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Models

Full MC
Fast MC

Effective models
Data-driven models



Uncertainties

We have a recipe for

f(data|theory)

But is it right?



Uncertainties

We have a recipe for

f(data|theory)

But is it right?

Theory has lots
of nuisance parameters:

cross-sections, LO, NLO...
showering details

hadronization details
detector response

There is some point in NP
space which gives

the most accurate model
but we don’t know

where it is!



Systematics
The Good
  NP can be constrained in some 
control region. Uncertainty decreases 
with luminosity.
eg. Background cross-section
      B-tagging efficiency
      Jet energy scale 

The Ugly
Underlying theoretical approach
 eg PYTHIA vs HERWIG

The Bad
  Parameters of underlying heuristic
 eg PYTHIA tunes

(Pekka Servino)



Example

Signal region:
>= 2 jets



Example

Z control region
== 0 jets



Example

Z control region
Small Missing ET



Extrapolation

Measure background in one
region, extrapolate knowledge

to another. How well do we know
rates of jet production, tails of MET?



Extrapolation

Measure background in one
region, extrapolate knowledge

to another. How well do we know
rates of jet production, tails of MET?

This is w
here experimental

cleverness and creativity

happens!



Jet energy scale

Many steps in jet production
Lots of opportunities for mistakes

Calibrate in jj, photon+jet
Extrapolate to your dataset



the shift method
Generating 

samples at arbitrary
values of NP can be

expensive!

Often, just
generate a few
and interpolate.



Histogram interpolation
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points.



dimensions
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We almost

never
generate

these off-axis
points.

We rely on
linear interpolation



Uncertainties
Uncertainty:

shift renormalization, 
factorization scales 

by 2, 1/2
measure change.

Why 2, 1/2?
 Just convention

Not 1 sigma!



Generators



fast-MC model



fast MC model
Begin with generated events

but rather than simulating microphysics,
smear particles according to resolution.



fast MC model
Less accurate, but same issues as full MC:

No analytic PDF
Uncertainties in simulation



The dream

f(data|final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M| theory)

Sum over all possible intermediate P,S,M



ME approach
If we have a parametrized detector response,

can we parameterize 

f(data|final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M| theory)



ME approach
Yes we can!



ME approach

Transfer functions reflect a very complex process
By necessity, approximations, and therefore
  uncertainties.



Data-driven model



Example: dark matter

Final state:
Two WIMPs+jet

Detector signature
Jet + MET



Mono-jet

q/g
Missing 

Momentum
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Event display



Backgrounds

q

q ν

ν

Z

Final state:
jet + MET

Process:
Z → ν ν, with jet



Backgrounds

How to estimate?

Idea: Z → ν ν   from  Z → ll

Approach: 
(1) measure Z to ll  + jet
(2) scale by known branching ratios



Details
N[Z(vv)] = N[Z(ll)] x  BF[ Z(vv) ] / BF[ Z (ll)]



Details
N[Z(vv)] = N[Z(ll)] x  BF[ Z(vv) ] / BF[ Z (ll)]

        N[Z(ll)] =  N(ll) - N(bg) / ε



Details
N[Z(vv)] = N[Z(ll)] x  BF[ Z(vv) ] / BF[ Z (ll)]

        N[Z(ll)] =  N(ll) - N(bg) / ε

From simulation

CMS PAS EXO-12-048



Effective Model



Effective Model
High-level arguments

dependence of background 
eg “smooth background”

shape of signal
eg “narrow resonance”



Effective Model
Uncertainties

Prediction under peak
depends on quality of 
side band fits

Background function
evaluate in control regions



Summary of models
MC simulation
 - sample of events from on/off simulation
 - estimate PDF from events
Fast MC simulation 
 - simpler generation model
 - still estimate PDF from events
Data-driven model
- extrapolate from control regions
Effective model
 - parametrized functional form



Summary of models

MC Simulation

Fast MC

Data-driven

Effective model

Pros Cons
detailed descr

of micro physics
very slow

must reconstruct PDF

fast approximate

Calculations by Nature
Extrapolations
from CR have 
uncertainties

fast,
physical justification

approximate
no details of

underlying effects



Hypothesis Testing



Hypothesis Testing
BSM Particle 

is real
BSM Particle 

is not real

Claim
Discovery

No Claim
of Discovery

True 
Positive

True 
Negative

False 
Negative

Type II error

False 
Positive

Type I error

α

β, power=1-β



Example

Number of Events

Freq
of occurance

H0 H1

A threshold makes sense.
Choice of position balances

Type I/II errors

Typically:
fix α

minimize β



Generalize

H0 H1

H0 H1Hypothesis
Testing

Parameter
Estimation cross-section



More complicated



Test statistic

(K. Cranmer)

Reduce vector of observables to 1 number

How to build distribution of TS? (Usually MC)
How to choose TS?



