Practical Statistics
 for Particle Physics

Daniel Whiteson, UC Irvine HCPSS, 2014: Lecture 2

Outline

I. Mathematical preliminaries II. Fitting III. Data models IV. Hypothesis testing
V. Tools and examples

Models

Full MC Fast MC Effective models Data-driven models

Uncerfainties

We have a recipe for

$f($ data | theory)

But is it right?

Uncertainties

We have a recipe for

$f($ data | theory)

But is it right?

Theory has lots
of nuisance parameters: cross-sections, LO, NLO... showering details hadronization details detector response

There is some point in NP space which gives the most accurate model
but we don't know where it is!

Systematics

The Good

NP can be constrained in some control region. Uncertainty decreases with luminosity.
eg. Background cross-section
B-tagging efficiency
Jet energy scale
The Ugly
Underlying theoretical approach eg PYTHIA vs HERWIG

The Bad
Parameters of underlying heuristic eg PYTHIA tunes

(Pekka Servino)

Example

Example

Example

Extrapolation

Measure background in one region, extrapolate knowledge to another. How well do we know rates of jet production, tails of MET?

Extrapolation

This is

$$
\begin{aligned}
& \text { his is } \\
& \text { cleverness happens! } \\
& \text { hap main one }
\end{aligned}
$$ rapolate knowledge Mother. How well do we know rates of jet production, tails of MET?

Jeł energy scale

Total uncertainty
Absolute scale
-Relative scale

- Pile-up NPV=8
\square Jet flavor
${ }^{\nabla}$ Time stability
Anti-k $\mathrm{R}=\mathbf{0 . 5} \mathrm{PF}$
$\eta_{\text {jet }} \mathrm{l}=0$

Many steps in jet production Lots of opportunities for mistakes Calibrate in ii, photon+jet Extrapolate to your dataset

the shift method

Generating

 samples at arbitrary values of NP can be expensive!Often, just generate a few and interpolate.

Histogram interpolation

A.L. Read / Nuclear Instruments and Methods in Physics Research A 425 (1999) 357-360

dimensions

systematic A

dimensions

$$
\begin{array}{cc|c|c}
& \begin{array}{c}
\text { systematic A }
\end{array} & \begin{array}{c}
\text { We often } \\
\text { generate }
\end{array} \\
\text { these off-axis } \\
\text { points. }
\end{array}
$$

dimensions

$$
\begin{aligned}
& \text { We almost }
\end{aligned}
$$

> We rely on
> linear interpolation

Uncertainties

Scale variation

Uncertainty:

 shift renormalization, factorization scales$$
\text { by } 2,1 / 2
$$

measure change.

Why 2, 1/2?
Just convention

Not 1 sigma!

Generałors

fast-MC model

fast MC model

Begin with generated events

 but rather than simulating microphysics, smear particles according to resolution.
Delphes

fast simulation

fast MC model

Less accurate, but same issues as full MC: No analytic PDF Uncertainties in simulation

The dream

f(data | final-state particles P)

$x \mathrm{f}($ final state particles $\mathrm{P} \mid$ showered particles S$)$
$\times \mathrm{f}($ showered particles $\mathrm{S} \mid$ hard scatter products M)
$\times f($ hard scatter products $M \mid$ theory $)$

Sum over all possible intermediate P,S,M

ME approach

If we have a parametrized detector response,

 can we parameterizef(data|final-state particles P)
$\times \mathrm{f}($ final state particles $\mathrm{P} \mid$ showered particles S$)$
x $f($ showered particles S | hard scatter products $M)$
$\times f($ hard scatter products $M \mid$ theory $)$

ME approach

Yes we can!

$$
P\left(\mathbf{x} \mid M_{t}\right)=\frac{1}{N} \int d \Phi\left|\mathcal{M}_{t t}\left(p ; M_{t}\right)\right|^{2} \prod_{j e t s} f\left(p_{i}, j_{i}\right) f_{P D F}\left(q_{1}\right) f_{P D F}\left(q_{2}\right)
$$

Phase-space Integral

Matrix Element

ME approach

$$
\begin{aligned}
P\left(\mathbf{x} \mid M_{t}\right) & =\frac{1}{N} \int d \Phi\left|\mathcal{M}_{t \bar{t}}\left(p ; M_{t}\right)\right|^{2} \prod_{j e t s} f\left(p_{i}, j_{i}\right) f_{P D F}\left(q_{1}\right) f_{P D F}\left(q_{2}\right) \\
& \\
\begin{array}{ll}
\text { Phase-space } \\
\text { Integral }
\end{array} & \begin{array}{l}
\begin{array}{l}
\text { Matrix } \\
\text { Element }
\end{array}
\end{array}
\end{aligned}
$$

Transfer functions reflect a very complex process
By necessity, approximations, and therefore uncertainties.

