Practical Statistics for Particle Physics

Daniel Whiteson, UC Irvine HCPSS, 2014: Lecture 2

Outline

I. Mathematical preliminaries II. Fitting III. Data models IV. Hypothesis testing V. Tools and examples

Models

Full MC Fast MC Effective models Data-driven models

Uncertainties

We have a recipe for

f(data | theory)

But is it right?

Uncertainties

We have a recipe for

f(data | theory)

But is it right?

Theory has lots of nuisance parameters: cross-sections, LO, NLO... showering details hadronization details detector response

There is some point in NP space which gives the most accurate model but we don't know where it is!

Systematics

<u>The Good</u>

NP can be constrained in some control region. Uncertainty decreases with luminosity.

eg. Background cross-section B-tagging efficiency Jet energy scale

<u>The Ugly</u>

Underlying theoretical approach eg PYTHIA vs HERWIG

<u>The Bad</u>

Parameters of underlying heuristic eg PYTHIA tunes

(Pekka Servino)

Example

Example

Example

Extrapolation

Measure background in one region, extrapolate knowledge to another. How well do we know rates of jet production, tails of MET?

Extrapolation

Jet energy scale

Many steps in jet production Lots of opportunities for mistakes Calibrate in jj, photon+jet Extrapolate to your dataset

the shift method

Generating samples at arbitrary values of NP can be expensive!

> Often, just generate a few and interpolate.

Histogram interpolation

A.L. Read / Nuclear Instruments and Methods in Physics Research A 425 (1999) 357–360

dimensions

systematic A

systematic **B**

(-1,1)	(0,1)	(1,1)
(-1,0)	(0,0)	(1,0)
(-1,-1)	(0,-1)	(1,-1)

dimensions

dimensions

We rely on linear interpolation

Uncertainties

<u>Uncertainty:</u>

shift renormalization, factorization scales by 2, 1/2 measure change.

> Why 2, 1/2? Just convention

Not 1 sigma!

Generators

fast-MC model

fast MC model

Begin with generated events but rather than simulating microphysics, smear particles according to resolution.

fast MC model

Less accurate, but same issues as full MC: No analytic PDF Uncertainties in simulation

η

The dream

f(data | final-state particles P)

x f(final state particles P| showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M | theory)

Sum over all possible intermediate P,S,M

ME approach

If we have a parametrized detector response, can we parameterize

f(data | final-state particles P)

x f(final state particles P| showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M | theory)

ME approach

Transfer functions reflect a very complex process By necessity, approximations, and therefore uncertainties.

Data-driven model

Example: dark matter

<u>Final state:</u> Two WIMPs+jet

Detector signature Jet + MET

q

Mono-jet

q/g Missing Momentum

Event display

CMS Experiment at LHC, CERN Data recorded: Sun Oct 30 16:05:09 2011 CEST Run/Event: 180250 / 878954337 Lumi section: 481 pfMet 0, pt;/359.382 GeV ak5PFJet 0, pt: 331.1 GeV

Backgrounds

Backgrounds

How to estimate?

<u>Idea</u>: $Z \rightarrow v v$ from $Z \rightarrow I$

<u>Approach</u>:

(1) measure Z to II + jet
(2) scale by known branching ratios

Details

$N[Z(\mathbf{vv})] = N[Z(\mathbf{II})] \times BF[Z(\mathbf{vv})] / BF[Z(\mathbf{II})]$

Details

$N[Z(\mathbf{vv})] = N[Z(\mathbf{II})] \times BF[Z(\mathbf{vv})] / BF[Z(\mathbf{II})]$ $N[Z(\mathbf{II})] = N(\mathbf{II}) - N(\mathbf{bg}) / \varepsilon$

Details

$N[Z(vv)] = N[Z(II)] \times BF[Z(vv)] / BF[Z(II)]$

$N[Z(II)] = N(II) - N(bg) / \epsilon$

Effective Model

Effective Model

Effective Model

Uncertainties

<u>Prediction under peak</u> depends on quality of side band fits

Background function

evaluate in control regions

Summary of models

MC simulation

- sample of events from on/off simulation
- estimate PDF from events
- Fast MC simulation
- simpler generation model
- still estimate PDF from events