Neyman-Pearson
Statement of the problem:



Neyman-Pearson
NP lemma says that the best

test statistic is the likelihood ratio:

(Gives smallest β for fixed α)



What does the TS do?

(K. Cranmer)

Finds a region in variable space



How to find NP

The data can tell us which hypothesis is preferred via a likelihood ratio:
  LSM+X             P(data | SM+X)
  LSM  P(data | SM)

Standard Model
SM+X
Collider Data

some feature

pr
ob

ab
ili
ty
 d

en
si
tyIsolate some

feature in which
two theories
SM, SM+X
can be best
distinguished.
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e.g.
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But...

fe
at
ur
e 

2

feature 1

Standard Model
XReality is more

complicated.

The full space can be
very high dimensional.

Calculating likelihood in
d-dimensional space
requires ~100d MC events.
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ML tools
fe
at
ur
e 

2

feature 1

Standard Model
X

Classifier output

de
ns

ity

Neural networks
can learn these 

shapes in high-dim
and summarize
in a 1D output
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Neural Networks
Essentially a functional fit with many parameters

...

...
Function

Each neuron’s output
is a function of the

weighted sum of inputs.

Goal
 find set of weights

which give most useful function

Learning
 give examples, back-propagate

 error to adjust weightsInput
Hidden

Output
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Neural Networks
Essentially a functional fit with many parameters

...

...
Problem:

Networks with > 1 layer are
very difficult to train.

Consequence:
Networks are not good

at learning non-linear functions.
(like invariant masses!)

In short:
Can’t just throw 4-vectors at NN.

Input
Hidden

Output
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Search for Input
ATLAS-CONF-2013-108

Can’t just use 4v

Can’t give it too 
many inputs

Painstaking search 
through input 
feature space.
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Search for Input
ATLAS-CONF-2013-108

Can’t just use 4v

Can’t give it too 
many inputs

Painstaking search 
through input 
feature space.

Also true for 

BDTs, SVNs,  etc

136



Deep networks
...

...

Input
Hidden

Output

...

Hidden

...

Hidden

...

Hidden

New tools
let us 
train
deep 

networks.

How well
do they work?

137



Real world applications
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Paper

arXiv: 1402.4735
Accepted in Nature Comm.
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What does the TS do?

(K. Cranmer)

Finds a region in variable space

What your MVA 

is try
ing to learn!



Test statistic

At LEP, this was used:

Define μ to be signal strength, 
μ=0 is no signal

μ=1 is theory prediction

Where the nuisance parameters 
are fixed to their nominal values



Test statistic

At LEP, this was used:

Define μ to be signal strength, 
μ=0 is no signal

μ=1 is theory prediction

This also means the background
estimate doesn’t vary.



Tevatron
Still consider two points (0,1)

but now float the NPs at those points

Ratio of profiled likelihoods:
the model is adapted to the data 

even in the signal region



LHC
Profile likelihood

fit best value of NPs at μ=0
and at best fit value of μ 



Two fits to data



p values

p0 =
probability

to observe data
or more signal-like
under background 

hypothesis

(K. Cranmer)



p values

pμ =
probability

to observe data
or less signal-like
under signal+b 

hypothesis

(K. Cranmer)



Philosophy

Bayesian
&

Frequentist



Bayesian

                         Data: fixed
       Parameter values: unknown
                Probability: our lack of knowledge
PDFs over parameters: sensible



Frequentist

                         Data: one example from ens.
       Parameter values: fixed (even if unknown)
                Probability: rate of occurance
PDFs over parameters: not sensible



Bayesian Prob.



In Pictures



Example 1 
P(data|theory) != P(theory|data)

Theory = (male or female)
Data  = (pregnant | not pregnant)

P(pregnant | female) ~ 3%

          BUT

P(female | pregnant) >99%

c



Example 2

(K Cranmer)

Higgs search
Expected bg = 0.1
Expected signal = 10

P(N| no Higgs) = 0.1
P(N| Higgs) = 10.1

What is P(Higgs|N=8)?

Depends on  P(H)!



Parameter estimation

Bayesian parameter estimation:
Want to know the probability that some 
parameter θ is in some range [θ0,θ1]

        - or -

Want to find a range [θ0,θ1] that has probability 
of 0.95



Parameter estimation

Bayesian parameter estimation:
Want to know the probability that some 
parameter θ is in some range [θ0,θ1]

        - or -

Want to find a range [θ0,θ1] that has probability 
of 0.95

Rem
em

ber:

Pro
bability

 re
flec

ts l
ack 

of kn
owled

ge, 
and

 

prio
r in

form
ation.



How?



Priors
Choice of prior p(θ)
- important but subjective choice



Priors
Choice of prior p(θ)
- Example: measuring Higgs cross-section
- Want to be unbiased: choose uniform prior?

 σ=[0,Λ] →  P = k

- But σ and mass relationship
 makes this prior not flat in mass

- no uninformative prior across all transformations