Data-driven model

Example: dark matter

Mono-jeł

Missing --................. q/g
 Momentum

Event display

CMS Experiment at LHC, CERN
Data recorded: Sun Oct 30 16:05:09 2011 CEST
Run/Event: 180250 / 878954337
Lumi section: 481

Backgrounds

Final state:
jet + MET

Process:
$Z \rightarrow v v$, with jet

Backgrounds

How to estimate?

Idea: $Z \rightarrow v \vee$ from $Z \rightarrow$ II

Approach:
(1) measure Z to II + je†
(2) scale by known branching ratios

Defails

$$
N[Z(v v)]=N[Z(I I)] \times B F[Z(v v)] / B F[Z(I I)]
$$

Defails

$$
\begin{aligned}
N[Z(\mathrm{vv})]= & N[Z(I I)] \times B F[Z(\mathrm{vv})] / B F[Z(I I)] \\
& N[Z(I I)]=N(I I)-N(b g) / \varepsilon
\end{aligned}
$$

Defails

$$
N[Z(\mathrm{vv})]=\mathrm{N}[\mathrm{Z}(\mathrm{II})] \times \mathrm{BF}[\mathrm{Z}(\mathrm{vv})] / \mathrm{BF}[\mathrm{Z}(\mathrm{II})]
$$

$$
N[Z(I I)]=N(I I)-N(b g) / \varepsilon
$$

CMS PAS EXO-12-048

Effective Model

Effective Model

High-level arguments

dependence of background eg "smooth background"

shape of signal

eg "narrow resonance"

Effective Model

Summary of models

MC simulation

- sample of events from on/off simulation
- estimate PDF from events

Fast MC simulation

- simpler generation model
- still estimate PDF from events

Data-driven model

- extrapolate from control regions

Effective model

- parametrized functional form

Summary of models

	Pros	Cons
MC Simulation	$\begin{array}{c}\text { detailed descr } \\ \text { of } \text { micro physics }\end{array}$	$\begin{array}{c}\text { very slow } \\ \text { must reconstruct PDF }\end{array}$

Data-driven Calculations by Nature
Effective model
fast,
fast
Fast MC physical justification
approximate
Extrapolations from CR have uncertainties approximate no details of underlying effects

Hypothesis Testing

Hypothesis Testing

Claim Discovery

No Claim of Discovery

BSM Particle BSM Particle is real is not real

True	False Positive Positive Type I error

False
Negative
Type II error
β, power=1- β

True
Negative

Example

A threshold makes sense.
Choice of position balances
Type I/II errors

Typically:
fix α minimize β

Generalize

Hypothesis Testing

HO H1

Parameter
Estimation
H 1
cross-section

More complicated

Test statistic

Reduce vector of observables to 1 number

How to build distribution of TS? (Usually MC) How to choose TS?
(K. Cranmer)

Neyman-Pearson

Statement of the problem:

Given some prob that we wrongly reject the Null hypothesis

$$
\alpha=P\left(x \notin W \mid H_{0}\right)
$$

Find the region W (where we accept H_{0}) such that we minimize the prob

$$
\beta=P\left(x \in W \mid H_{1}\right)
$$

	BSM Particle is real	BSM Particle is not real		
Claim Discovery	True Positive	False Positive		
No Claim Type I error				
False				Negative
:---:	:---:			
Type II error				
β, power=1- β	\quad	True		
:---:				
Negative				

Neyman-Pearson

NP lemma says that the best

 test statistic is the likelihood ratio:$$
\frac{P\left(x \mid H_{1}\right)}{P\left(x \mid H_{0}\right)}>k_{\alpha}
$$

(Gives smallest β for fixed α)

	BSM Particle is real	BSM Particle is not real		
Claim Discovery	True Positive Fo Claim N Discovery Negative	False Positive		
Type I error				
Type II error				
β, power=1- β			\quad	True
:---:				
Negative				

What does the TS do?

Finds a region in variable space

(K. Cranmer)

How to find NP

Isolate some

 feature in which two theoriesSM, SM+X can be best distinguished.

Standard Model
SM+X

- Collider Data

The data can tell us which hypothesis is preferred via a likelihood ratio:

$$
\frac{L_{S M+X}}{L_{S M}} \quad \frac{P(\text { data } \mid S M+X)}{P(\text { datata } \mid S M)}
$$

e.g.

But...

Reality is more complicated.

The full space can be very high dimensional.

Calculating likelihood in d-dimensional space requires $\sim 100^{\mathrm{d}} \mathrm{MC}$ events.

Standard Model

feature 1

ML tools

Neural Nełworks

Essentially a functional fit with many parameters

Function

Each neuron's output is a function of the weighted sum of inputs.

