction and measurements
 - Punch-through and charge mis-identification
- Measurements of particle ID efficiencies and fake rates
 - Tag-and-probe methods
 - "Matrix methods"
- Introduction to Particle Flow algorithms
 - Practical examples and results from particle flow

Guide to Further Reading

- W.W.M. Allison and P.R.S. Wright, "The Physics of Charged Particle Identification," in Formulae and Methods in Experimental Data Evaluation, Vol. 2 (EPS: CERN, 1984) (Oxford preprint archived at http://cds.cern.ch/record/146109/)
- Christian Lippman, "Particle Identification," Nucl. Instrum. Meth. A 666 (2012) 148-172.
- Dan Green, *The Physics of Particle Detectors*, Cambridge Univ. Press, 2000.
- The CERN Large Hadron Collider: Accelerator and Experiments, JINST Vol. 3, August 2008.