Practical Statistics for Particle Physics

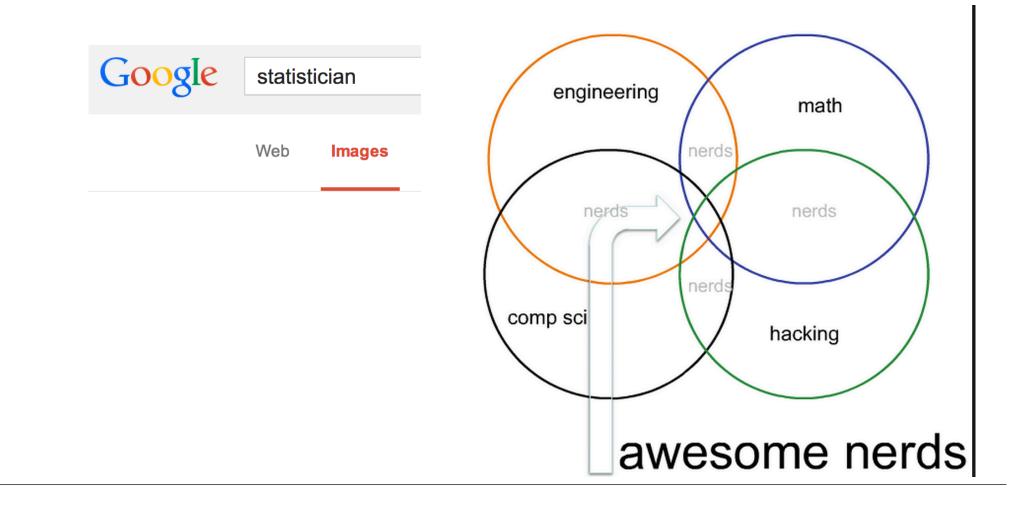
Daniel Whiteson, UC Irvine HCPSS, 2014

Caveat

l am not a professional statistician!

Caveat

l am not a professional statistician!



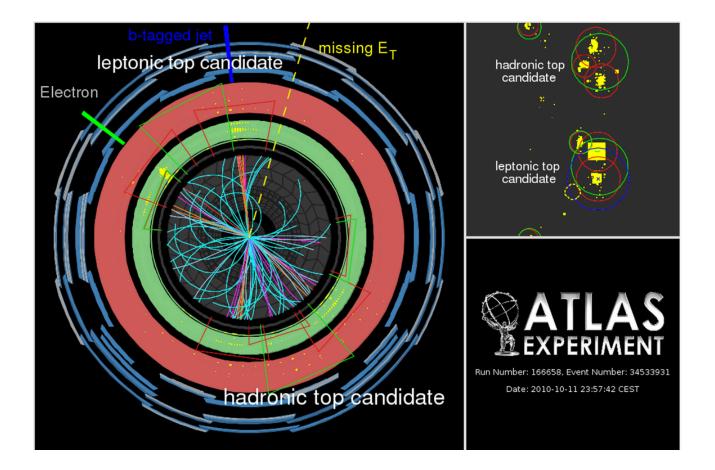
Motivation

Why do we need statistics?

"The data were inconclusive, so we applied statistics"

L.Lyons (?)

What's in an event?

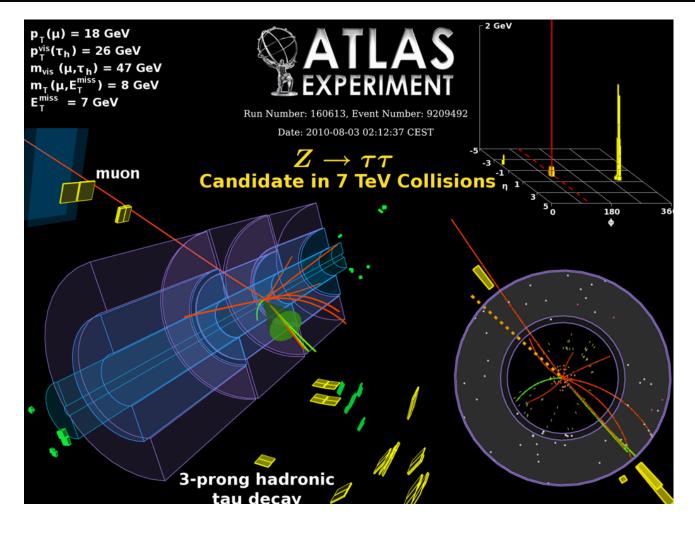


No event can be unambiguously interpreted.

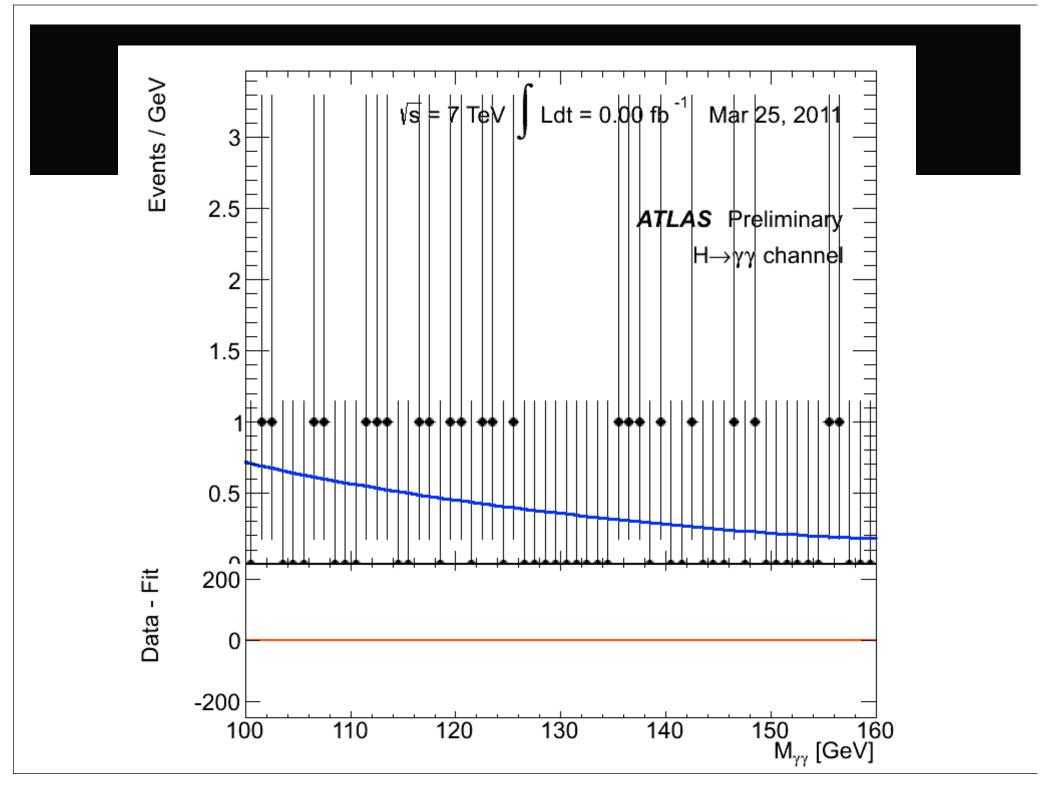
Unambiguous data

Ok, but see: http://cerncourier.com/cws/article/cern/54388

Why statistics?



The nature of our data demands it.



