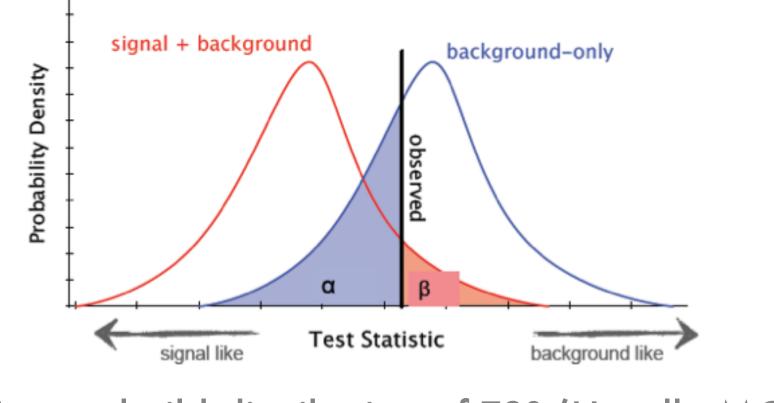
Practical Statistics for Particle Physics

Daniel Whiteson, UC Irvine HCPSS, 2014: Lecture 3

Test statistic

Reduce vector of observables to 1 number



How to build distribution of TS? (Usually MC) How to choose TS?

(K. Cranmer)

Test statistic

Define µ to be signal strength, µ=0 is no signal µ=1 is theory prediction

$$Q_{LEP} = L_{s+b}(\mu = 1)/L_b(\mu = 0)$$

Where the nuisance parameters are fixed to their nominal values

Test statistic

Define µ to be signal strength, µ=0 is no signal µ=1 is theory prediction

At LEP, this was used:

$$Q_{LEP} = \frac{L(data|\mu = 1, b, \nu)}{L(data|\mu = 0, b, \nu)}$$

This also means the background estimate doesn't vary.

Tevatron

Still consider two points (0,1) but now float the NPs at those points

$$Q_{TEV} = L_{s+b}(\mu = 1, \hat{\hat{\nu}})/L_b(\mu = 0, \hat{\hat{\nu}}')$$

Ratio of profiled likelihoods:
the model is adapted to the data
even in the signal region

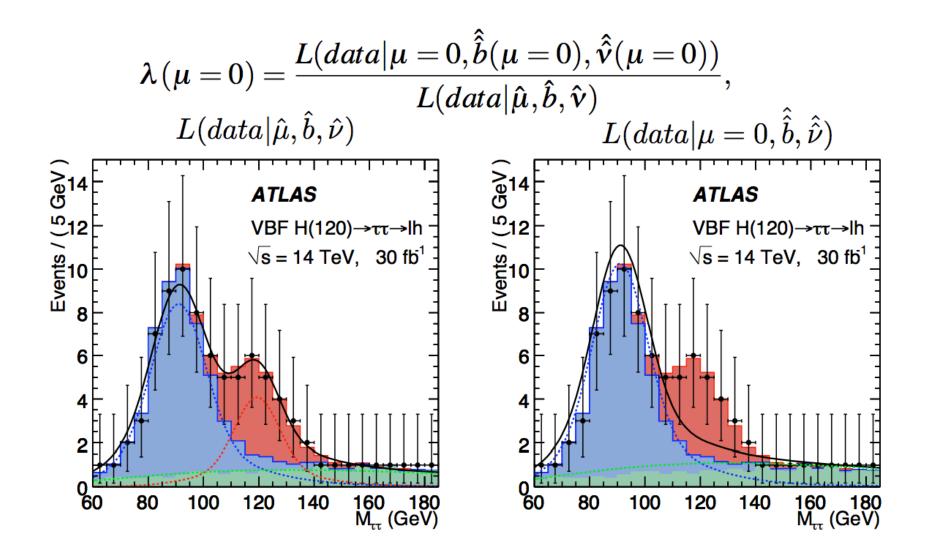
LHC

Profile likelihood

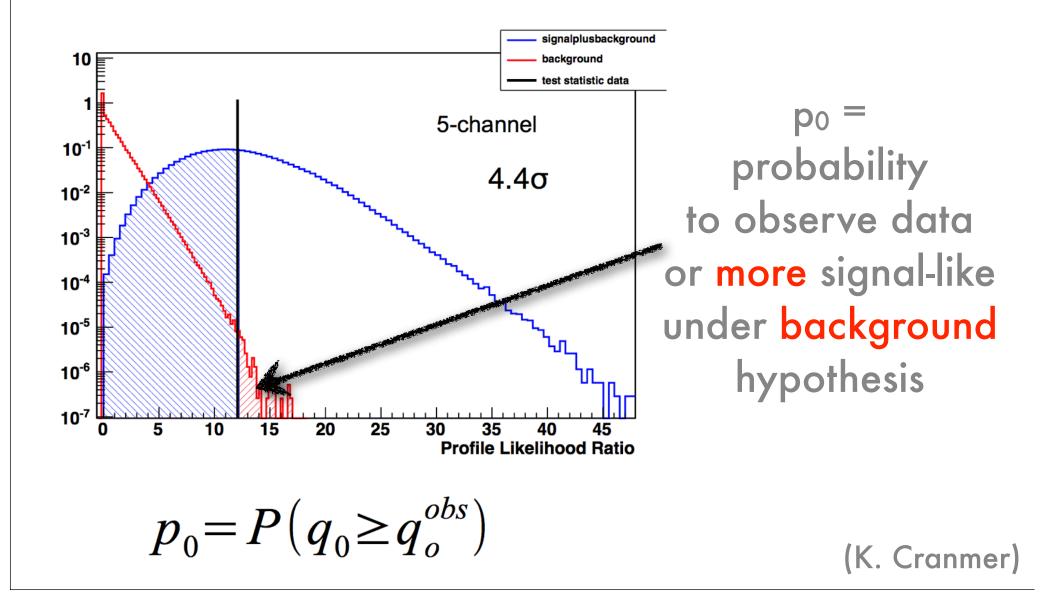
$$\lambda(\mu = 0) = \frac{L(data|\mu = 0, \hat{b}(\mu = 0), \hat{v}(\mu = 0))}{L(data|\hat{\mu}, \hat{b}, \hat{v})}$$

