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Challenge of Event Reconstruction

Run 168875, Event 1577540
Time 2010-11-10 01:27:38 CET
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Philosophy of Event Reconstruction

e High-energy colliders probe
interactions on tiniest
spacetime scales

e But particle lifetimes limit our
experimental reach

e Two parts of reconstruction:

— Use detector hits to track and
catalog particles’ passage

— Recreate final and intermediate
states of interaction

A e Depend on prior knowledge of
& CARTGONSTOCH _ . _
4&;‘/‘ mssiondscl particle interactions

e Practical approach: no
[ Quarks. Neumancs. MEsons. ALL THOE DRmN PARTICLES } epistemological discussions!

T CAN'T See, TIATS WHAT DROVE ME TO DRAWK.
BUT NOW | caw SEE Hem /
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III

Forward Evolution from “Parton-Leve

=)

e “Parton-level” or “hard process” (in MC)
— Typically what you see in a Feynman diagram (“quarks and leptons”)

— Time evolution through radiation and hadronization to reach...

e “Particle-level” (or “hadron level”) (in event generators)
— Color-neutral final state particles that reach detector material
— These particles may or may not create...

|H

e “Detector-level” hits in tracking detectors and calorimeters

— These are specific to the experiment or the simulation, including efficiency
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|II

Reconstruction from “Detector-Leve

e “Detector-Level” hits are read out from detector to storage

— List of silicon strips on which significant charge was deposited, and possibly
the amount of charge that was collected

— List of tracker straws, and the time when the charge was collected
— List of calorimeter cells with amount of charge collected

e Hits are translated into low-level objects used for reconstruction
— Clusters of silicon pixel and strip hits, representing one particle’s impact
— Clusters of calorimeter cells, intended to representing one particle’s deposit
— Global translation from local coordinate systems to global coordinates

e Reconstruction algorithms combine these objects into tracks and
calibrated calorimeter clusters

e Subsequent algorithms identify “physics objects” as combinations
of tracks, clusters, and vertices

— These “physics objects” are intended to match the “particle-level”
constituents of an interaction
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Particle Identification

A detector cross-section, showing particle paths
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Credit: Particle Data Group (LBNL)

e Charged particles leave tracks due to ionization energy loss

e Photons and electrons shower in EM calo due to bremsstrahlung
e Hadrons deposit energy in EM+HAD calorimeters

e Muons and neutrinos typically escape the experiment
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Outline of these 3 Lectures

Lecture 1 (Monday): particle interactions with detector material
e Charged particle interactions at a physical level

e dE/dx, Cherenkov radiation, transition radiation, time of flight
e Examples from hadron collider experiments

Lecture 2 (Thursday): particle identification algorithms
e Neutral particle identification

e Practical identification approaches and efficiency measurements

e Particle flow algorithms in theory and practice

Lecture 3 (Friday): advanced particle ID for complex signatures

e Jet clustering, jet tagging, missing E; calculations

e Tau lepton identification
e W boson and top quark tagging
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CMS Experiment

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes
Overall diameter : 15.0 m
Overall length ~ :28.7m
Magnetic field :3.8T

SILICON TRACKERS

Pixel (100x150 ym) ~16m* ~66M channels
Microstrips (80x180 pm) ~200m? ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)

Brass + Plastic scintillator ~7,000 channels
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Particles’ Passage through CMS

| | 1 1 1 1 | |
Om im 2m im 4m 5m 6m /m
Key:
Muon

Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

' Electromagnetic
)]l l' Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed
with Muon chambers

Transverse slice
through CMS

D Bamaey, CERN, Febriguy 2004

Credit: CERN/CMS/D. Barney
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ATLAS Experiment

- \—

J. Nlelsen (ULSL)

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters

Toroid magnets LAr electromagnetic calorimeters

Muon chambers Solenoid magnet | Transition radiation tracker
Semiconductor tracker Credit: CERN/ATLAS
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Particles’ Passage through ATLAS