Other lectures

Kyle Cranmer:

http://indico.cern.ch/event/117033/material/slides/1?contrib1d=19 https://indico.cern.ch/event/243641/

(I have borrowed many of his drawings)

Outline

I. Mathematical preliminaries II. Fitting III. Data models IV. Hypothesis testing V. Tools and examples

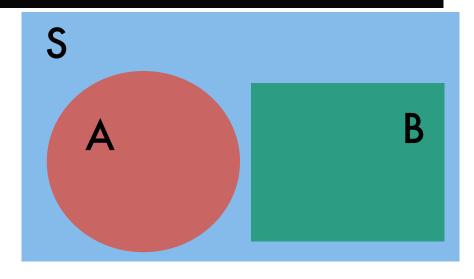
Mathematics

Probability

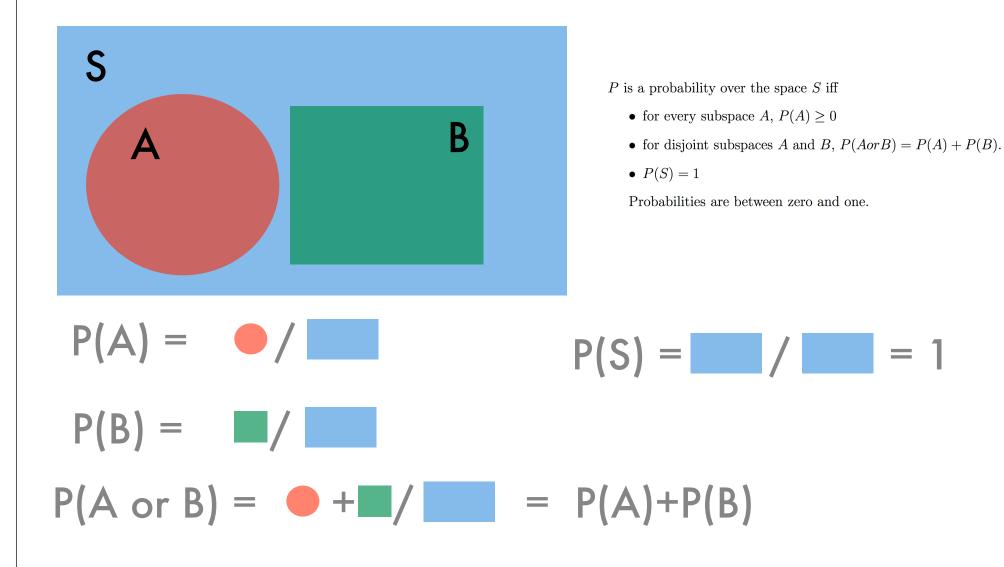
 ${\cal P}$ is a probability over the space ${\cal S}$ iff

- for every subspace $A, P(A) \ge 0$
- for disjoint subspaces A and B, P(AorB) = P(A) + P(B).
- P(S) = 1

Probabilities are between zero and one.



examples



Conditional Prob

$P(B) = \sum_{i} P(B|A_i)P(A_i)$

Need to consider the various cases A_i then the probability of B in each of these cases.

Practical application

Conditional Prob

$$P(B) = \sum_{i} P(B|A_i)P(A_i)$$

<u>Russian Roulette</u> $A_1-A_5 = no bullet$ $A_6 = bullet$ P(Ai) = 1/6

P(death | no bullet) = 0.0001P(death | bullet) = 1.0.0001

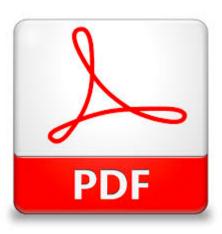
P(death) = 0.0001*5/6 + 1/6*(0.9999) = ~1/6

Probability Density

$P(x \in [x, x + dx]) = f(x)dx$ Note f(x) is not a probability, can have any positive value.

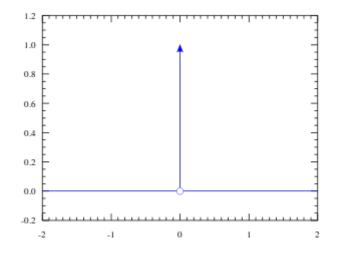
But must be normalized:

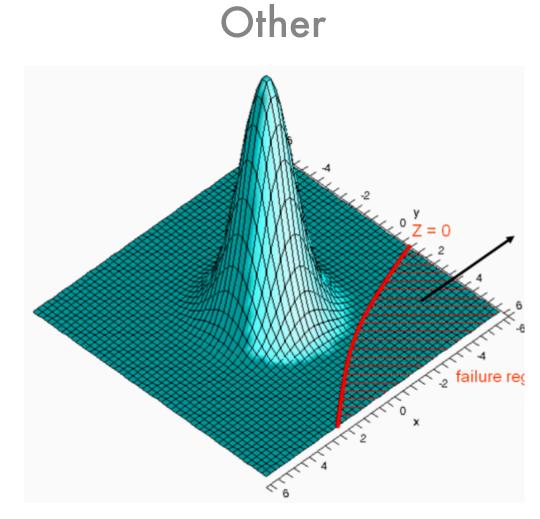
 $\int f(x)dx = 1$



examples

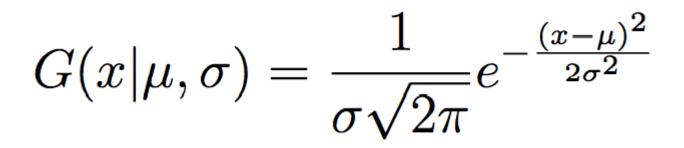
Delta function





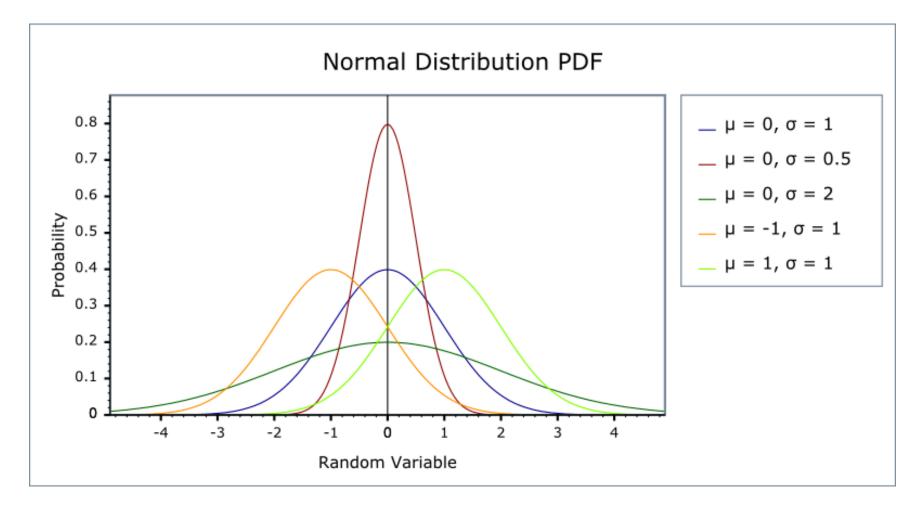
Parametric pdfs

Family of PDFs



Described by parameters: σ,μ

examples



Described by parameters: σ, μ

PDFs and Likelihoods

PDF:

For fixed parameters, gives probability density of various possible data.

<u>Likelihood:</u>

For fixed data, gives relative likelihood of various parameters

Likelihood

Variation of pdf w.r.t to parameters, for fixed data

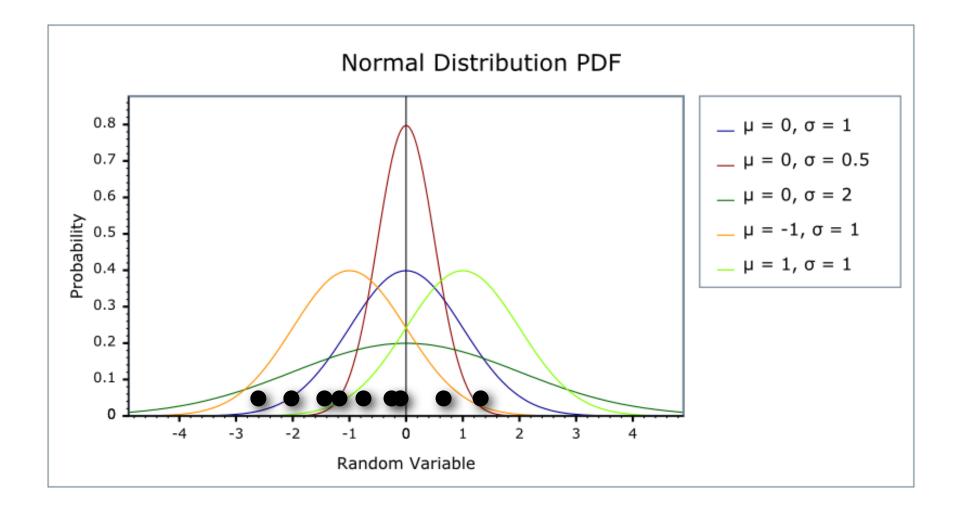
$$L(\sigma, \mu) = P(data | \sigma, \mu)$$