fit best value of NPs at $\mu=0$ and at best fit value of μ

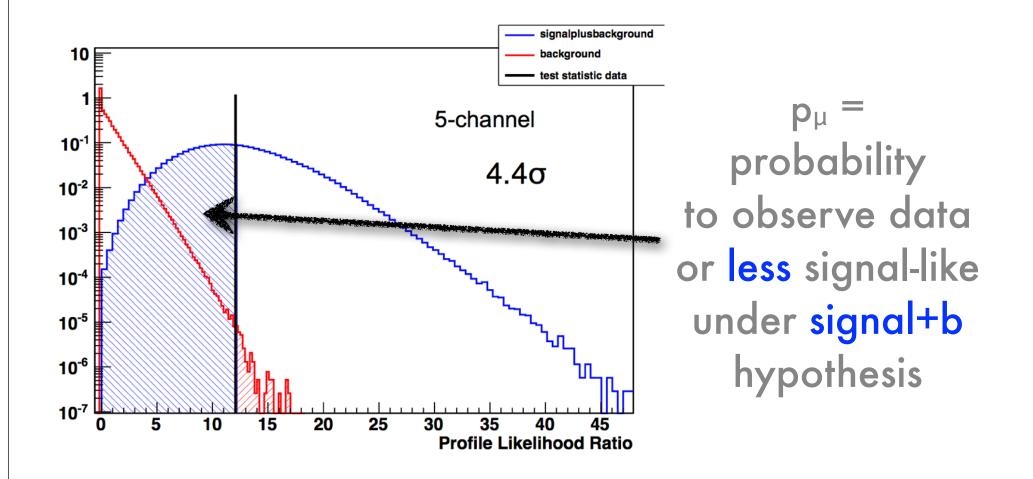
Two fits to data



p values



p values



(K. Cranmer)

Philosophy

Bayesian &

Frequentist

Bayesian

<u>Data</u>: fixed <u>Parameter values</u>: unknown <u>Probability</u>: our lack of knowledge <u>PDFs over parameters</u>: sensible

Frequentist

<u>Data</u>: one example from ens. <u>Parameter values</u>: fixed (even if unknown) <u>Probability</u>: rate of occurance <u>PDFs over parameters</u>: not sensible

Bayesian Prob.

Bayes theorem:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

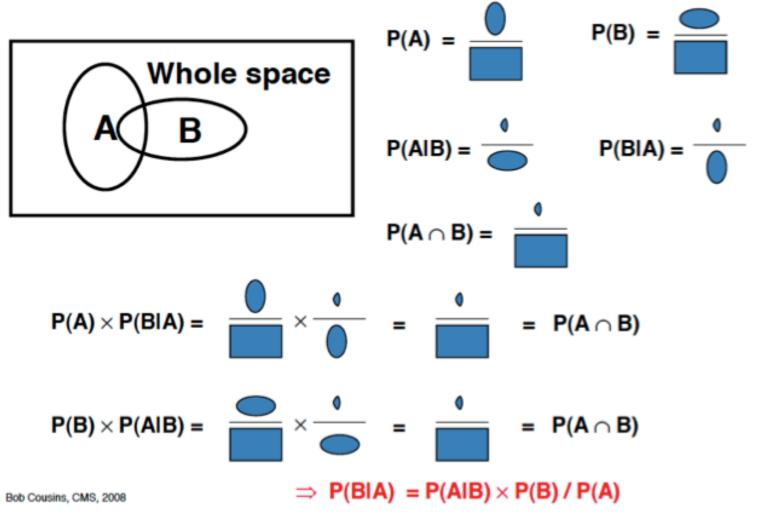
rearrange:

 $P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In Pictures

P, Conditional P, and Derivation of Bayes' Theorem in Pictures



Example 1

P(data|theory) != P(theory|data)

Theory = (male or female) Data = (pregnant | not pregnant)

P(pregnant | female) ~ 3%

BUT

Example 2

<u>Higgs search</u> Expected bg = 0.1 Expected signal = 10

P(N| no Higgs) = 0.1 P(N| Higgs) = 10.1

What is P(Higgs | N=8)?

$$P(H|N=8) = \frac{P(N=8|H)P(H)}{P(N=8)}$$

Depends on P(H)!

(K Cranmer)

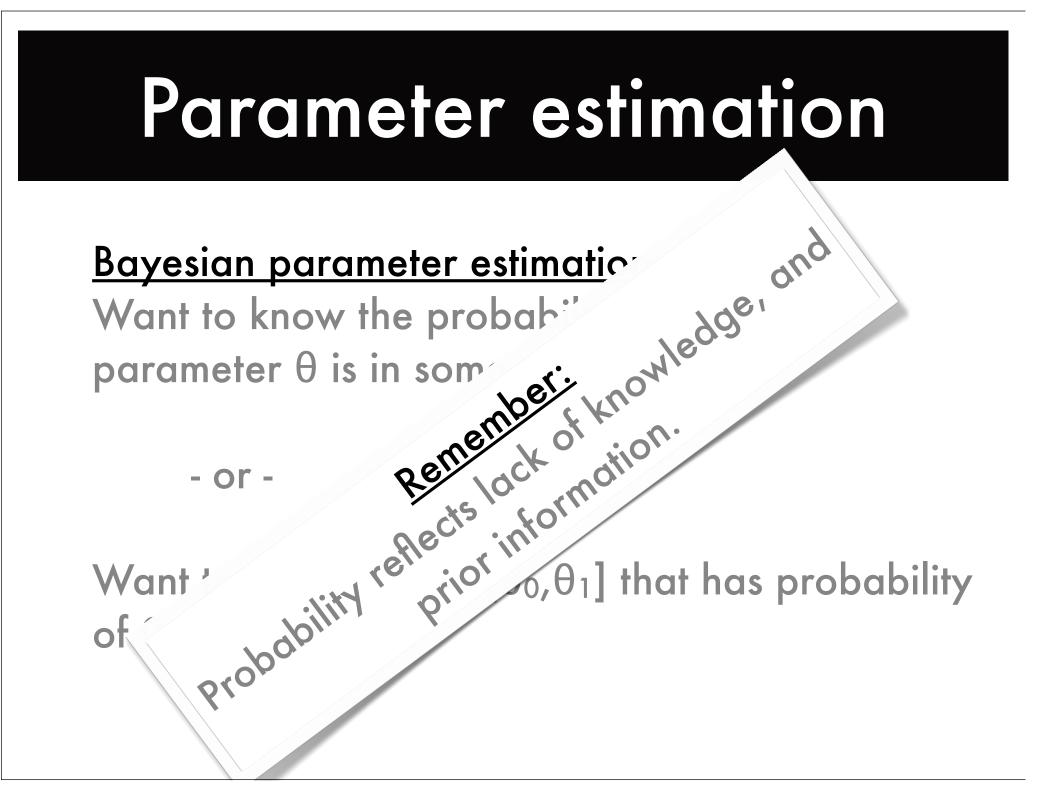
Parameter estimation

Bayesian parameter estimation:

Want to know the probability that some parameter θ is in some range $[\theta_0, \theta_1]$

- or -

Want to find a range $[\theta_0, \theta_1]$ that has probability of 0.95



Hows

The probability that

the true value is inside an interal is:

$$1-lpha=\int_{ heta_{lo}}^{ heta_{hi}}p(heta|x)d heta$$

For lower or upper limits, choose zero or infinity as boundaries. where we integrate out the nuisance parameters:

$$p(heta|x) = \int d
u p(heta,
u|x)$$

where

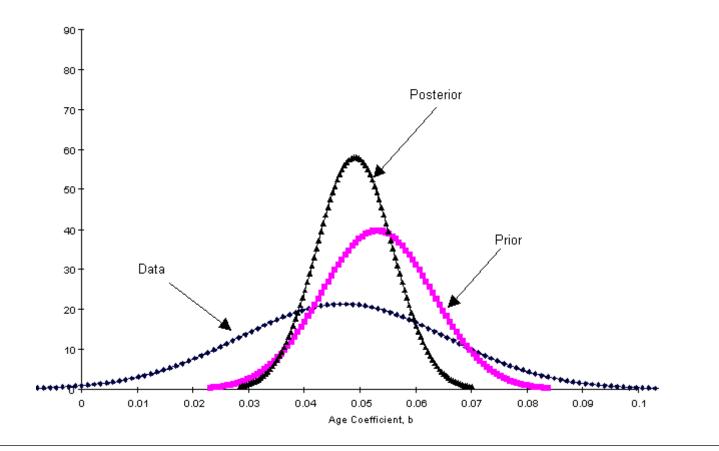
$$p(heta,
u|x) = rac{p(x| heta,
u)p(heta,
u)}{p(x)}$$

These integrals can be very hard to do if the space is high dimensional.

Priors

<u>Choice of prior $p(\theta)$ </u>

- important but subjective choice



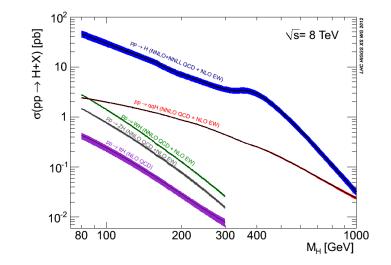
Priors

<u>Choice of prior $p(\theta)$ </u>

- Example: measuring Higgs cross-section
- Want to be unbiased: choose uniform prior?

$$\sigma=[0,\Lambda] \rightarrow P = k$$

- But σ and mass relationship makes this prior not flat in mass



- no uninformative prior across all transformations

Parameter estimation

Frequentist parameter estimation:

Want to know in what fraction of experiments the true value of some parameter θ is in that experiments range $[\theta_{0i}, \theta_{1i}]$

- or -

Want a range-finding strategy such that $[\theta_0, \theta_1]$ contains the true value in 95/100 experiments.

Parameter estimation

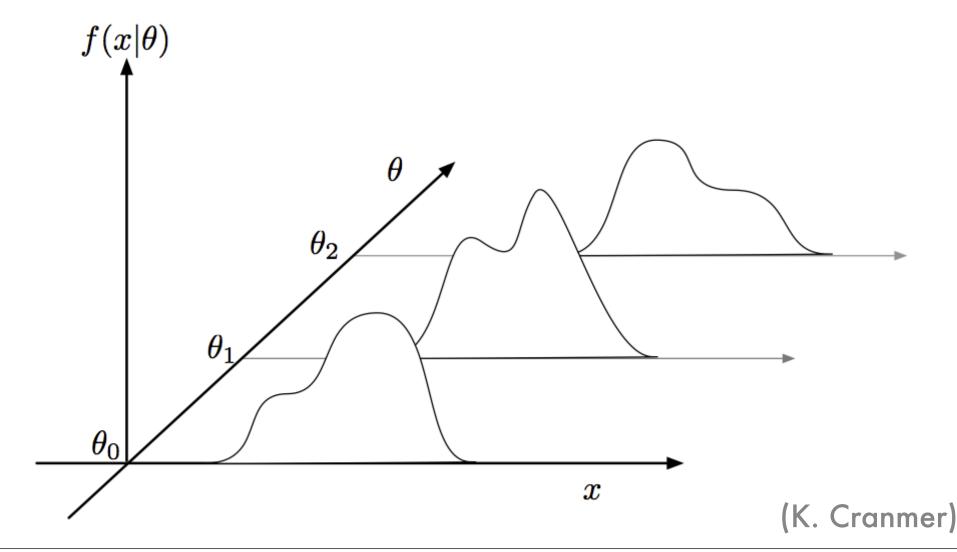
Frequentist parameter estimation:

Want to know in what fraction of experiments the true value of some parameter θ is in that experiments range $[\theta_{0i}, \theta_{1i}]$ Different for every experiment

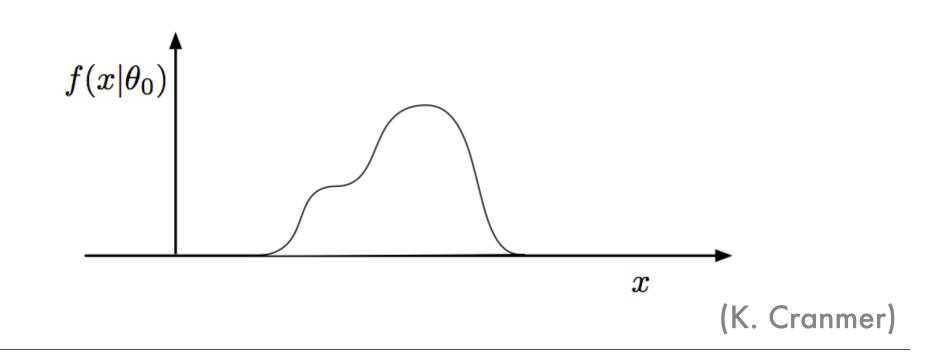
Want a range-finding strategy such that $[\theta_0, \theta_1]$ contains the true value in 95/100 experiments.