Goal

find set of weights which give most useful function

Learning

give examples, back-propagate

Neural Nełworks

Essentially a functional fit with many parameters

Problem:

Networks with > 1 layer are very difficult to train.

Consequence:

Networks are not good at learning non-linear functions. (like invariant masses!)

In short:

Can'† just throw 4-vectors at NN.

Search for Inpuł

ATLAS-CONF-2013-108

Can't just use 4v

Can't give it too many inputs

Painstaking search through input feature space.

Variable	VBF			Boosted		
	$\tau_{\text {lep }} \tau_{\text {lep }}$	$\tau_{\text {lep }} \tau_{\text {had }}$	$\tau_{\text {had }} \tau_{\text {had }}$	$\tau_{\text {lep }} \tau_{\text {lep }}$	$\tau_{\text {lep }} \tau_{\text {had }}$	$\tau_{\text {had }} \tau_{\text {had }}$
$m_{r T}^{\text {MMC }}$	-	-	-	-	-	-
$\Delta R(\tau, \tau)$	\bullet	-	-		\bullet	-
$\Delta \eta\left(j_{1}, j_{2}\right)$	\bullet	\bullet	-			
$m_{j 1, h_{2}}$	-	-	\bullet			
$\eta_{i_{1}} \times \eta_{j_{2}}$		-	-			
$p_{\text {T }}^{\text {Iotal }}$		-	-			
sum $p_{\text {T }}$					-	\bullet
$p_{\mathrm{T}}\left(\tau_{1}\right) / p_{\mathrm{T}}\left(\tau_{2}\right)$					-	-
$E_{T}^{\text {miss }} \phi$ centrality		-	-	-	-	-
$x_{\tau 1}$ and $x_{\tau 2}$						-
$m_{\tau \tau, j 1}$				-		
$m_{\ell_{1}, \ell_{2}}$				-		
$\Delta \phi_{\ell_{1}, \ell_{2}}$				-		
sphericity				-		
$p_{T}^{\ell_{1}}$				-		
$p_{\mathrm{T}}^{j_{1}}$				-		
$E_{\mathrm{T}}^{\mathrm{miss}} / p_{\mathrm{T}}^{\ell_{2}}$				-		
m_{T}		-			-	
$\min \left(\Delta \eta_{\ell_{1} \ell_{2} \text { jets }}\right)$	-					
$j_{3} \eta$ centrality	-					
$\ell_{1} \times \ell_{2} \eta$ centrality	\bullet					
$\ell \eta$ centrality		-				
$\tau_{1,2} \eta$ centrality			-			

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as $\Delta R(\tau, \tau)$ are defined either between the two leptons, between the lepton and $\tau_{\text {had }}$, or between the two $\tau_{\text {had }}$ candidates, depending on the decay mode.

Search for Input

ATLAS-CONF-2013-108

Can't just use 4v

Variable	$\tau_{\text {lep }} \tau_{\text {lep }}$
$\frac{m_{r T}^{M M C}}{D^{\prime}}$	VBF

Can't give it +
many ing AlsO trues,
etc \vdots
Painstakins $B D T S$, through inp
feature space.

Table 3: Discriminating variables used for each channel and category. The filled circles identify which variables are used in each decay mode. Note that variables such as $\Delta R(\tau, \tau)$ are defined either between the two leptons, between the lepton and $\tau_{\text {had }}$, or between the two $\tau_{\text {had }}$ candidates, depending on the decay mode.

Deep nełworks

New tools

 let us train deep networks.How well do they work?

Real world applications

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Head turn: DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a) shows the original image, and (g) shows the final, corrected version.

Paper

Deep Learning in High-Energy Physics: Improving the Search for Exotic Particles

P. Baldi, ${ }^{1}$ P. Sadowski, ${ }^{1}$ and D. Whiteson ${ }^{2}$
${ }^{1}$ Dept. of Computer Science, UC Irvine, Irvine, CA 92617
${ }^{2}$ Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

arXiv: 1402.4735
 Accepted in Nature Comm.

What does the TS do?

Finds a region in variable space

(K. Cranmer)

Test statistic

At LEP, this was used:
Define μ to be signal strength, $\mu=0$ is no signal $\mu=1$ is theory prediction

$$
Q_{L E P}=L_{s+b}(\mu=1) / L_{b}(\mu=0)
$$

Where the nuisance parameters are fixed to their nominal values

Test statistic

Define μ to be signal strength, $\mu=0$ is no signal
At LEP, this was used: $\mu=1$ is theory prediction

$$
Q_{L E P}=\frac{L(\text { data } \mid \mu=1, b, \nu)}{L(\text { data } \mid \mu=0, b, \nu)}
$$

This also means the background estimate doesn't vary.