Note that it is not normalized

$$\int L(\sigma,\mu) \neq 1$$

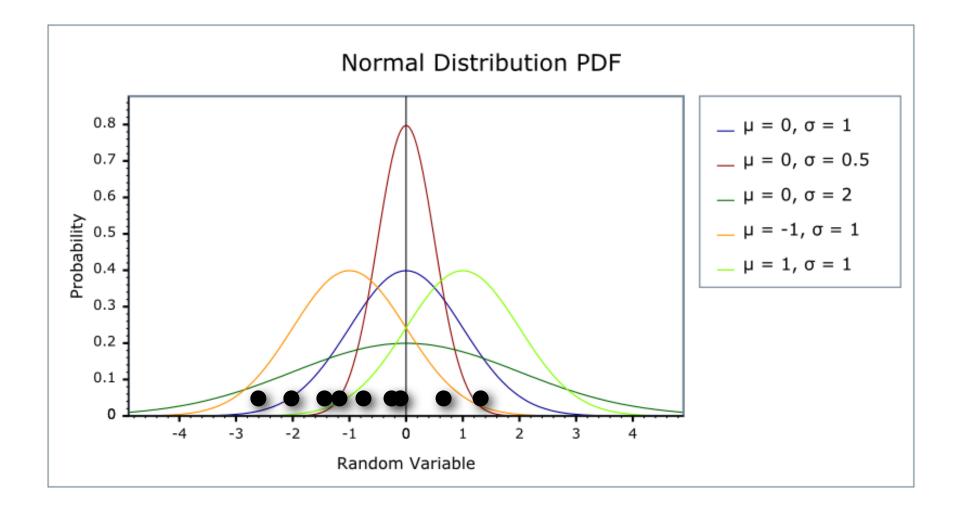
$$x = (x_1, ..., x_N)$$
 Your data $heta = (heta_1, ..., heta_n)$ Your parameters

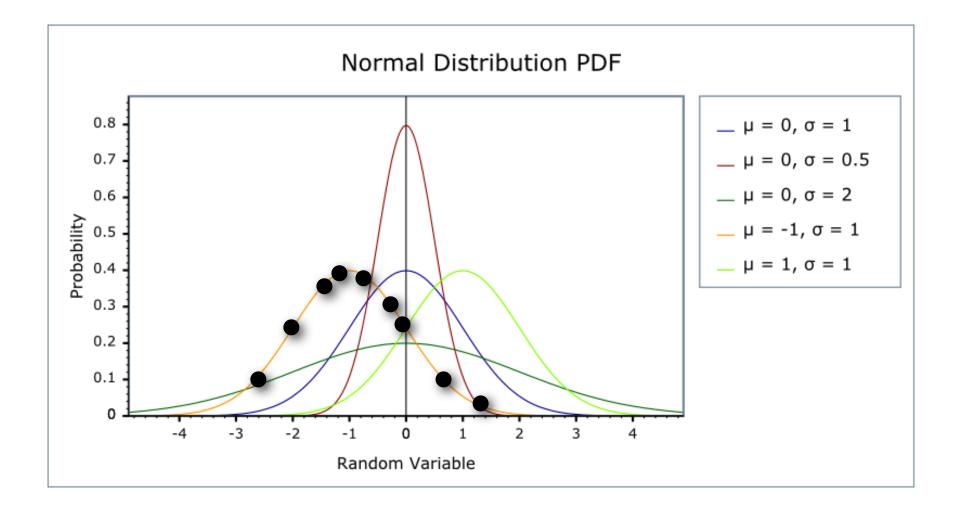
<u>Problem</u>: Find parameters which are most likely to have generated your data

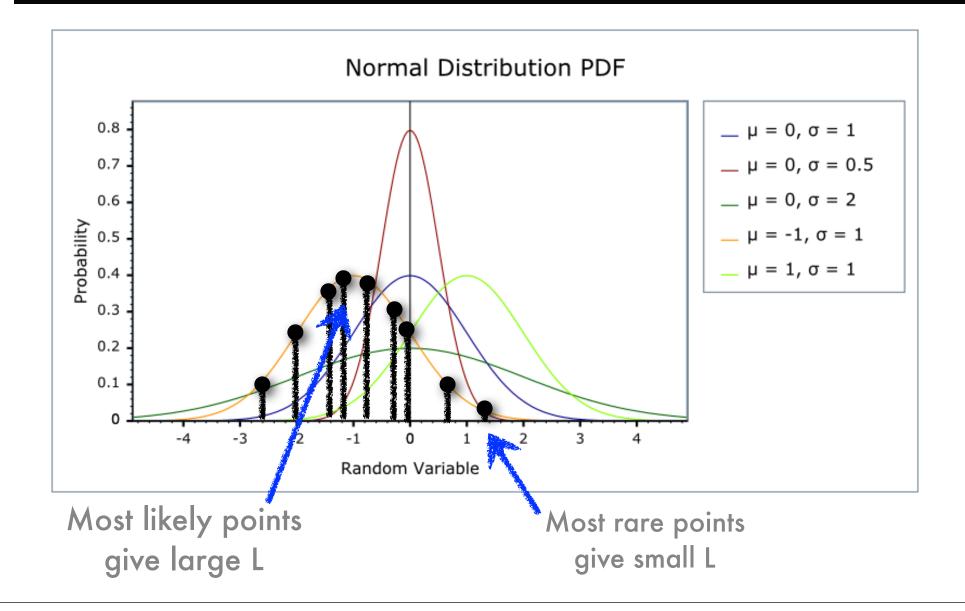


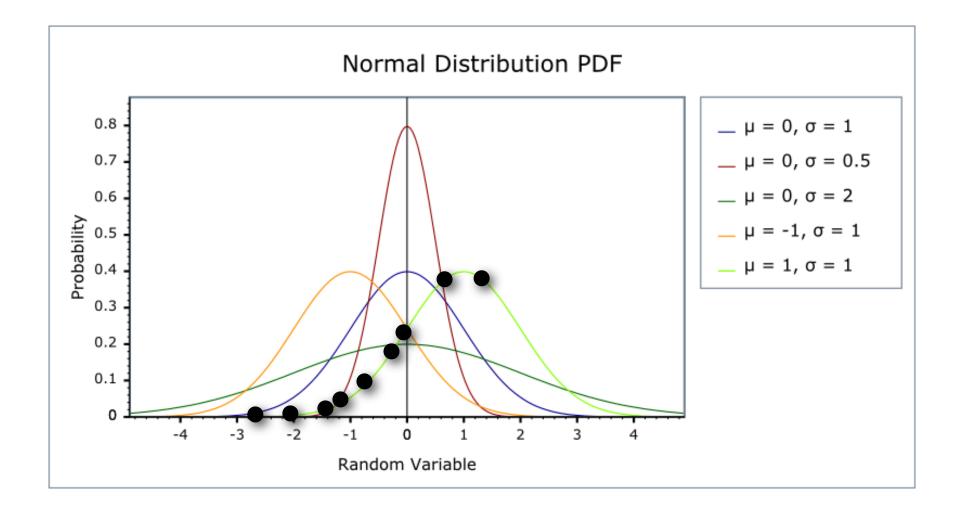
Max Likelihood Method

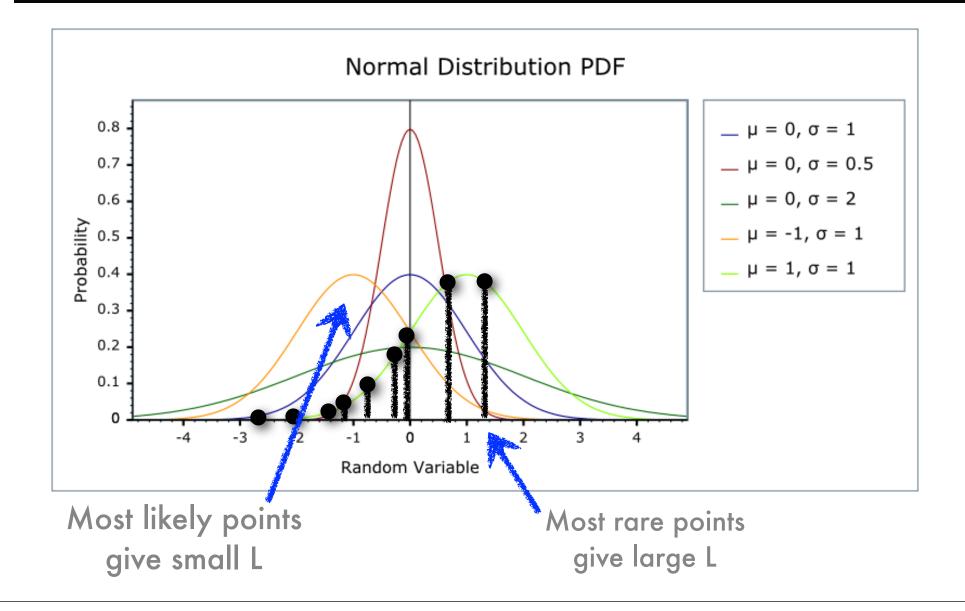
$$x = (x_1, ..., x_N)$$
 Your data
 $heta = (heta_1, ..., heta_n)$ Your parameters
Your likelihood
 $L(heta) = \prod_{i=1}^N f(x_i; heta)$
Method: maximize L w.r.t. parameters!