⁻ or -

For each value of θ consider $f(x|\theta)$



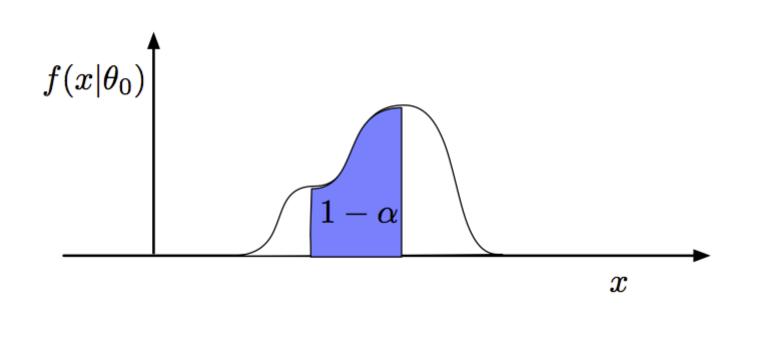
Let's focus on a particular point $f(x|\theta_o)$



Let's focus on a particular point $f(x|\theta_o)$

- we want a test of size α
- equivalent to a $100(1-\alpha)\%$ confidence interval on θ
- so we find an **acceptance region** with 1α probability

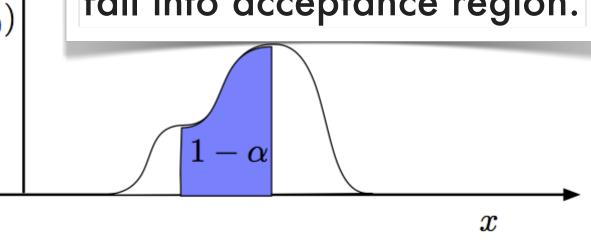
(K. Cranmer)



Let's focus on a particular point $f(x|\theta_o)$

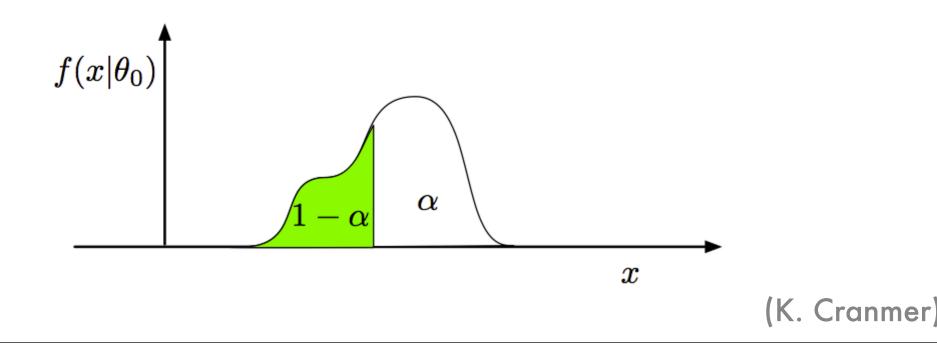
- we want a test of size α
- equivale • so we find $f(x|\theta_0)$ Constructed to satisfy requirement that if $\theta = \theta_0$ then 1- α measurements will fall into acceptance region.

nterval on θ – α probability

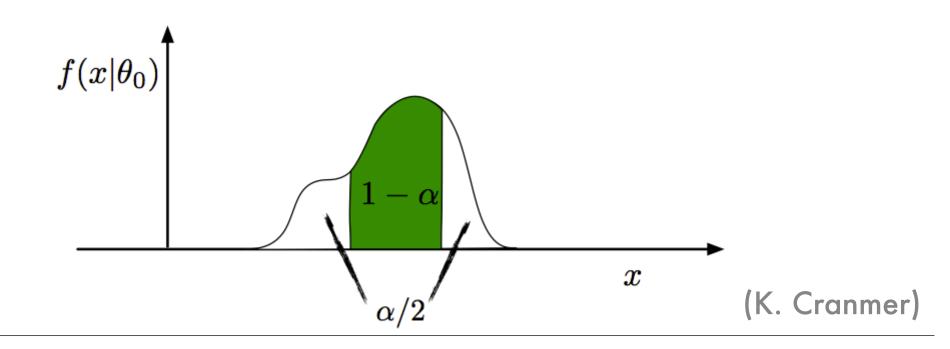


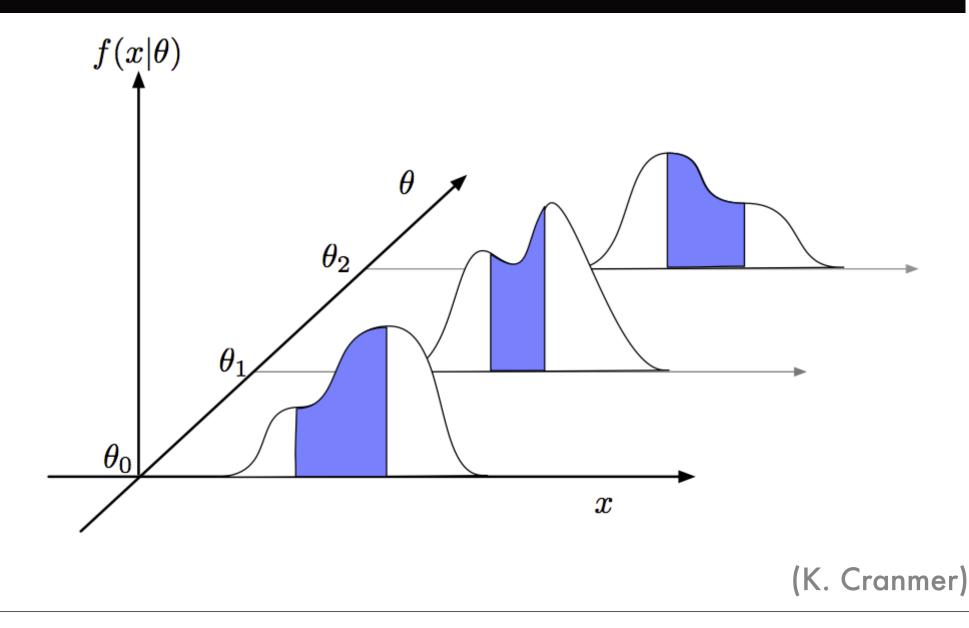
(K. Cranmer)