Muon
Spectrometer

Hadronic
Calorimeter

The dashed tracks
are invisible to
the detector

Electromagnetic
Calorimeter

Solenoid magnet
Transition
Radiation

Tracking Tracker
Pixel/SCT detector

Credit: CERN/ATLAS




AL HEM M4 MS
SPD/PS M3 =
Magnet RICH2 M1 M2

Credit: CERN
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a. ITS SPD Pixel

b. ITS SDD Drift
c. ITS SSD Strip
d.v0and TO
e. FMD

1. ITS

2. FMD , TO, VO

3. TPC

4. TRD

5. TOF

[ 6. HMPID |

7. EMCAL

8. PHOS CPV ﬂ

9, MAGNET

10. ACORDE

11. ABSORBER
12. MUON TRACKING
13. MUON WALL

14, MUON TRIGGER

15. DIPOLE
16. PMD
17. Z2DC
Credit: CERN
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What is Particle ID?

e A particle’s quantum numbers distinguish it from other particle
species: electric charge, weak hypercharge, spin, mass

e For the most part, our particle ID differentiates particles based on
their mass, which is unique to each charged particle species!

— Electrons vs. muons (essentially the same quantum numbers, except for m)
— Pions vs. kaons vs. protons

— Many of the interaction differences are in fact just mass differences

e Typical detector measurements focus on energy or momentum
— Momenta of charged particles in magnetic spectrometer

— Energy of particles in destructive calorimeter measurements

e Special consideration is needed to infer the particle mass
— Could depend on full knowledge of 4-momentum

— Could consider interactions that are especially sensitive to the velocity of
relativistic particles or the related Lorentz y factor

J. Nielsen (UCSC) HCPSS -- 2014/08/18
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Outline for Today

e Today: focus on charged particle identification via radiative energy
loss mechanisms associated with electromagnetic interactions

— All of these approaches are sensitive to particle’s 3 or y factors
— All have been used in hadron collider experiments for purposes of PID

e |onization energy loss through interactions with atomic electrons
in material: “dE/dx”

e Cherenkov radiation from superluminal particles: particle counting
and angular measurements

e Transition radiation emitted as particles pass through a boundary
between materials with different refractive indices

e Time-of-Flight (TOF) measurements and technical challenges
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Particle ID via Energy & Momentum

* If the goalis to calculate m, why not use the measured energy and
momentum? 1 fof \

o = V@R @R B\ o
0.07; — Hadr calo
— Energy resolution is not good enough at low E o S—
— Momentum resolution is not good enough at high p -
— Remember that we need mass resolution < 100 MeV >~

B lovn bon b b b b b b b
20 40 60 80 100 120 140 160 180 200

e Or what about measuring the velocity of the particles directly? "
— Rewrite defn. of y to find

1 v L c2t?
b= > and 0 =—-=— togive m = — \/——1
\/(m> 1 C tc

e We will return eventually to the Time-of-Flight measurements,
acknowledging the strict requirement on timing resolution ot/L

J. Nielsen (UCSC) HCPSS -- 2014/08/18 16



Charged Particle Energy Loss

e Three main mechanisms for energy loss from relativistic particles

e “dE/dx”:ionization energy loss w/ virtual photons absorbed
— In non-relativistic region, rate of energy loss falls as 1/f3?
— Inrelativistic regime (By>4), energy loss rises as In(fy)
— Measurement of energy loss sum can be converted to measurement of By

e Cherenkov radiation: real photons emitted at characteristic angle
— Emission occurs at all frequencies (energies) democratically
— Angle of emission can be converted to measurement of
— Becomes more difficult to separate particle types as 3 approaches 1
e Transition radiation: real photons emitted at interface
— Energy of the photons depends directly on Py

— Small number of photons emitted: a photons per transition
— TR saturates at some y,.,, dependent on distance between interfaces

J. Nielsen (UCSC) HCPSS -- 2014/08/18
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Electromagnetic Interactions Dominate

e Charged particle interactions dominated by electromagnetic
interactions (large cross section process)
— Electromagnetic vs. weak force couplings, atomic cross section
— Strong interaction range is too short, limited to nuclear cross section

e For the purposes of energy loss in detector material, we consider
the cross section of a charged particle scattering on atom
— Scattering from charges in the nucleus

— Emitted (virtual) photons from the fields of the charged particle are most
often absorbed by atomic electrons

\ﬁ’/ e Happy conclusion: soft EM interactions

deposit enough energy in detector but do

/Z\ not (usually) affect the particle’s
e

momentum vector

J. Nielsen (UCSC) HCPSS -- 2014/08/18 18



Soft Electromagnetic Interactions

e Emission of photons in a dispersive
w7 medium, characterized by pe = n?
E’,p’

