Practical Statistics

for Particle Physics

é 9"
.‘{' “ r | 'p’ '.
T i H
‘“ ':
zﬁ.‘ m i cs
: E T\ ;
?\& Yﬂ,él /

e :.'
\\’“5 ) /
\/( n/xNi o

.
.......
----------




Caveat

| am not a professional statistician!




Caveat

| am not a professional statistician!

Google

statistician

Web Images
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Why do we need statistics?




“The data were inconclusive,
so we applied statistics”

L.Lyons (2)




What’s in an event®
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-
Run Number: 166658, Event Number: 34533931

No event can be unambiguously interpreted.




Unambiguous data

Ok, but see:
http://cerncourier.com/cws/article/cern/54388




Why statistics?

2 GeV

p,(n) = 18 GeV
myis (I-lp'l"h) = 47 GeV
") =8 Gev R ExpeRiment

ET* =7 GeV
Run Number: 160613, Event Number: 9209492

Date: 2010-08-03 02:12:37 CEST

Z — 1T S
Candidate in 7 TeV Collisions’, »-

nature of our data demands it.
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Other lectures

Kyle Cranmer:
http://indico.cern.ch/event/117033 /material /slides/12contribld=19

hitps://indico.cern.ch/event/243641/

(I have borrowed many of his drawings)




|. Mathematical preliminaries
Il. Fitting

lll. Data models

IV. Hypothesis testing

V. Tools and examples




Mathematics




Probability

P is a probability over the space S ift

e for every subspace A, P(A) > 0
e for disjoint subspaces A and B, P(AorB) = P(A) + P(B).
e P(S)=1

Probabilities are between zero and one.




examples

P(A)= @/

P(B)= M/
P(A or B) =

+l/

P is a probability over the space S iff
o for every subspace A, P(A) >0
e for disjoint subspaces A and B, P(AorB) = P(A) + P(B).
e P(S)=1

Probabilities are between zero and one.

P(S) = / =]

P(A)+P(B)




Conditional Prob

P(B) = ZP(B\Ai)P(Az’)

Need to consider the various cases A;
then the probability of B in each
of these cases.




Practical application




Conditional Prob

P(B) = Z P(B|A;)P(A;)

Russian Roulette

A1-As = no bullet

] _5 1o PUTe P(death | no bullet) = 0.0001
As ~ bullet P(death|bullef) = 1-0.0001
P(AI)=]/6 (eCﬂ'IUGf)—-.OO

P(death) = 0.0001*5/6 + 1/6*(0.9999) = "1/6




Probability Density

P(z € |z,x +dz|) = f(x)dz

Note f(x) is not a probability,
can have any positive value.

But must be normalized:

[ f@)iz =1 N




examples

Delta function

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

02 PRI AR AR B B .




Parametric pdfs

Family of PDFs

1 (z—p)°
G(x|p, o) = e 202

o\ 2T

Described by parameters: o,




examples

Normal Distribution PDF
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Described by parameters: o,




PDFs and Likelihoods

PDF:

For fixed parameters, gives probability
density of various possible data.

Likelihood:

For fixed data, gives relative likelihood of
various parameters




Likelihood

Variation of pdf w.r.t to parameters, for fixed data

L(o, ) = P(datalo, 1)

Note that it is not normalized

/L(G,u) # 1







The problem

r = (1,...,TN) Your data

— (91, ey On) Your parameters

Problem: Find parameters which are most
ikely to have generated your data




The problem

Normal Distribution PDF
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Max Likelihood Method

r = (1,...,TN) Your data

0 = ((91, ey Qn) Your parameters
Your likelihood

L) = [ f(zs:0

Method: maximize L w.r.t. parameters!




The problem

Normal Distribution PDF
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The problem

Normal Distribution PDF
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The problem

Normal Distribution PDF
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The problem

Normal Distribution PDF
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The problem

Normal Distribution PDF
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Max likelihood fitting

Normal Distribution PDF
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Max likelihood fitting

Normal Distribution PDF

08 | | -

0.7 For best sigma = 0.5

0.6 L t =2
£ 0. Relative =1
% 0.4 q L =1
T Ps valves |

0.2 ® are

o % I what's

I / i important
TR s % L_




Max likelihood fitting

Normal Distribution PDF
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Minimization