Data-driven model

- extrapolate from control regions <u>Effective model</u>
 - parametrized functional form

Summary of models

	Pros	Cons		
MC Simulation	detailed descr of micro physics	very slow must reconstruct PDF		
Fast MC	fast	approximate		
Data-driven	Calculations by Nature	Extrapolations from CR have uncertainties		
Effective model	fast, physical justification	approximate no details of underlying effects		

Hypothesis Testing

Hypothesis Testing

	BSM Particle is real	BSM Particle is not real		
Claim Discovery	True Positive	False Positive Type I error		
No Claim of Discovery	False Negative Type II error	True Negative		
	β, power=1-β			

A threshold makes sense. Choice of position balances Type I/II errors

Typically: fix α minimize β

Generalize

Test statistic

Reduce vector of observables to 1 number

How to build distribution of TS? (Usually MC) How to choose TS?

(K. Cranmer)

Statement of the problem:

Given some prob that we wrongly reject the Null hypothesis

 $\alpha = P(x \notin W | H_0)$

Find the region W (where we accept H_0) such that we minimize the prob

 $\beta = P(x \in W | H_1)$

	BSM Particle is real	BSM Particle is not real		
Claim Discovery	True Positive	False _A Positive Type I error		
No Claim of Discovery	False Negative Type II error	True Negative		
	β, power=1-β	1		

Neyman-Pearson

NP lemma says that the best test statistic is the likelihood ratio:

(Gives smallest β for fixed α)

What does the TS do?

Finds a region in variable space

 x_2

 x_1

(K. Cranmer)

How to find NP

e.g.

But...

Reality is more complicated.

The full space can be very high dimensional.

Calculating likelihood in d-dimensional space requires ~100^d MC events.

ML tools

Neural Networks

Essentially a functional fit with many parameters

<u>Function</u>

Each neuron's output is a function of the weighted sum of inputs.

<u>Goal</u>

find set of weights which give most useful function

<u>Learning</u>

give examples, back-propagate error to adjust weights

Neural Networks

Essentially a functional fit with many parameters

<u>Problem</u>:

Networks with > 1 layer are very difficult to train.

Consequence:

Networks are not good at learning non-linear functions. (like invariant masses!)

<u>In short:</u>

Can't just throw 4-vectors at NN.

Search for Input

ATLAS-CONF-2013-108

Can't just use 4v

Can't give it too many inputs

Painstaking search through input feature space.

Variable	VBF		Boosted			
	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$	$\tau_{\rm lep}\tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{\rm had} au_{\rm had}$
m ^{MMC}	•	•	•	•	•	•
$\Delta R(\tau, \tau)$	•	•	٠		•	٠
$\Delta \eta(j_1, j_2)$	•	•	•			
m_{j_1, j_2}	•	•	•			
$\eta_{j_1} \times \eta_{j_2}$ $p_{\mathrm{T}}^{\mathrm{Total}}$		•	•			
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•			
sum $p_{\rm T}$					•	•
$p_{\rm T}(\tau_1)/p_{\rm T}(\tau_2)$					•	•
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•
$x_{\tau 1}$ and $x_{\tau 2}$						•
$m_{\tau\tau,j_1}$				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta \phi_{\ell_1,\ell_2}$				•		
sphericity				•		
$p_{\mathrm{T}}^{\ell_1}$				•		
$p_{\mathrm{T}}^{j_1}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
m _T		•			•	
$\min(\Delta \eta_{\ell_1 \ell_2, jets})$	•					
$j_3 \eta$ centrality	•					
$\ell_1 \times \ell_2 \eta$ centrality	•					
$\ell \eta$ centrality		•				
$\tau_{1,2} \eta$ centrality			•			

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as $\Delta R(\tau, \tau)$ are defined either between the two leptons, between the lepton and τ_{had} , or between the two τ_{had} candidates, depending on the decay mode. 135

Search for Input

ATLAS-CONF-2013-108

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as $\Delta R(\tau, \tau)$ are defined either between the two leptons, between the lepton and τ_{had} , or between the two τ_{had} candidates, depending on the decay mode. 136

Deep networks

Real world applications

Head turn: DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a) shows the original image, and (g) shows the final, corrected version.