E,p E=FE+w and p=p +k

sothat w=wv-k
° . . . . . w 2 4
Dispersion relation in real material 12 e ( ) [1 . ( wa)]

C wWe
— A material with free electrons (“plasma”) has imaginary o.
— Photons with w > w, have real k, satisfy wave equation, and can propagate.
— Otherwise there is a damping term, characterized by skin depth

e Gives rise to two kinds of radiation by charged particles
— Real emission is Cherenkov radiation
— Virtual emission (with damping) can still interact with atoms in material
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Energy Loss and Emitted Radiation

of refractive index n (or €) c

C wWe
— Frequency-dependent behavior w
n = —

k

° . . . . 2 4
Dispersion relation recast in terms 12 e (W) [1 _ < WU)]

e At frequencies below the
absorption region, n>1 and

medium is transparent: optical
(@) Photon range (metres)

* |nthe absorption region, Im(n)
imaginary part is large, and range
is short (dE/dx ionization energy '

1 AT eV
|OSS) Optical region | Absorptive region 82 X-ray region
* At high frequencies (X-ray), there ) -1 Re(n)-1

is little absorption, and n<1. Some | ’ ” "

- 1 i 1

emission can still occur: TR I %
-10%

-107%

Argon at normal density (Allison & Wright)
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Spectrum of Energy Loss: dE/dx

10 g
e Elastic collisions of relativistic N
particles with atomic electrons 6:
e Usually expressed as the mean & SE
energy loss: <dE/dx> ';o 3
e Each scatter transfers to target £ ° =
Ae ~ Ap3./2m ~ (2a/bw)? /Zm\ 2 [-
. Integrate2over impact param.
O{ B -
de ~ —— |In(b bmi
va [ ( max/ mm)] 1

0.1 1.0 10 100 1000

10000

e Sum over all collisions By = p/Mc
1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII|
0.1 1.0 10 100 1000
dE ~ (NZ) d € or Muon momentum (GeV/c)
d(px) A 0.1 1.0 10 100 1000
d E N Z 1 Pion momentum (GeV/c)
~ 2)\ () L i i il
0.1 1.0 10 100 1000 10000
d (:033 ) < A ) <6 2 ) _ Proton momentum (GeV/c)
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Bethe-Bloch Calculation

e Full guantum mechanical calculation is found in many places

<€

V2 Emax Sy

(1n

I

g 9
_7_§>

e Note the logarithmic rise with y (relativistic rise) and the density
effect correction (dependent on py)

e Bethe regime: ionization
energy loss dominates

e Strong dependence on b,
weak dependence on 'y
— Limited at high y
— Useful for PID when Py <= 3
e Atvery high Py, radiative
energy losses dominate

J. Nielsen (UCSC)
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Minimum lonizing Particles

e According to simplified form dE/d(pz) ~ 1/8% , minimum mean
energy loss <dE/dx> occurs at =1 (ignoring relativistic rise)

— Typical rules-of-thumb: 1.5 MeV/(g/cm?) for Z/A=1; muon loses 1.2 GeV/m in
a thick iron absorber like the CMS return yoke or the ATLAS TileCal

e |onization energy loss remains roughly constant at high momentum

e MIP serves as standard
candle for detector design

— Energy transferred to
atomic electrons, inducing
charge in detectors

e Ensure sufficient signal by
using dense materials

— Subject to limitations on
scattering angles

J. Nielsen (UCSC)
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dE/dx in Gaseous Detectors

Physics Procedia 37 (2012) 434 — 441

,.\200 | - » rrlvvv1vvvlvvv[vvvlvvvl'lvlvvvivvv]vvvg

= 180 PP@VNS=7TeV 3 g 350 MeV < p_ <400 MeV =

— : o -1

B 160 |°| 4 o10° — sum 3

S 140 . ALICE 3 = kaon :

O Performance E 1 02 — pion ;

o 120 e = — electron 3

100 5\ R T - 10 g

80 > AQQ' . ' : ‘-:fi-"'. " o _-: E

60 ‘»—i* i . 1 -
/ okl

40 i A 3

1 -08-06-04-02 0 0.2 0.4 0.6 0.8 1

L (dE/dx),____ - (dE/dx)