Finding likelihood maximum is non-trivial

1D schematic of multidimensional space

No ability to predict functional
form of function, enormous space

In general, not a solved problem
Heuristic strategies need to start close to solution.
Susceptible to local minima




Nuisance parameters

L(0) = Hf(fl?z-; 0)

9 — (91, coey Qn)

Likelihood can have several parameters

The ones we care about: Parameter of Interest
The ones we don’t: nuisance parameters




L(B,s,m) = B + Gauss(s,mu)

Background level under peak

One (wo)man’s POl is another’s NP




Binned lhood

,uZ(H) is the predicted value in the bin




Binned likelihood

L) = [] Pois(ni|u(0))

bini=1

iy
o ILLZ(O) is the predicted value in the bin
o e
e e,
oo o
e e
ros: cons:
(1) fast, no need to loop beware overly large
over all data. or small bins
(2) sometimes don't (approaches unbinned

have unbinned PDF as bin size —0)




Binned likelihood

L) = |] Pois(nlu(6))

bini=1

o e /’LZ (9) is the predicted value in the bin

. .
¢ o e ®e

how to choose binning?
approach experimental resolution
ensure all bins have valid predicted value




Goodness of fit
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Likelihood will find best fit

but will not tell you how well it is fit




Chi-squared fitting

data | Prediction

unce rtanty







PDF of chi-squared

Chi Squared Distribution PDF
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You can tell the quality of the fit.




goodness of fit

50

40

30

Number

20

10

huLI
0 ekl I ekl Lol NPT BT ﬂnh PR R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

chi-squared value will be very large
chi-squared prob will be very small




Mendel’s data

hitp://nih.gov/about/director/ebiomed/mendel.htm

1. A cursory look at Mendel's various observations soon makes a statistically literate person notice that they
come, over and over again, uncomfortably close to Mendel's expectations. As Edwards put it, "one can applaud
the lucky gambler; but when he is lucky again tomorrow, and the next day, and the following day, one is
entitled to become a little suspicious" [5]. The precise calculations are still under dispute, but the best current
estimate suggests that results as close as or closer to expectations as the ones reported by Mendel would occur
in only 1 out of 33,000 replications [6, p. 921]. In other words, it is virtually inconceivable that Mendel
obtained his "good" results by pure chance.

http://www.genetics.org/content/175/3 /975 .full.pdf+html

Altogether, the experiments yielded 399 parents clas-
sified as heterozygous and 201 parents classified as ho-
mozygous. Fisher noted that the expected values from
Equation 1 are 377.5 and 222.5, respectively. A chi-square
test yields the test statistic 3.31, which has an associated
Pvalue of 0.069. This does not differ significantly from
Fisher’s expectation; nevertheless, it fanned Fisher’s sus-
picion because he writes, “a deviation as fortunate as
Mendel’s is to be expected once in twenty-nine trials”
(F1sHER 1936, pp. 125-126).




Data models




Google

Data models

data models

Web Images

| want to build
a mansion

| want to Build a
Hybrid Automobile

| want to build
a Spaceship

I want to build an
Operating System

| want to build
an Application

| want to build
a Warehouse

| want to build
a Database

What do | need
to Accomplish my
Goal?

You Need a Model




Models & Statistics

Physics:

our model of the expected
results of the experiment
f( data | theory )

Provides:

- PDF for data as a
function of POI, NPs

- generate pseudo-data

- fix data to get lhood




Models & Statistics

Physics:

our model of the expected

results of the experiment
f( data | theory )

Provides:

- PDF for data as a
function of POI, NPs

- generate pseudo-data

- fix data to get lhood

Statistics:

use model and data
to make statistical
statements about POls:

- parameter estimates
- hypothesis testing
- confidence

interval




Models & Statistics

Physics:

our Approaches: jcted

reFSL MC-driven PNl

( fast-MC driven
Data-driven

Pro

E _E_ffechve models

function of POI, NPs
- generate pseudo-data
- fix data to get lhood

Statistics:

Use M Approaches:
to md  Frequentist
stater  Bqgyesian

)Ns:

~Pare E.B Hybrid 'S
-h)’pbulm—rcvrmy

- confidence
interval




Models & Statistics

Physics: .
L3IES Statistics:
our hes. ycted
s pproaches: use M Approaches:

' . ant
f MC-driven tg—mﬂ-*Frequentist
fast-MC driven S Bayesian Ms:
Data-driven -p F-B Hybrid 18