Let's focus on a particular point f(x|θ_o)
No unique choice of an acceptance region
here's an example of a lower limit

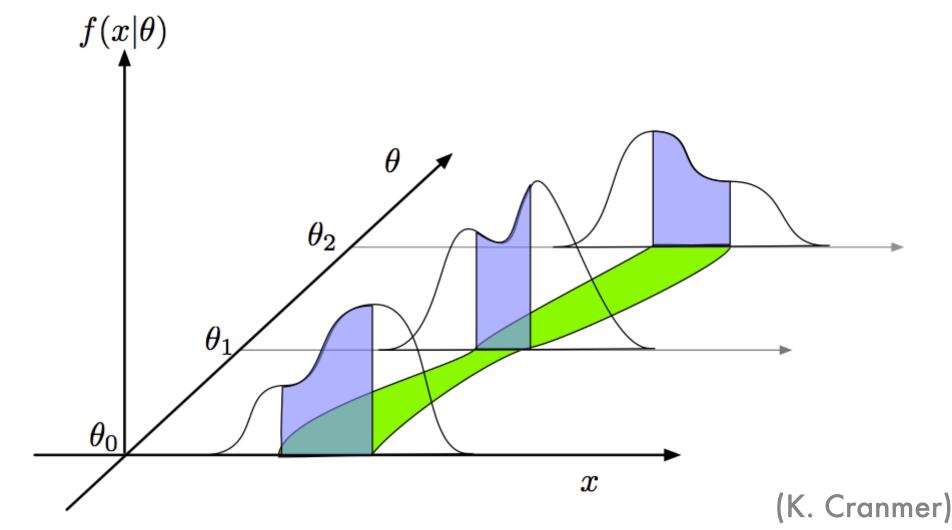


Let's focus on a particular point f(x|θ_o)
No unique choice of an acceptance region
and an example of a central limit



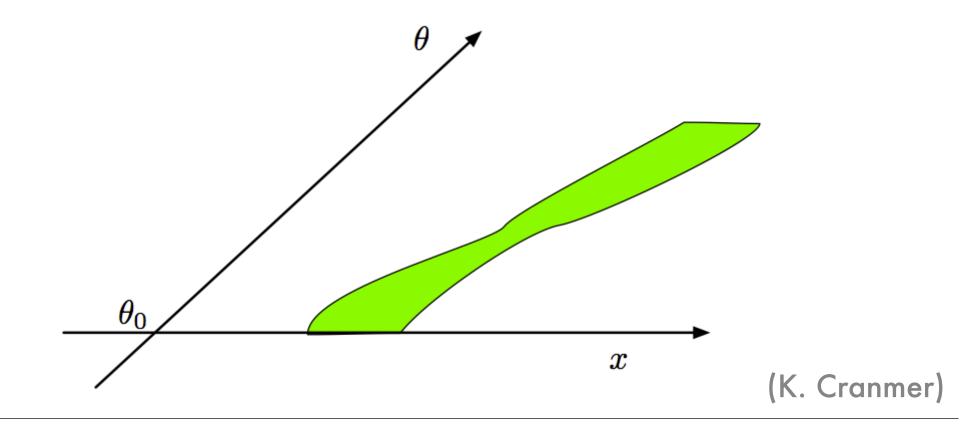


This makes a **confidence belt** for θ



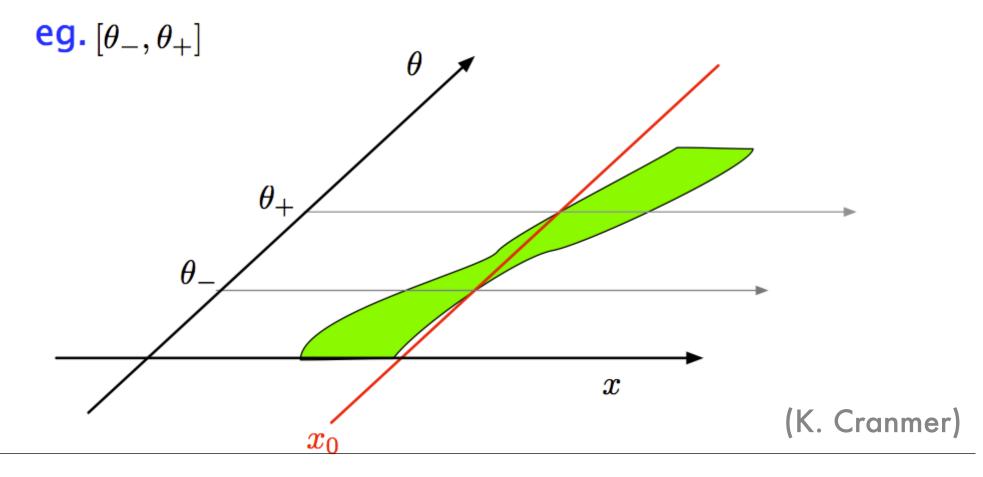
This makes a **confidence belt** for θ

the regions of **data** in the confidence belt can be considered as **consistent** with that value of θ