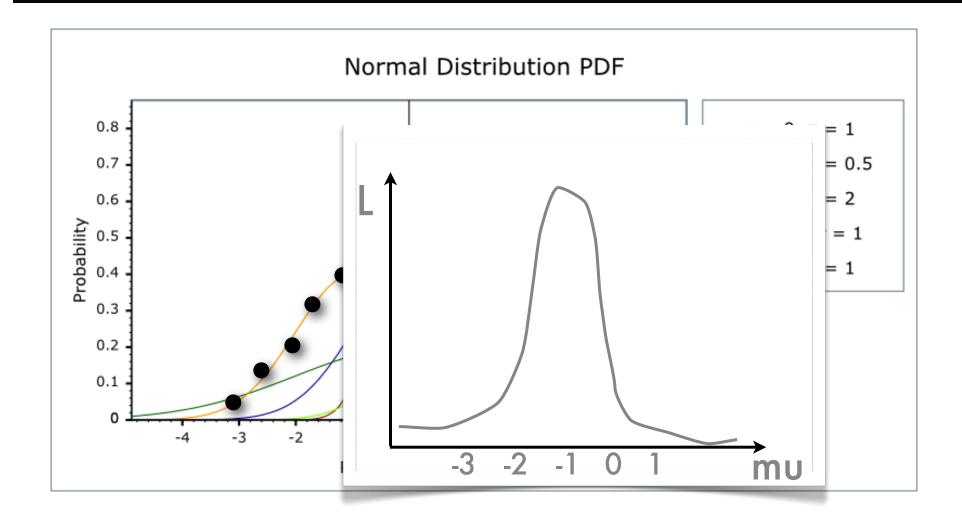




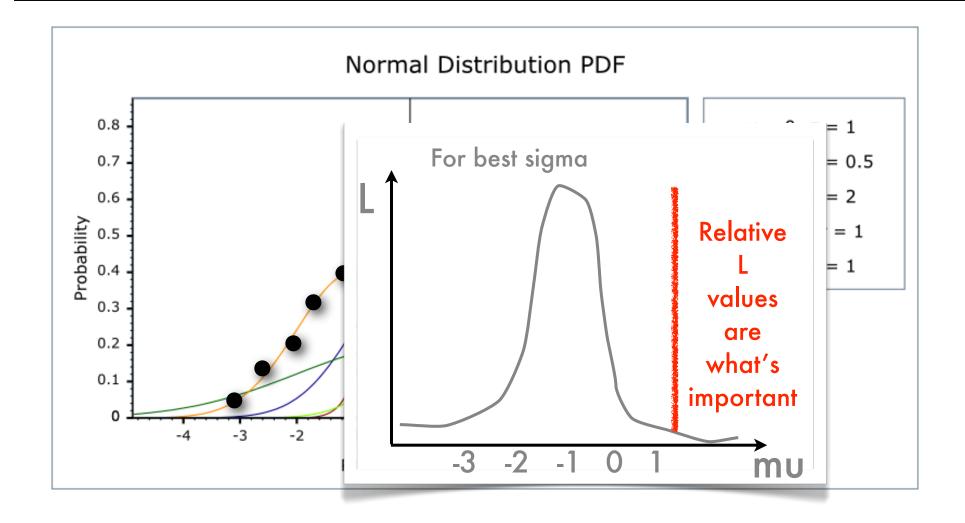




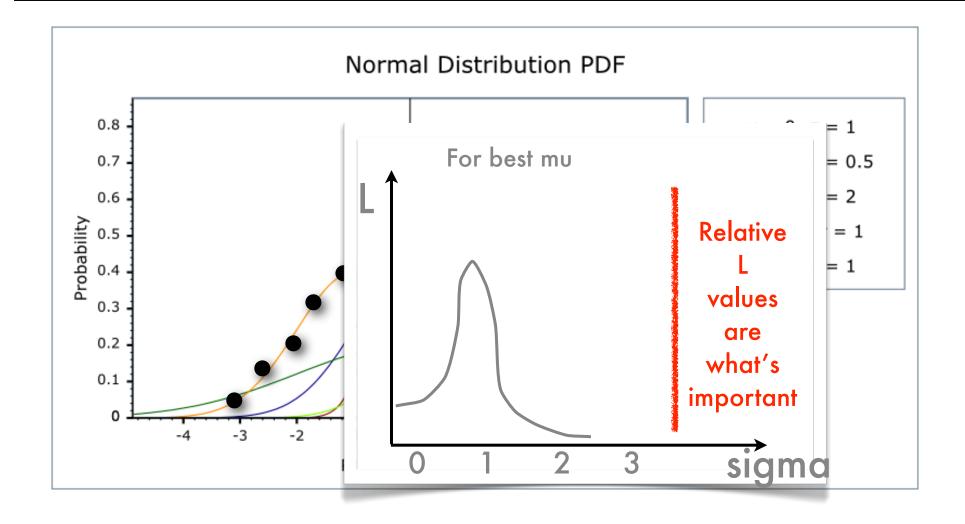
Max likelihood fitting



Max likelihood fitting

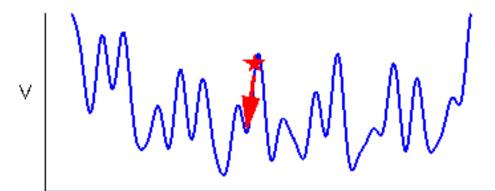


Max likelihood fitting



Minimization

Finding likelihood maximum is non-trivial



1D schematic of multidimensional space

No ability to predict functional form of function, enormous space

In general, not a solved problem

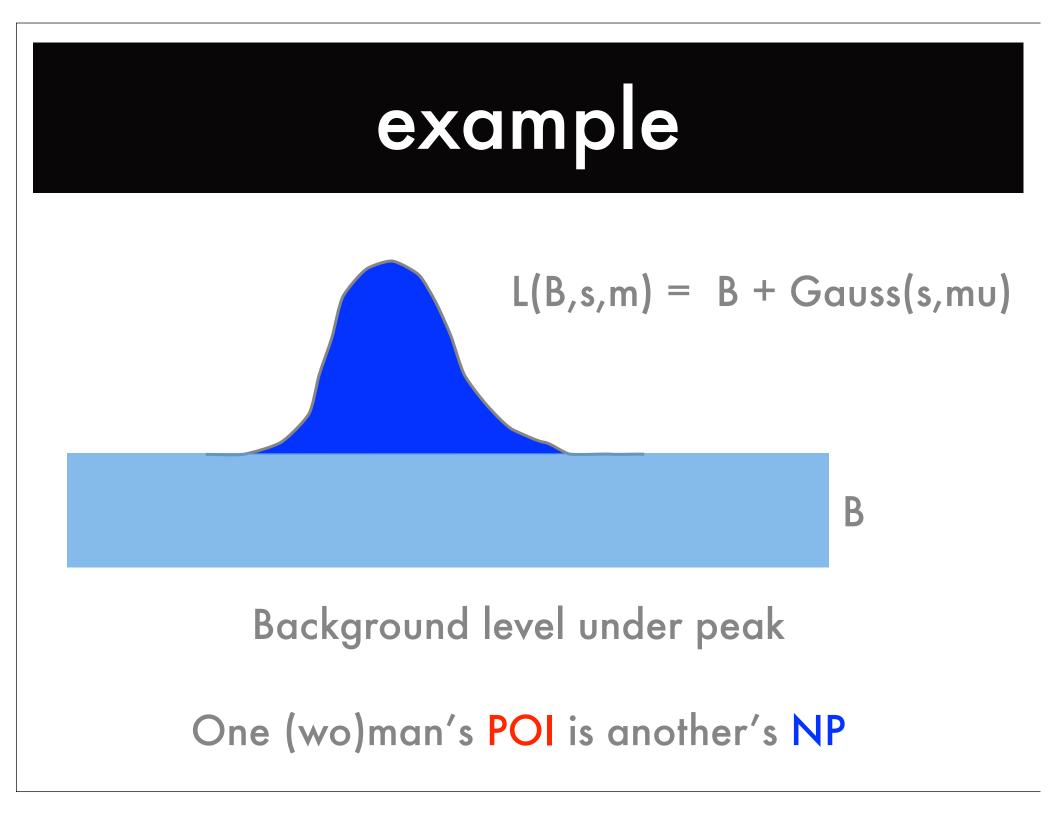
Heuristic strategies need to start close to solution. Susceptible to local minima

Nuisance parameters

$$L(\theta) = \prod_{i=1}^{N} f(x_i; \theta)$$
$$\theta = (\theta_1, ..., \theta_n)$$