10
p (GeVic)

Kaon theor.

e Must assume that total ionization is proportional to energy loss

e Large number of measurements ensures good dE/dx resolution
— ALICE TPC samples ionization up to 159 times for each track
— Mean free path for relativistic particles is approx. 300 um in Ar

e Calibrated energy loss distributions allow effective measurement
of By for each particle, combined with p to allow PID

J. Nielsen (UCSC) HCPSS -- 2014/08/18 24



dE/dx in Silicon Detectors

e Band gap in silicon is only 3.6 eV, so many more electrons are
produced than in gaseous detectors, but usually fewer samplings

e Characteristic Landau distribution of energy loss
— 90% of collisions result in energy loss less than the mean (<dE/dx>)
— Most Probable Value of energy loss is more commonly used for calibration

— Need a large number of sampling to approach the distribution
Alx (MeV g1 cm?)

0.50 1.00 1.50 2.00 2.50
T T T T [ T T T T [ T T T T [ T T T T ] 1.00 F T I\\
- — L | : . —
. . .. C 2l . : 7
Lo~ K 500 MeV pion in silicon ] 0.95 e ;"-_"“ """""""""" S SR E
S RPN i C . : : .
RN 640 um (149 mg/cm?) 0.90 F 3 TR PP RRRRRLEE SRR R R T TR E RO  ERRERIRRIIe, B
- : [ R N » RN : : ]
0.8 N A A 320 um (74.7 mg/em’) 085 .. . SN | SR L 3
- / ! -._'\\\. ~— — - 160 um (37.4 mg/em?) - E TE : \ : : ]
~ [ ‘ % 80 um (18.7 mg/em?) | .8 0.80 - R . . o
Zo6l bt 48 - N | (149 mglem') 3
2% { ZOmBE N B um (747 mgfem)
I ; = 0.70 :_..,".,,"f.,.‘::-;:\,\.\>.\,,".,,‘..,;‘./.,_.<7,"‘7,’.‘-16()’M_In_(,37_-4;nlg/,c@2,)_:
B : 1< - : 3 .- - :
0.4 o 1 . Mean energy 1 QQ‘ O 65 :_ ........ ...... \\ ~ .-, C e // / B T SOMm(ls.’?mg/cm)_:
i ! N loss rate T - : P e : .
02-_ | \:\\”\ ] 0.60 :_ .................... ................... _;
i P \\ 055F o R T =
0.0_|||J":A 2l D7 AN NS ANUNAFATSN AT RAE ANNATA. ||||||||||||||||||||_ 0-50:' ""'i L L1 ""'i L L1 ""'i L L1 ""':
100 200 300 400 500 600 0.3 1 3 10 30 100 300 1000
A/x (eV/um) By (=p/m)
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Example of dE/dx in New Particle Searches

e CMS search for heavy stable charged particles (HSCP/CHAMP)
— Could be a new lepton with g#le and coupling only through U(1)
e Two striking detector signatures for these particles

— Long time of flight, as measured with CMS muon system (skip for now)
— If charge is unusual (i.e. #1e), then anomalous dE/dx measurements

cMs \{' 8TeVL 188fb‘ Tracker Only CMS \(_ 8TeVL 188fb1

— 2 .
g 0; . - Data (\F 8TeV) . ;\° lo Observed ]
% 18 :— : 5 = mg 8:'13 :gg g:x;zz E 8 | A | Data-based SM prediction

S 16F i A MC: Q=2/3 400 GeV/c? o i+ [ | Gluino (M = 1000 GeV/c?)
= F3 () Excluded ] < 10 =
= 148 Lo - P i i i
- ; S - -
12} e - § : i

o o ] -
100 agears -0 E 1§ A E
107E
A T B 102
500 1000 0 500 1000

J. Nielsel p (GeVic) s Mass (GeV/c?)
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Cherenkov Radiation

e Fields of charged particle interact with dispersive medium (n#1)
— Instead of Huygens construction, try alternative particle-based derivation

W,k E=F+w and p=p +k
/ E’,p’

E,p sothat w=v-k
2,2
5 NwW Wwn
— Dispersion relation gives Kk — —5— =0—>k=—
C C
e k
— And then the angle is defined by — = Bk cos b,
n
1
cosf, = —
np

— In this Cherenkov regime (low energy), the permittivity € is real, and so is n.
(This is not true for dE/dx.) If v<c, then no radiation in continuous medium.