Now we make a measurement x_0

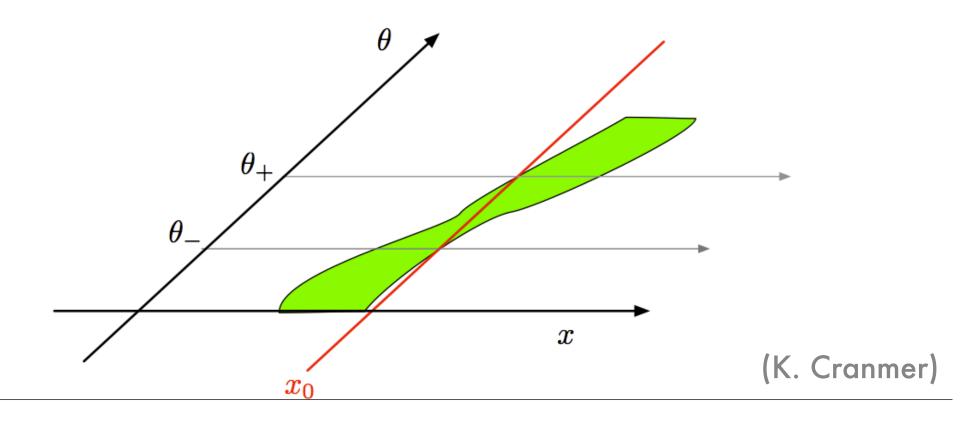
the points θ where the belt intersects x_0 a part of the **confidence interval** in θ for this measurement



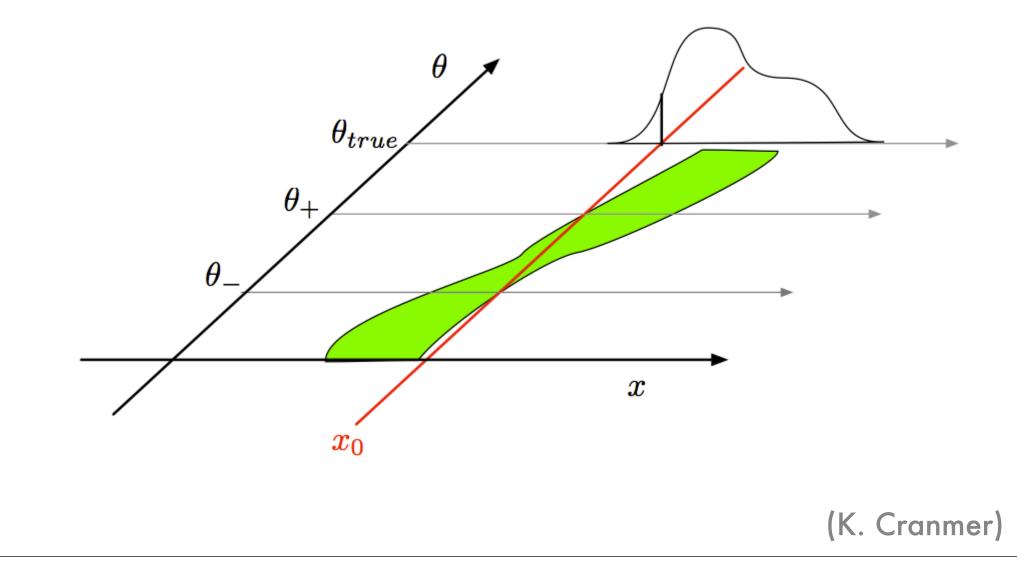
For every point θ , if it were true, the data would fall in its acceptance region with probability $1 - \alpha$

If the data fell in that region, the point θ would be in the interval $[\theta_-, \theta_+]$

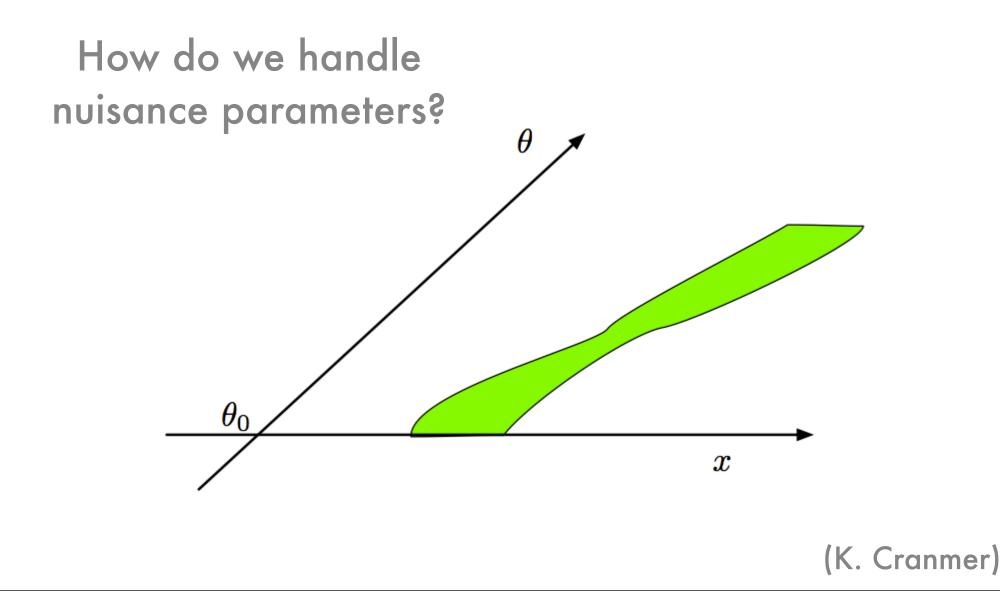
So the interval $[\theta_{-}, \theta_{+}]$ covers the true value with probability $1 - \alpha$



This is not Bayesian... it doesn't mean the probability that the true value of θ is in the interval is $1 - \alpha$!