Likelihood can have several parameters

The ones we care about: Parameter of Interest The ones we don't: nuisance parameters



Binned Ihood

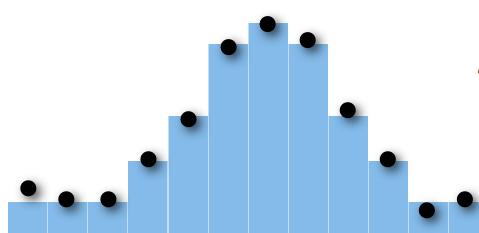
$$L(\theta) = \prod_{bini=1}^{N} Pois(n_i | \mu_i(\theta))$$

 $\mu_i(heta)$ is the predicted value in the bin

Binned likelihood

$$L(\theta) = \prod_{bini=1}^{N} Pois(n_i | \mu_i(\theta))$$

 $\mu_i(heta)$ is the predicted value in the bin

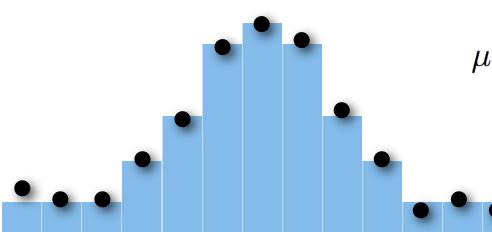


pros: (1) fast, no need to loop over all data. (2) sometimes don't have unbinned PDF <u>cons</u>: beware overly large or small bins (approaches unbinned as bin size →0)

Binned likelihood

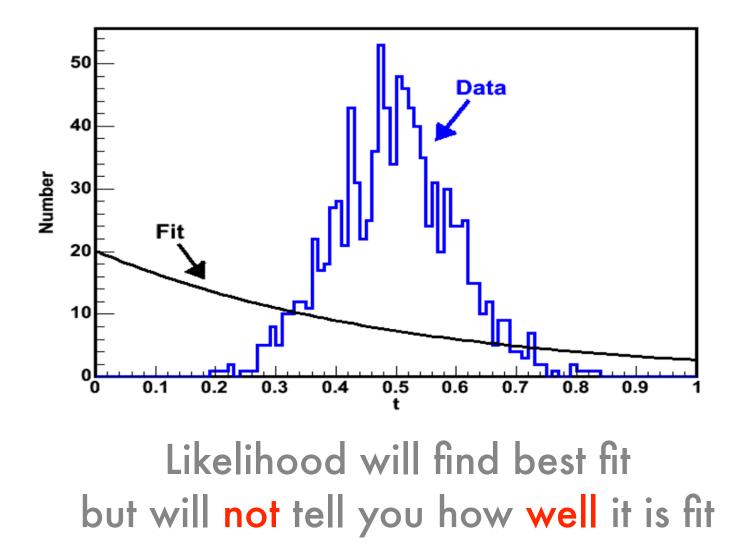
$$L(\theta) = \prod_{bini=1}^{N} Pois(n_i | \mu_i(\theta))$$

 $\mu_i(heta)$ is the predicted value in the bin

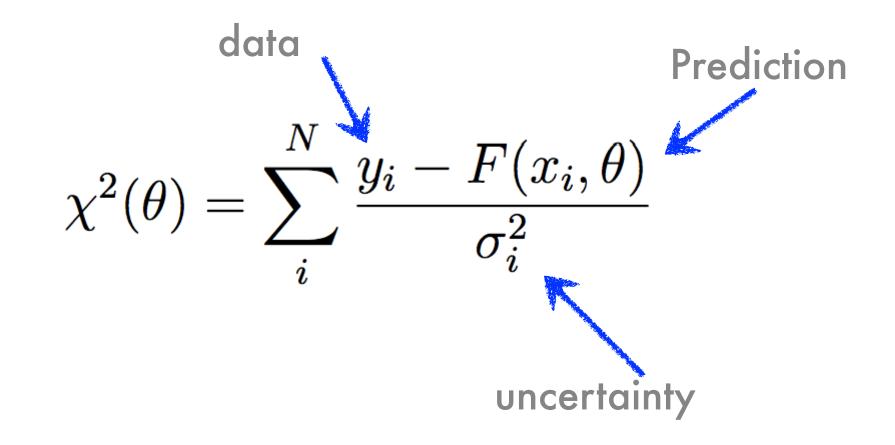


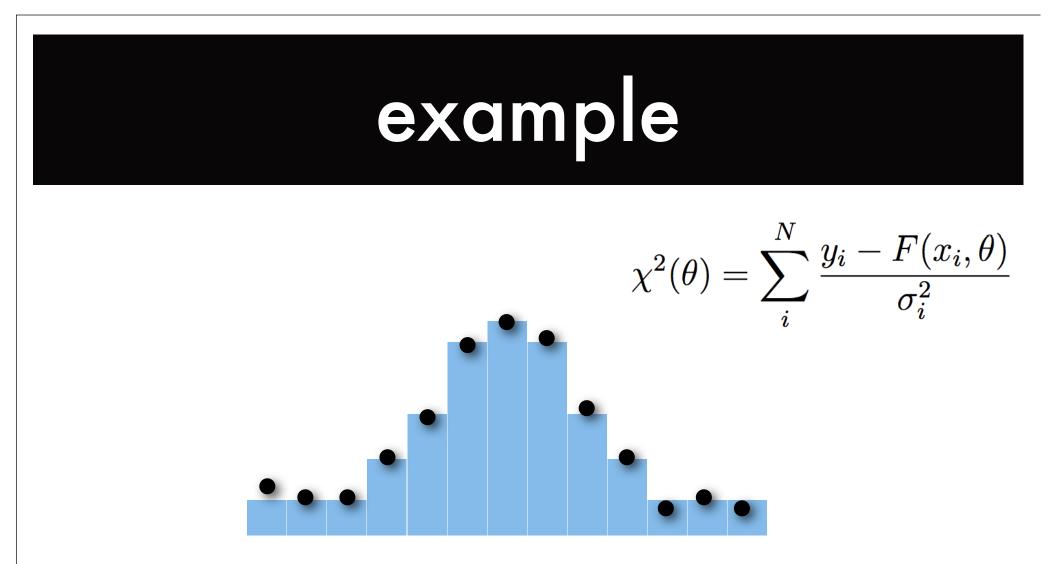
<u>how to choose binning?</u> approach experimental resolution ensure all bins have valid predicted value

Goodness of fit



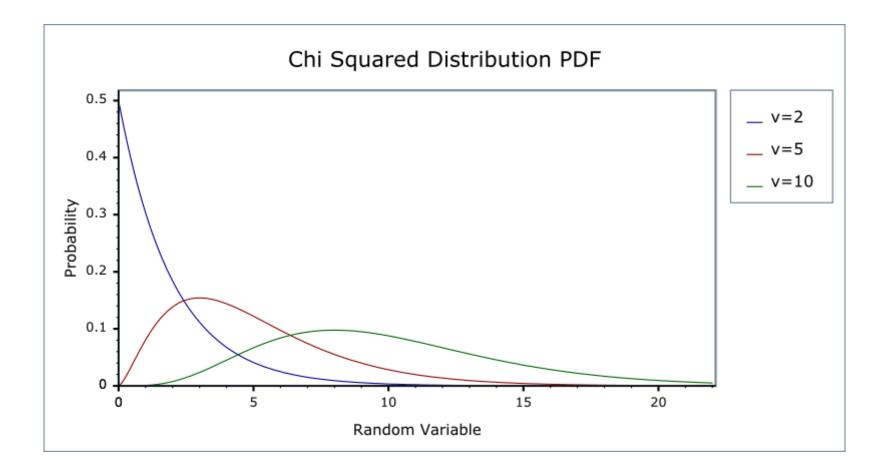
Chi-squared fitting





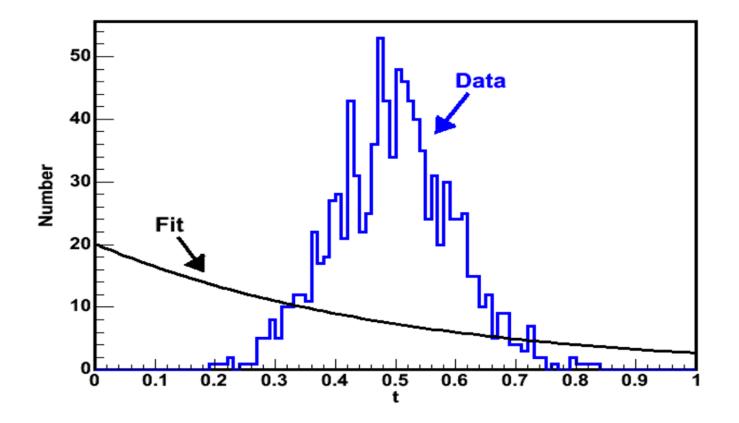
Difference between predicted and observed values