— Note that photons are effectively constrained to this angle of emission
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Cherenkov Radiation: Frequency and Direction

e Both frequency and direction are set by the particle {3, index of
refraction, and length of radiator (full derivation in Green’s book)

d* N, a (sind\? 291)2
= — sin“ 0 —
dwd cos 6 C ) A

. . 1 L
— Where 6 is phase difference (Fraunhofer) 0 = —5 — cos 6 T
n

— If the radiator length L is long, then (sind/8) gives a delta function at a single
characteristic Cherenkov angle; otherwise there is a spread in cos6.
e QOther relations 1 1

— Cherenkov angle Oc ~ 2 5
“threshold i

max
0

= 1/%V¢hreshold
— Maximum number of photons = N 7%% ~ 1/2%2hreshold

— Maximum Cherenkov angle
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Practical Cherenkov Detectors

e Cherenkov detector fall into two main classes:
— Threshold detectors: measure intensity (number) of particles above some f3
— Imaging detectors: measure angles of emitted photons, in addition to number

— Both types have been used in LHC experiment (following pages)

e Ring-Imaging Cherenkov detectors focus photons emitted in radiator
— Photons with common emission angle form rings on focal plane

60
40

20

(cm)

HCb R

ICH

20 |
40 |+

-60

J. Nielsen (UCSC)

e Challenge to reconstruct overlaps

e Separation power between particles:

62

° 22 (og ) VnZ — 1

— This favors ultra-low n radiators (high-
temperature gases and even aerogel)

2 2
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Cherenkov Detectors for Counting

e Particles with $>1/n, above Cherenkov threshold, yield a narrow
single-particle peak in the light output (no Landau fluctuations)

e Number of particles can be translated to number of interactions
per bunch crossing and then to inst. luminosity

e This approach is limited by saturation of the counter occupancy

CDF Cherenkov
luminometer

Arbitrary units

NIM A 461
(2001) 540-544

. Nielsen (UCSC)
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Cherenkov Detectors for PID

e Ring Imaging Cherenkov detectors measure number of photons
and Cherenkov angle, from which mass is calculated

— Special optics focus all photons emitted at a common angle to a point

e K/m separation over a wide momentum range (up to 50 GeV)
— Separation at high momentum requires very small n: cos . = 1/577,

6, max
250
Photon e S — e 242 mrad
i Detectors H o Aerogel
hsﬂr?g?detlc | [ T charged particle
ie K -
250 el 200 ¢ K/ -contalner
Aerogel il " Spherical [ . L
b & Mirror . L C4F,, radiator

- C4F10 ) '8 150 e Y N s -

e R Sustcul S - =
I \ | (& g i collection
VELO / ] ||| > Track @ 100 - i
exit window I I . i :
y - ~~_Carbon Fiber r :
= Exit Window i : C4F10gas I pad cathode
50 - . mr covered with | = =/m % = = = = - -
Plane - Csl film S Al iy = MWPC
: L 32 mrad
Mirror L
L his frontend
0 ) o ) L electronics
1 10 100
Momentum (GeV/c)

1 1 |
0 100 200 z (cm)
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Transition Radiation

e For very short radiator length L, diffractive effects allow radiation at
sub-threshold 3 with real (but small) emission angles
— Diffraction broadening to achieve this implies very high frequencies
— The very high frequencies are interesting — a striking experimental signature

e Transition radiation from a thin radiator scales as vy, not f3
— Makes it a uniquely valuable approach for PID at high momentum
— Unfortunately the rate of emission is much lower than for Cerenkov radiation
— Experimental challenge to implement thin foils and high-Z gas for absorption

e J.D. Jackson: “the fields must reorganize themselves as the particle
approaches and passes through the interface. In this process, some
pieces of the fields are shaken off as transition radiation.”