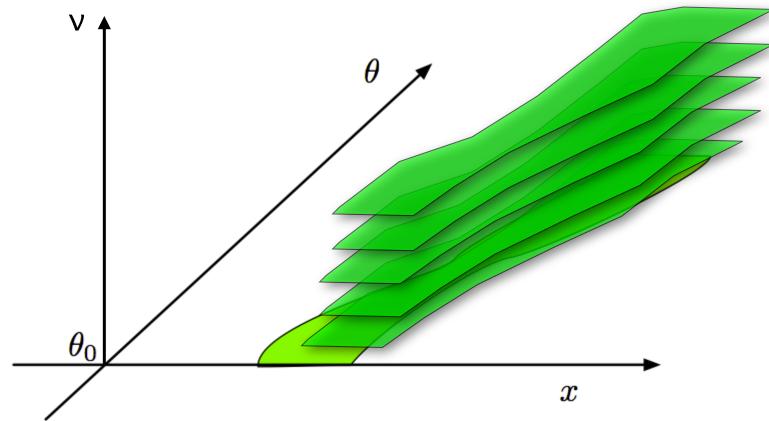


Nuisance Params



Nuisance Params

Make acceptance regions for each value



asymptotic approximation

After a close look at the profile likelihood ratio

$$\lambda(\mu=0) = rac{L(data|\mu=0,\hat{\hat{b}}(\mu=0),\hat{\hat{v}}(\mu=0))}{L(data|\hat{\mu},\hat{b},\hat{v})},$$

one can see the function is independent of true values of ν

though its distribution might depend indirectly

Wilks's theorem states that under certain conditions the distribution of the profile likelihood ratio has an asymptotic form

$$-2\log\lambda(\mu=0)\sim\chi_1^2$$

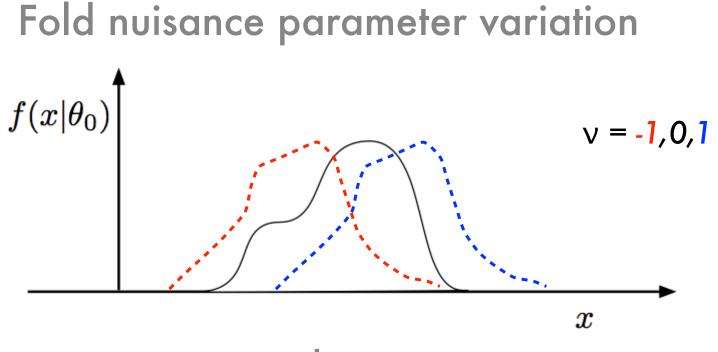
Thus, we can calculate the p-value for the background-only hypothesis by calculating

or equivalently:

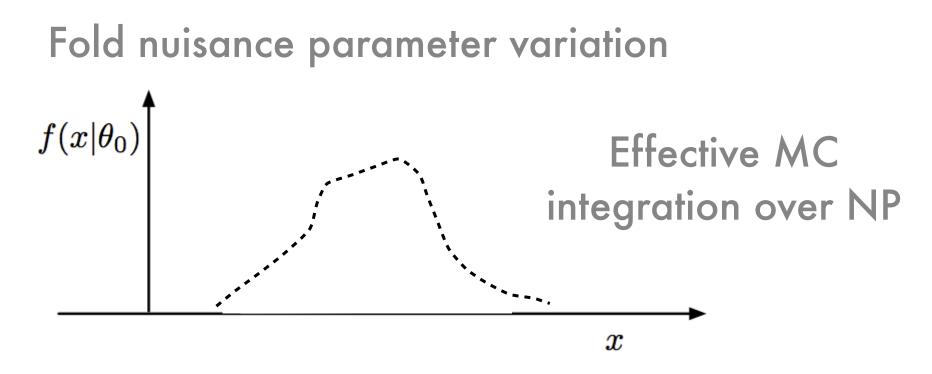
$$-2\log\lambda(\mu=0)$$

$$Z = \sqrt{-2\log\lambda(\mu=0)}$$

hybrid solutions



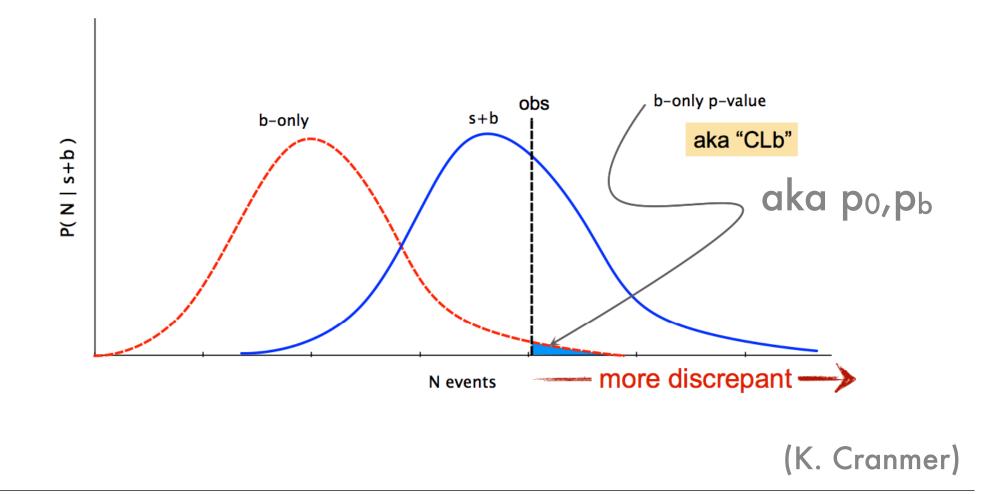
into pseudo-experiments used to create acceptance region



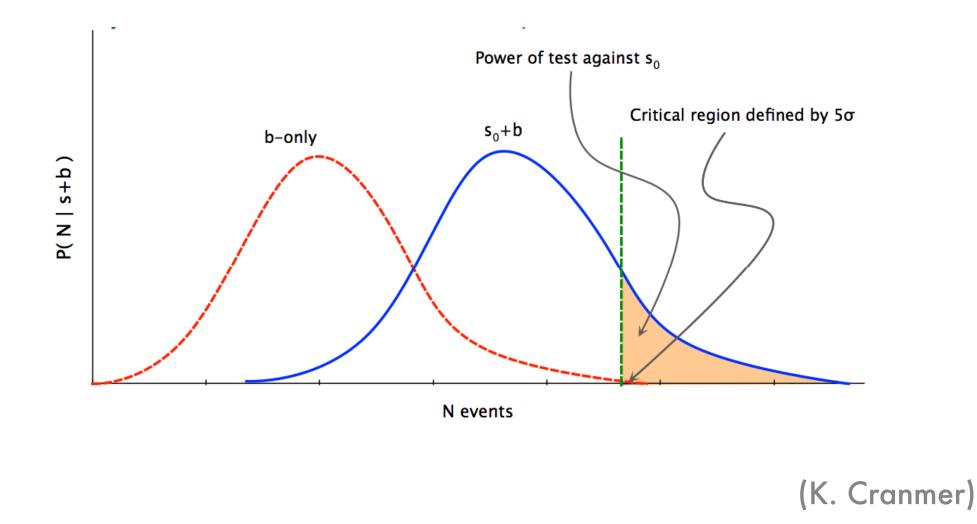
Required to specify prior on NP This is a Bayesian procedure!