PDF of chi-squared



You can tell the quality of the fit.

goodness of fit



chi-squared value will be very large chi-squared prob will be very small

Mendel's data

http://nih.gov/about/director/ebiomed/mendel.htm

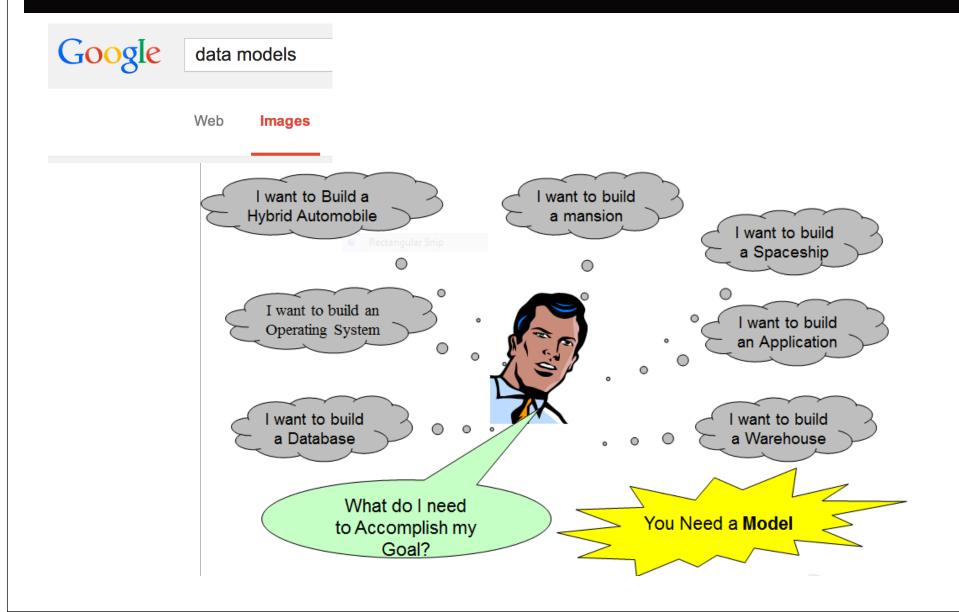
1. A cursory look at Mendel's various observations soon makes a statistically literate person notice that they come, over and over again, uncomfortably close to Mendel's expectations. As Edwards put it, "one can applaud the lucky gambler; but when he is lucky again tomorrow, and the next day, and the following day, one is entitled to become a little suspicious" [5]. The precise calculations are still under dispute, but the best current estimate suggests that results as close as or closer to expectations as the ones reported by Mendel would occur in only 1 out of 33,000 replications [6, p. 921]. In other words, it is virtually inconceivable that Mendel obtained his "good" results by pure chance.

http://www.genetics.org/content/175/3/975.full.pdf+html

Altogether, the experiments yielded 399 parents classified as heterozygous and 201 parents classified as homozygous. Fisher noted that the expected values from Equation 1 are 377.5 and 222.5, respectively. A chi-square test yields the test statistic 3.31, which has an associated *P*-value of 0.069. This does not differ significantly from Fisher's expectation; nevertheless, it fanned Fisher's suspicion because he writes, "a deviation as fortunate as Mendel's is to be expected once in twenty-nine trials" (FISHER 1936, pp. 125–126).

Data models

Data models



Physics:

our model of the expected results of the experiment f(data | theory)

Provides:

- PDF for data as a function of POI, NPs
- generate pseudo-data
- fix data to get lhood

Physics:

our model of the expected results of the experiment f(data | theory)

Provides:

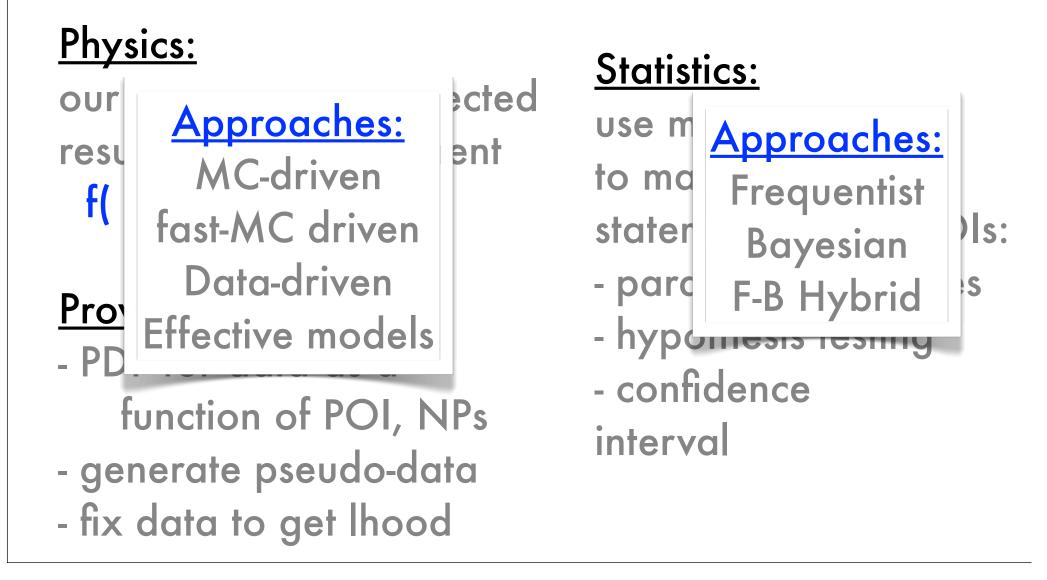
- PDF for data as a function of POI, NPs
- generate pseudo-data
- fix data to get lhood

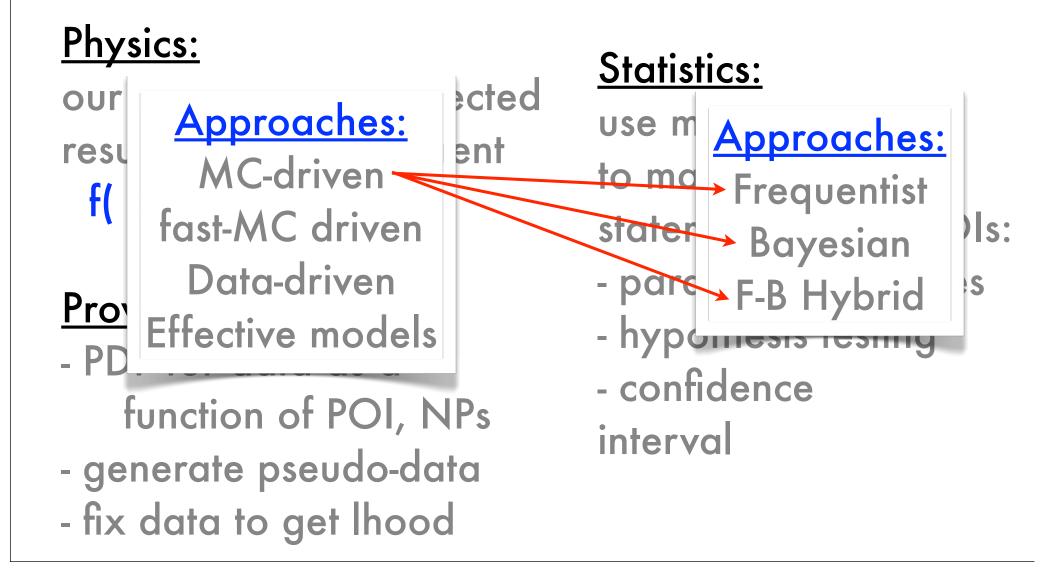
Statistics:

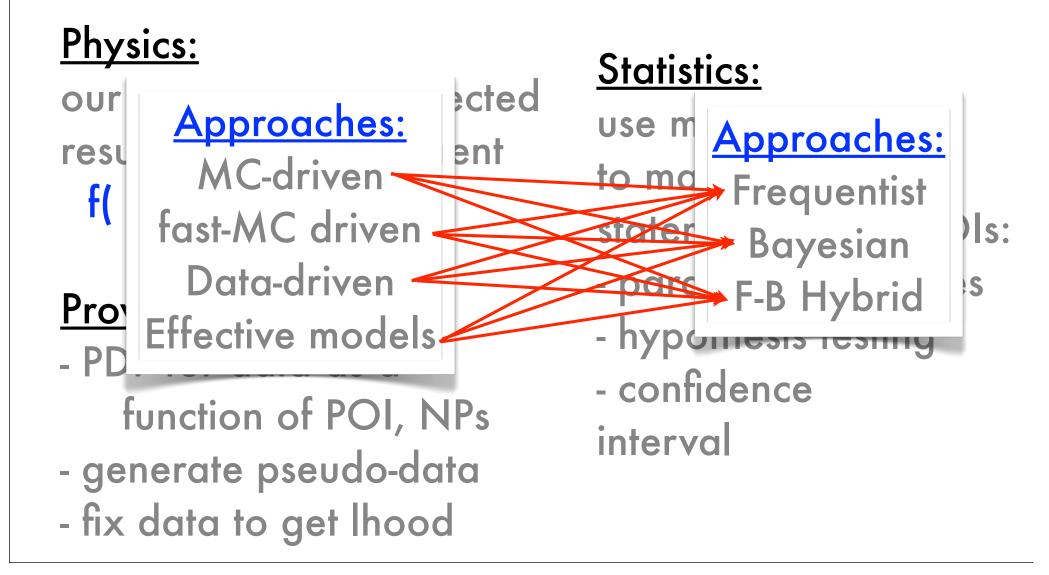
use model and data to make statistical statements about POIs:

- parameter estimates
- hypothesis testing
- confidence

interval







Upshot

Model building is distinct from stat interpretation

Note: some stats packages have implied model choices (eg MC limit uses histograms, so no unbinned PDFs)

Quality of your **result** comes from the quality of the **model**

This idea: K. Cranmer (I think)

Models

Full MC Fast MC Effective models Data-driven models

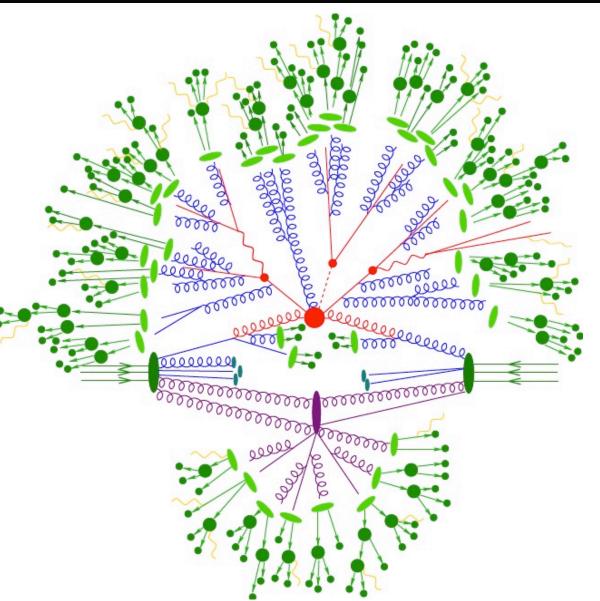
Full MC Models

Full MC model

We have a good understanding of of the pieces

Do we have

f(data | theory)?

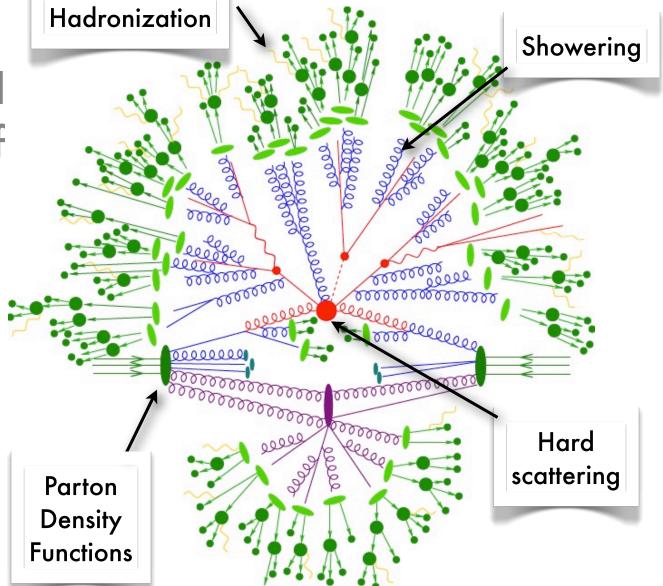


Full MC model

We have a good understanding of of the pieces

Do we have

f(data | theory)?



What would

f(data | theory)

look like?

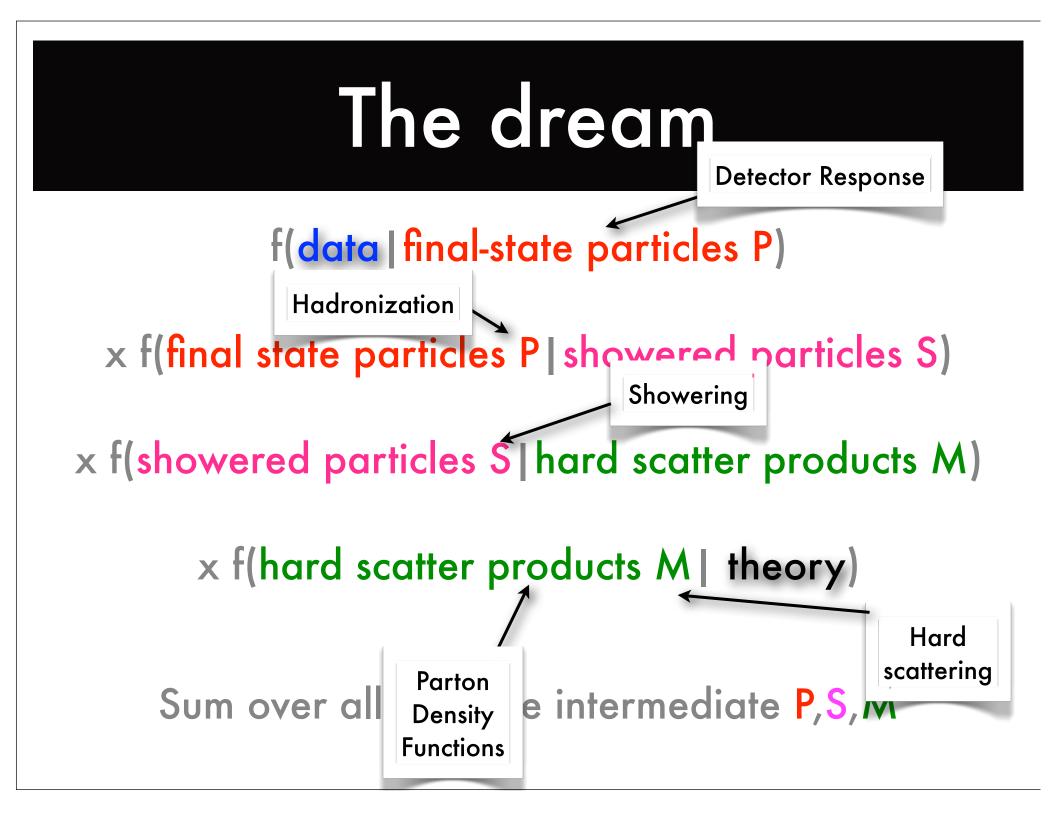
f(data | final-state particles P)

x f(final state particles P| showered particles S)

x f(showered particles S|hard scatter products M)

x f(hard scatter products M | theory)

Sum over all possible intermediate P,S,M



f(hard scatter products M | theory)

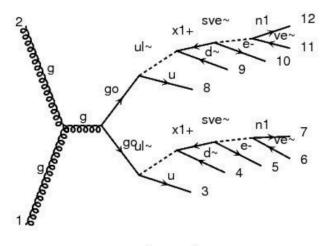
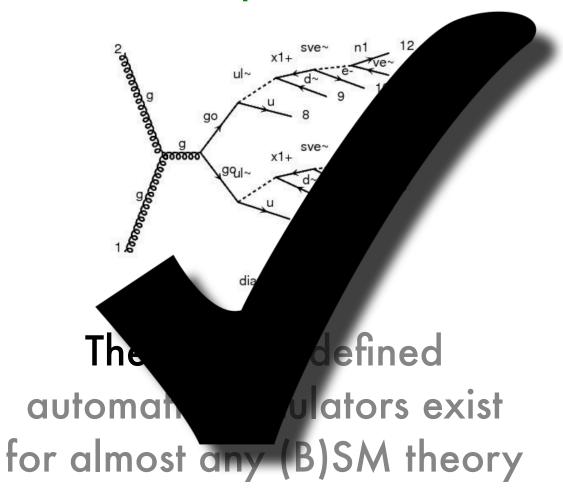


diagram 1

Theory well defined automatic calculators exist for almost any (B)SM theory

f(hard scatter products M | theory)