Tevałron

Still consider two points $(0,1)$ but now float the NPs at those points

$$
Q_{T E V}=L_{s+b}(\mu=1, \hat{\hat{\nu}}) / L_{b}\left(\mu=0, \hat{\hat{\nu}}^{\prime}\right)
$$

the model is adapted to the data even in the signal region

LHC

Profile likelihood

$$
\lambda(\mu=0)=\frac{L(\text { data } \mid \mu=0, \hat{b}(\mu=0), \hat{\hat{v}}(\mu=0))}{L(\operatorname{data} \mid \hat{\mu}, \hat{b}, \hat{v})}
$$

fit best value of NPs at $\mu=0$ and at best fit value of μ

Two fits to data

$$
\begin{aligned}
& \lambda(\mu=0)=\frac{L(\text { data } \mid \mu=0, \hat{\hat{b}}(\mu=0), \hat{\hat{v}}(\mu=0))}{L(\text { data } \mid \hat{\mu}, \hat{b}, \hat{v})} \quad L(\text { data } \mid \mu=0, \hat{\hat{b}}, \hat{\hat{\nu}})
\end{aligned}
$$

p values

$$
p_{0}=P\left(q_{0} \geq q_{o}^{o b s}\right)
$$

p values

> $\mathrm{P}_{\mu}=$ probability to observe data or less signal-like under signal+b hypothesis

Philosophy

Bayesian
\&
Frequentist

Bayesian

Data: fixed

Parameter values: unknown Probability: our lack of knowledge
PDFs over parameters: sensible

Frequentist

Data: one example from ens. Parameter values: fixed (even if unknown) Probability: rate of occurance
PDFs over parameters: not sensible

Bayesian Prob.

Bayes theorem:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)}
\end{aligned}
$$

rearrange:

$$
\begin{gathered}
P(A \mid B) P(B)=P(A \cap B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

In Picłures

P, Conditional P, and Derivation of Bayes' Theorem

 in Pictures

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A})=\frac{0}{\square} \\
& \mathbf{P}(\mathbf{B})=\frac{0}{\square} \\
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{0}{\square} \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B} \mid \mathbf{B})=\frac{0}{\square}
\end{aligned}
$$

$$
\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\frac{0}{\square} \times \frac{0}{0}=\frac{0}{\square}=\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

$$
\mathbf{P}(\mathbf{B}) \times \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{0}{\square} \times \frac{0}{\square}=\frac{0}{\square}=\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

$$
\Rightarrow P(B \mid A)=P(A \mid B) \times P(B) / P(A)
$$

Example 1

$\mathrm{P}($ data |theory) ! $=\mathrm{P}($ theory \mid data)
Theory = (male or female)
Data $=$ (pregnant | not pregnant)
P(pregnant | female) ~ 3\%

BUT

P(female | pregnant) >99\%

Example 2

Higgs search

Expected bg = 0.1
Expected signal $=10$
$P(N \mid$ no Higgs $)=0.1$
$P(N \mid$ Higgs $)=10.1$
What is $\mathrm{P}($ Higgs $\mid \mathrm{N}=8)$? $\quad P(H \mid N=8)=\frac{P(N=8 \mid H) P(H)}{P(N=8)}$
Depends on $\mathrm{P}(\mathrm{H})$!
(K Cranmer)

Parameter estimation

Bayesian parameter estimation:

Want to know the probability that some parameter θ is in some range $\left[\theta_{0}, \theta_{1}\right]$

- Or -

Want to find a range $\left[\theta_{0}, \theta_{1}\right]$ that has probability of 0.95

Parameter estimation

Bayesian parameter estimatio-

Want to know the probat"
parameter θ is in som

- or -

Want ' of

How?

The probability that the true value is inside an interal is:

$$
1-\alpha=\int_{\theta_{l o}}^{\theta_{h i}} p(\theta \mid x) d \theta
$$

For lower or upper limits, choose zero or infinity as boundaries. where we integrate out the nuisance parameters:

$$
p(\theta \mid x)=\int d \nu p(\theta, \nu \mid x)
$$

where

$$
p(\theta, \nu \mid x)=\frac{p(x \mid \theta, \nu) p(\theta, \nu)}{p(x)}
$$

These integrals can be very hard to do if the space is high dimensional.

Priors

Choice of prior $\mathrm{p}(\theta)$

- important but subjective choice

Priors

Choice of prior $\mathrm{p}(\theta)$

- Example: measuring Higgs cross-section
- Want to be unbiased: choose uniform prior?

$$
\sigma=[0, \wedge] \rightarrow P=k
$$

- But σ and mass relationship makes this prior not flat in mass

-no uninformative prior across all transformations