— In more detail, D. Green suggests thinking of an image charge approaching
boundary and then changing direction as the particle passes through
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Transition Radiation Coherence

Allison & Wright

“ r‘:j

Vacuum

e QOptical path length difference varies as

" Dielectric

Vacuum

0 = % ncos@—l
2c I5;

e Diffraction peak is centered on Cherenkov angle 1/fn
e Angular width of the emitted radiation is AB~A/L

— Since we are looking for the broadened distribution, small L are required

— There is some minimum L required to avoid destructive interference

J. Nielsen (UCSC)
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Tuning TR Detector Parameters

What is the right foil thickness and number of foils?

e Use some rules-of-thumb that come from full derivation:
— Number of photons NTR ~ @ (yes, that a!)

— Energy of emitted photons
E, ~ hw ~ yhw,/3

<‘90> ™ 1/7

e For typical y factors of 1000, emission is in keV (X-ray) regime

— Typical emission angle

e To avoid destructive interference, need foils > O(10 um) thick

e Since each foil yields on average o photons, need 1/a foils to
collect at least 1 photon

— Unfortunately we can’t simply add more foils, because they are not
transparent to the X-ray radiation emitted

J. Nielsen (UCSC) HCPSS -- 2014/08/18
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ATLAS TR Tracker (TRT) Desig

planar foils in endcap detectors
— Orientation of cylindrical fibers not crucial
— Fiber mats are simple for construction

e TR (and dE/dx from simple ionization)
read out in gas-filled straw tubes

— Tubes interspersed with radiating foils “\ ?'fgld
(15um thickness) i

— Tubes operate in high-gain regime (10%)

Crimping pin Inner
active-gas
manifold

End-plug

Radiator foils in
CO, cooling gas
i !}
! 1

front-end electronics
board

— Only issue is high occupancy because each P
printed-circuit

straw tube extends length of detector board

1 ?
l 1 i
(I Carbon-fibre rings —]' :

e Even 6 keV photons interact via photoelectric effect: use high-Z gas
like Xenon to maximize the interaction cross section

e Read out ToT for each straw as well as “high-threshold” bit for TR
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“High Threshold” e/mt Separation

ATLAS-CONF-2011-128

— Low threshold is 300 eV for dE/dx 01

0.05%

e Since electrons have higheryfora z 03— :
given momentum, expect more o 0-3i—§ ATLAS Prefminary 3
detected TR than for pions 8 0-25§ TRT barrel E

. £ 02§ 4 <p<20GeV B

— High threshold set at 6 keV; compare g % Efectmnc@idates §
to typical TR photon energy 6-15 keV 8 0'15§ T E

(i -

— HT fraction limited by # of TR photons

T ]
g ol

e Turn-on of TR seen for electrons
— v=1000 gives 6 keV TR photons

High-threshold fraction

©
W
T

f

o

)]

[3))
\

— Non-zero pion probability due to

%
‘g ATLAS Preliminary .
Landau fluctuations in dE/dX; slight T 020  TRTbarrel .3°O+$ g
rise with y due to relativistic rise 2 045l ® Data2010Ks=7TeV o -
= O Monte Carlo ©
. . e g ]
e We'll see in next lecture how this 2 ot e 3
. . . N 0 * .
information is used for e/y PID 005} Sareuamaamanaesss™ | © -
: v factor .
0 10 10? 10° 10* 10°
1 10 1 10
Pion momentum [GeV] Electron momentum [GeV]

J. Nielsen (UCSC) HCPSS -- 2014/C



Time of Flight Principles

e |f particles have the same (or known) momenta, their masses can
be distinguished by using 3 to calculate y = p/m

v L

1
= — but also 5:\/1——221——
¢ Y

b= tc

e This allows us to solve for tin terms of L and p:

t—L . 1y L 1+m2
c 292 ] ¢ 2p?

e And to distinguish the flight times for two particles of mass m,, m,
are (i ms
c 2p?

— Strict requirements on time resolution, due to practical limits on L/p?

10

— This is due to the fact that all particles’ 3 values tend to 1 at high p
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Fast Detectors and Electronics

e Typical required time-of-flight resolution: O(100 ps)
— For K/mt separation with p =1 GeV and L =1 m, need At=100 ps
e Physical processes in detectors occur on typical timescale O(ns):
— Plastic scintillator fluorescence mechanism is typical O(ns)
— Electron drift time in Resistive Plate Chamber gaps is O(ns)
— Charge mobility in silicon: 300um in O(10 ns)

— The overall width in time of the collected charge is not as important as an
absolute measurement of where the distribution is in time.