Paper

Deep Learning in High-Energy Physics: Improving the Search for Exotic Particles

P. Baldi,¹ P. Sadowski,¹ and D. Whiteson²

¹Dept. of Computer Science, UC Irvine, Irvine, CA 92617 ²Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

arXiv: 1402.4735 Accepted in Nature Comm.

What does the TS do?

Finds a region in variable space

Test statistic

Define µ to be signal strength, µ=0 is no signal µ=1 is theory prediction

$$Q_{LEP} = L_{s+b}(\mu = 1)/L_b(\mu = 0)$$

Where the nuisance parameters are fixed to their nominal values

Test statistic

Define µ to be signal strength, µ=0 is no signal µ=1 is theory prediction

At LEP, this was used:

$$Q_{LEP} = \frac{L(data|\mu = 1, b, \nu)}{L(data|\mu = 0, b, \nu)}$$

This also means the background estimate doesn't vary.

Tevatron

Still consider two points (0,1) but now float the NPs at those points

$$Q_{TEV} = L_{s+b}(\mu = 1, \hat{\hat{\nu}})/L_b(\mu = 0, \hat{\hat{\nu}}')$$

Ratio of profiled likelihoods:
the model is adapted to the data
even in the signal region

LHC

Profile likelihood

$$\lambda(\mu = 0) = \frac{L(data|\mu = 0, \hat{b}(\mu = 0), \hat{v}(\mu = 0))}{L(data|\hat{\mu}, \hat{b}, \hat{v})}$$

fit best value of NPs at $\mu=0$ and at best fit value of μ

Two fits to data

p values

p values

(K. Cranmer)

Philosophy

Bayesian &

Frequentist

Bayesian

<u>Data</u>: fixed <u>Parameter values</u>: unknown <u>Probability</u>: our lack of knowledge <u>PDFs over parameters</u>: sensible

Frequentist

<u>Data</u>: one example from ens. <u>Parameter values</u>: fixed (even if unknown) <u>Probability</u>: rate of occurance <u>PDFs over parameters</u>: not sensible

Bayesian Prob.

Bayes theorem:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

rearrange:

 $P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In Pictures

P, Conditional P, and Derivation of Bayes' Theorem in Pictures

Example 1

P(data|theory) != P(theory|data)

Theory = (male or female) Data = (pregnant | not pregnant)

P(pregnant | female) ~ 3%

BUT

Example 2

<u>Higgs search</u> Expected bg = 0.1 Expected signal = 10

P(N| no Higgs) = 0.1 P(N| Higgs) = 10.1

What is P(Higgs | N=8)?

$$P(H|N=8) = \frac{P(N=8|H)P(H)}{P(N=8)}$$

Depends on P(H)!

(K Cranmer)

Parameter estimation

Bayesian parameter estimation:

Want to know the probability that some parameter θ is in some range $[\theta_0, \theta_1]$

- or -

Want to find a range $[\theta_0, \theta_1]$ that has probability of 0.95

Hows

The probability that

the true value is inside an interal is:

$$1-lpha=\int_{ heta_{lo}}^{ heta_{hi}}p(heta|x)d heta$$

For lower or upper limits, choose zero or infinity as boundaries. where we integrate out the nuisance parameters:

$$p(heta|x) = \int d
u p(heta,
u|x)$$

where

$$p(heta,
u|x) = rac{p(x| heta,
u)p(heta,
u)}{p(x)}$$

These integrals can be very hard to do if the space is high dimensional.

Priors

<u>Choice of prior $p(\theta)$ </u>

- important but subjective choice

Priors

<u>Choice of prior $p(\theta)$ </u>

- Example: measuring Higgs cross-section
- Want to be unbiased: choose uniform prior?

$$\sigma=[0,\Lambda] \rightarrow P = k$$

- But σ and mass relationship makes this prior not flat in mass

- no uninformative prior across all transformations