The nightmare

f(data | final-state particles P)

x f(final state particles P| showered particles S)

x f(showered particles S|hard scatter products M)

<u>We have</u>: solid understanding of microphysics <u>We need</u>: analytic description of high-level physics

The solution

<u>We have</u>: solid understanding of microphysics <u>We need</u>: analytic description of high-level physics <u>But</u>: only heuristic lower-level approaches exist

Iterative simulation strategy, no overall PDF

Iterative approach

(1) Draw events from f(M|theory)

- (2) add random showers
- (3) do hadronization
- (4) simulate detector

The solution

<u>We have</u>: solid understanding of microphysics <u>We need</u>: analytic description of high-level physics <u>But</u>: only heuristic lower-level approaches exist

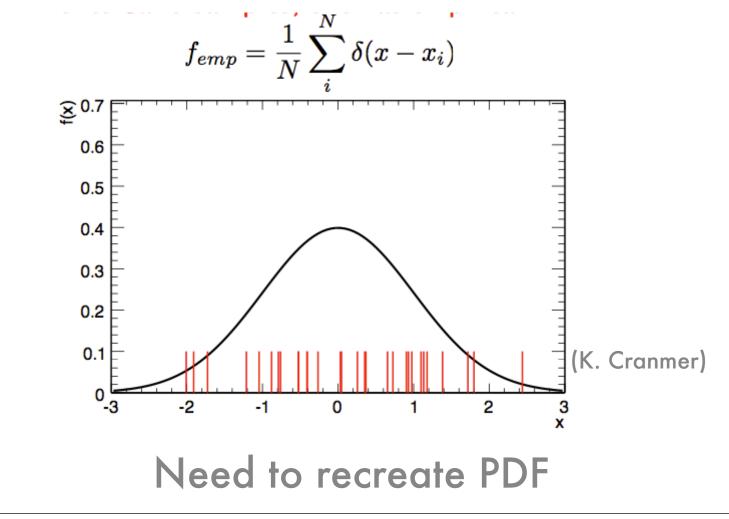
Iterative simulation strategy, no overall PDF

What do we get

Arbitrarily large samples of events drawn from f(data | theory), but not the PDF itself

The problem

Don't know PDF, have events drawn from PDF



What do we need?

Want:

our model of the expected results of the experiment f(data | theory)

Provides:

- PDF for data as a function of POI, NPs
- generate pseudo-data
- fix data to get lhood

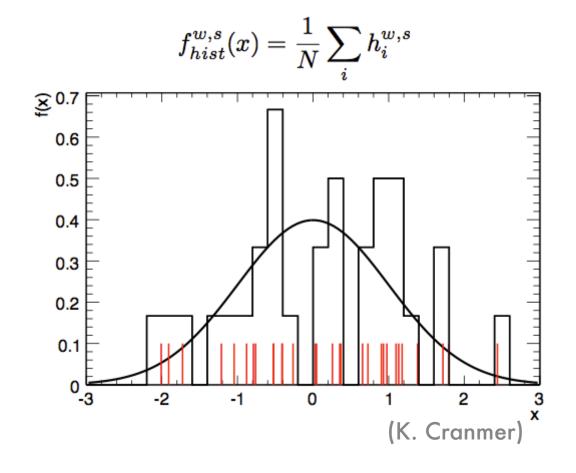
We have:

A tool that can generate sample event data

How do we use that to build our PDF?

MC events to PDF

Approach 1: histogram



Curse of Dimensionality

How many events do you need to describe a 1D distribution? O(100)

An n-D distribution?

O(100ⁿ)

 $f_{hist}^{w,s}(x) = rac{1}{N}\sum_{i}h_{i}^{w,s}$ <u>ک</u> 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -2 **-**3 -1 2 0 (K. Cranmer)

The nightmare

f(data | final-state particles P)

x f(final state particles P| showered particles S)

x f(showered particles S|hard scatter products M)

"data" is a 100M-d vector!

The nightmare

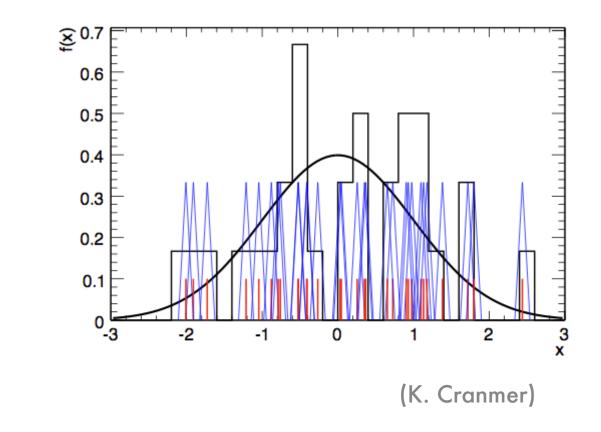
f(data | final-state particles P)

x f(final stat

x f(showered

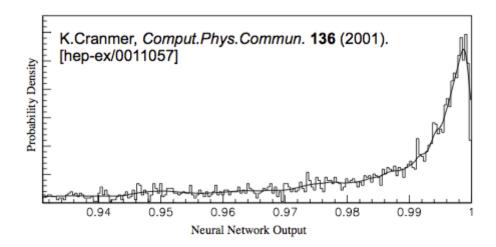
MC events to PDF

Approach 2: probability density estimates



Prob Density Estimate

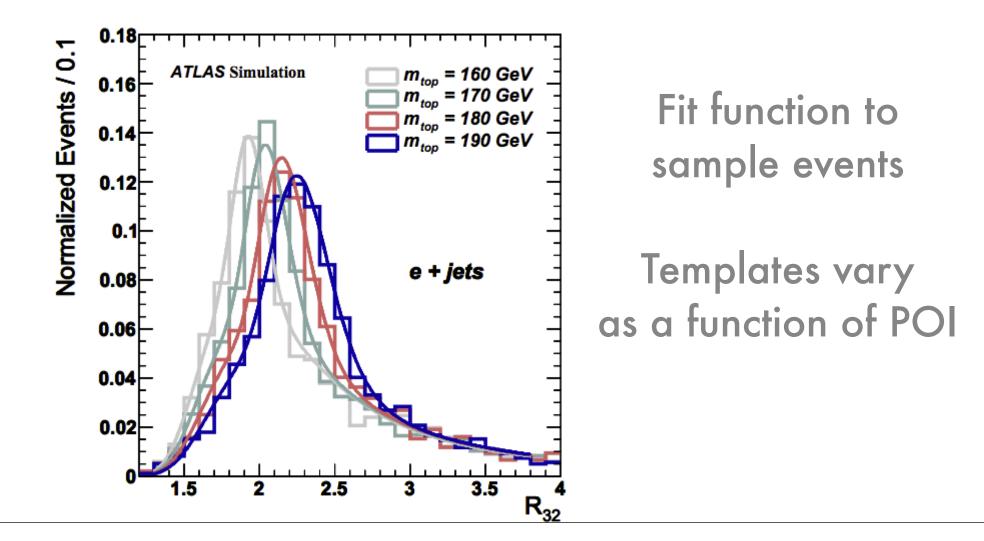
Approach 2: probability density estimates



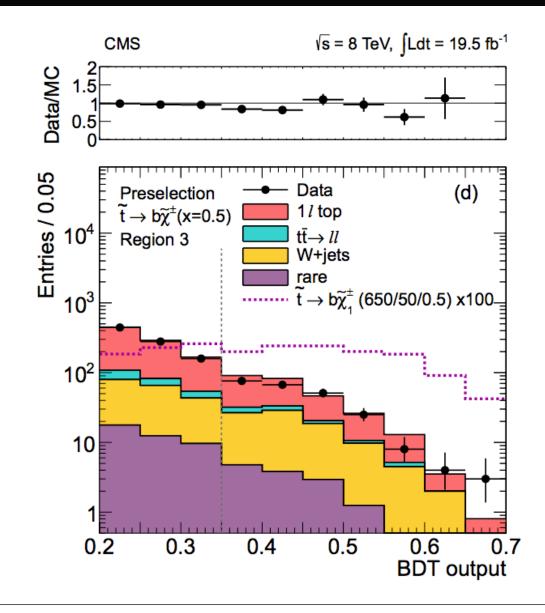
More effective use of events, require fewer events to make smooth prediction

MC events to PDF

Approach 3: parametric description



Full MC example



1308.1586

Full MC example