e The overall width in time
of the collected charge is
not as important as an
absolute measurement of
where the distribution is
in time.
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TOF Detector at CDF

* Provided K/mx separation for flavor tagging in B-mixing analysis

Left PMT Right PMT

e Cylindrical array of scintillator
bars located at r=1.4 m

Speed of light in bar: v,

t = 1thit — —— — to
Ubar

Production time: t,

~ 5
\E— - . CDF Time-of-Flight : Tevatron store 860 - 12/23/2001
S Assuming 100 ps —
=20 . s [ . . :
2 . timing resolution § 1.4 With 110 ps timing resolution
S T e
Qg “ B
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TOF for Forward Detectors at LHC

e Targeting diffractive physics, including Higgs

e Must tag proton remnants at very low angle
— Proposed detectors lie 220 m from IP

e At this distance, it becomes difficult to know which proton belongs
to which central event back at the IP
— At highest event rates, there may even be accidental coincidences

< \|
\

e Precision TOF can give the location over the PV in z
— For z-vertex separation of 3 mm, need 10 ps timing resolution

v

e Proposed detectors include finely-segmented readout or extra
silicon detectors for precision position measurements
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Recent TOF advances: Fast Silicon Detectors

e Silicon detectors are unity gain;

depend on thickness to generate Anode
sufficient ionization signal i \W0AY Lt
e Carrier mobility and depletion depth "~ N o
limit timing resolution B D
* New idea to realize silicon detectors e
with gain, like gaseous detectors ——
— Depends on high electric field, carefully
shaped to avoid field breakdown near = W13 o-gain 1000V
implanted structures ] m %E%E%%EE?V
e With increased gain (now at 14x), 5 | g e
can reduce detector thicknessand £
improved timing resolution 40g08 |
e Proposed for forward detectors at aoean ] , , ; |
LHC, providing time and position Cuma wmew

http://dx.doi.org/ 10.1016/j.nima.2014.05.006
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Future: TOF + Cherenkov?

e |everage extremely fast Cherenkov emission into a TOF system
— TORCH detector for LHCb upgrade and HPS detectors for CMS

e Benefits of Cherenkov-based PID and TOF-based PID combined

.2 =(180,00) |

......................

. . 4'4“
Focusing block 7/ /(’«,;,,
|

— 75 Photodetector
E - (6.7,-35
>

L=h/sinb,

Track

/"

Quartz plate

zem) © " (NIMA639 (2011) 173-176)

e Or use combined system to improve TOF measurement with
instantaneous radiation mechanism
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Summary of Today’s Topics

e Event reconstruction: unwinding detector-level to particle-level
e Charged particle identification is really “mass calculation”
e Charged particles interact electromagnetically with material

— dE/dx: virtual photons ionize atomic electrons
— Cherenkov radiation: real photon emission when v > ¢/n; sensitive to b
— Transition radiation: real photon emission sensitive to g

— Note: these techniques are used only for charged particle ID, since they
depend on electromagnetic interactions with material

e Time-of-flight measurements for particle ID and vertex association

— These also depend on material interactions of charged particles

e Practical examples of detectors sensitive to these interactions in
hadron collider experiments at Fermilab and CERN
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Plan for Tomorrow

e Neutral particle ID techniques (y ,m° K, A,...)
— VO identification with tracking detectors
— Photon vs. Electron shower shapes
— Converted photon reconstruction
— Isolation requirements and calculations

e Muon reconstruction
— Combined reconstruction and measurements
— Punch-through and charge mis-identification

e Measurements of particle ID efficiencies and fake rates
— Tag-and-probe methods
— “Matrix methods”

e |ntroduction to Particle Flow algorithms
— Practical examples and results from particle flow
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Guide to Further Reading

e W.W.M. Allison and P.R.S. Wright, “The Physics of Charged Particle
|dentification,” in Formulae and Methods in Experimental Data
Evaluation, Vol. 2 (EPS: CERN, 1984) (Oxford preprint archived at
http://cds.cern.ch/record/146109/)

e Christian Lippman, “Particle Identification,” Nucl. Instrum. Meth. A
666 (2012) 148-172.

e Dan Green, The Physics of Particle Detectors, Cambridge Univ.
Press, 2000.

e The CERN Large Hadron Collider: Accelerator and Experiments,
JINST Vol. 3, August 2008.
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