Pro

E_E_ffective models - hypfc:...w.rrwm-.tﬂ
function of POI, NPs confidence
interval

- generate pseudo-data
- fix data to get lhood




Models & Statistics

Physics:

Statistics:
°Y"" Approaches: ycted use m
res, CPPOSEIER Approaches:
£ MC-driven ; Frequentist

fast-MC c!riven Bayesian )Ms:

Pro Data-drlven F-B H)’bl‘ld 'S
—— Effective models - hypoimess rosmmy
-PC__

- confidence

function of POI, NPs

- generate pseudo-data
- fix data to get lhood

interval




Upshot

Model building is distinct from stat interpretation

Note: some stats packages have

implied model choices
(eg MC limit uses histograms, so no unbinned PDFs)

Quality of your result comes
from the quality of the model

This idea: K. Cranmer (I think)




Full MC
Fast MC

Effective models
Data-driven models




Full MC Models
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Full MC model

We have a good
understanding of
of the pieces

Do we have -~

f(data | theory)?

Parton (A
Density W ] N
Functions P




What would

f(data |theory)

look like®




f(data | final-state particles P)

x f(final state particles P|showered particles S)
x f(showered particles S |hard scatter products M)

x f(hard scatter products M | theory)

Sum over all possible intermediate P,S,M




The drea

Detector Response

.
f(data | final-state particles P)

Hadronization

x f(final stafe parficles P|showered narticles S)
Showering

x f(showered particles m scatter products M)

x f(hard scatter products M | theory)

/ Hard

Parton scaftering

Sum over all pensity € intermediate P,S, m

Functions




The dream

f(hard scatter products M | theory)

diagram 1

Theory well defined
automatic calculators exist
for almost any (B)SM theory




The dream

f(hard scatter products M | theory)

automat ators exist
for almost ¢ )SM theory




The nightmare

f(data | final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S |hard scatter products M)

We have: solid understanding of microphysics
We need: analytic description of high-level physics







The solution

We have: solid understanding of microphysics
We need: analytic description of high-level physics
But: only heuristic lower-level approaches exist

lterative simulation strategy, no overall PDF

lterative approach
(1) Draw events from f(M |theory)
(2) add random showers

(3) do hadronization
(4) simulate detector




The solution

We have: solid understanding of microphysics
We need: analytic description of high-level physics
But: only heuristic lower-level approaches exist

lterative simulation strategy, no overall PDF

What do we get
Arbitrarily large samples of events

drawn from f(data|theory), but not
the PDF itself




The problem

Don’t know PDF, have events drawn from PDF

N

; (K. Cranmer)

L L

Need to recreate PDF




What do we need?

Want:

our model of the expected

results of the experiment ~ We have:
f( data | theory ) A tool that can generate

sample event data

Provides:
- PDF for dqfq as a HOW dO we use i'h(]i'

function of POI, NPs to build our PDF?

- generate pseudo-data
- fix data to get lhood




MC events to PDF

Approach 1: histogram

f(x)
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Curse of Dimensionality

How many events ) = S

do you need gorp T e :
to describe a 1D °8F E

distribution? O(100) | 5
istribution? O ) Z:: 7/]&( 3 :
/

An n-D distribution?  o2f

T | TN

O(-Ioon) -3 -2 -1 0 2 3

X
(K. Cranmer)




The nightmare

f(data | final-state particles P)

x f(final state particles P|showered particles S)

x f(showered particles S |hard scatter products M)

“data” is a T00M-d vector!




The nightmare

f(data | final-state particles P)

-y
x f(final stot ed particles S)

x f(showered ter products M)

actor!




MC events to PDF

Approach 2: probability density estimates

(K. Cranmer)




Prob Density Estimate

Approach 2: probability density estimates

3 K.Cranmer, Comput.Phys.Commun. 136 (2001).
.| [hep-ex/0011057]

Density

Probability

Neural Network QOutput

More effective use of events,
require fewer events to make smooth prediction




Normalized Events / 0.1
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MC events to PDF

Approach 3: parametric description
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Fit function to
sample events

Templates vary
as a function of POI




Full MC example

CMS (s=8TeV, [Ldt=19.5fb"
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Data/MC
o =
CULON

Entries / 0.05
5, Q

Full MC example

CMS

(s=8TeV, [Ldt=19.5fb"
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