More on p-values

To reject background hypothesis

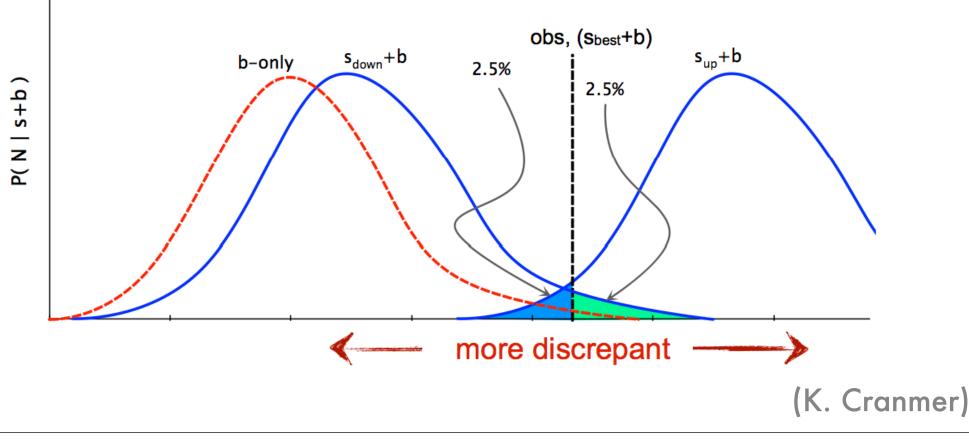


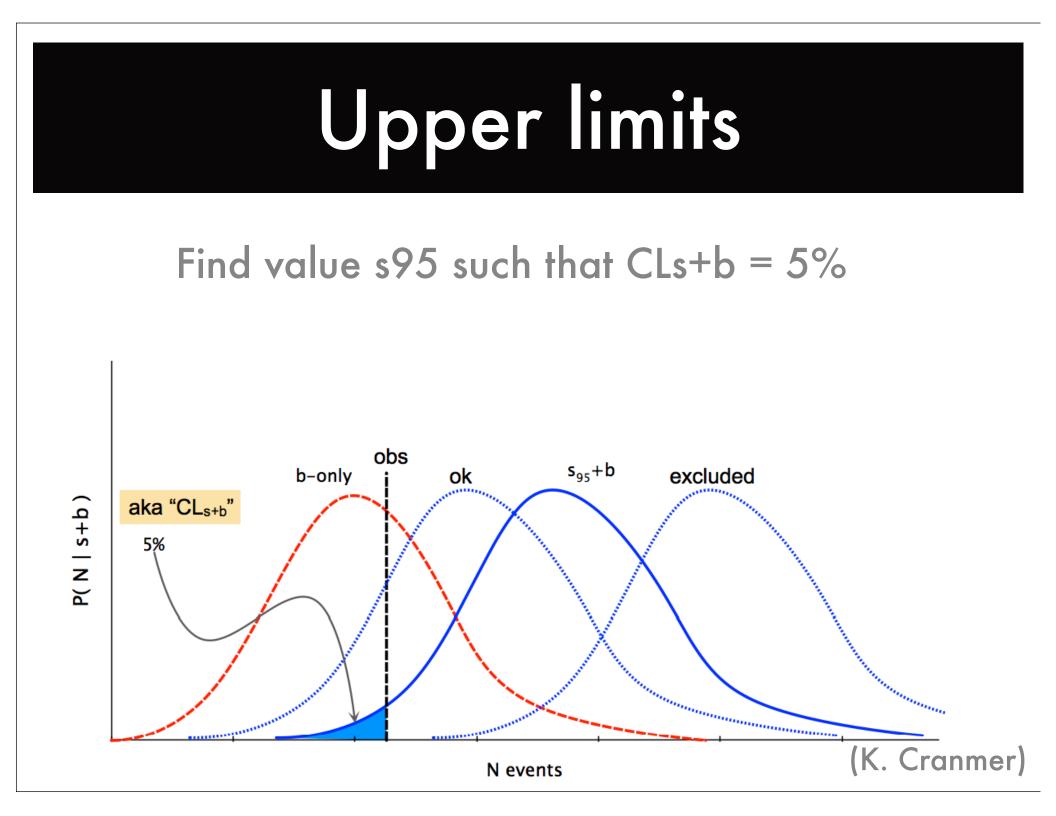
Power



Measurement

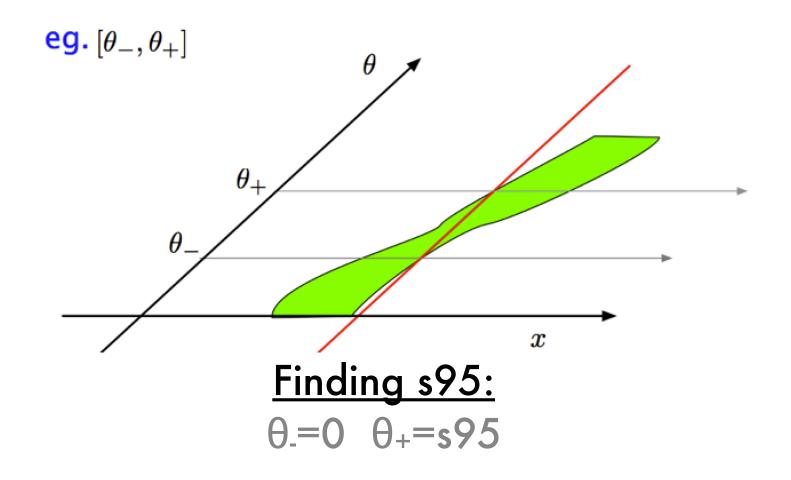
Measure: $s_{best} + X - Y$ (95%=2 σ errors) $s_{best} + X = s_{up}$ $s_{best} - Y = s_{down}$





Neyman construction

Remember this picture

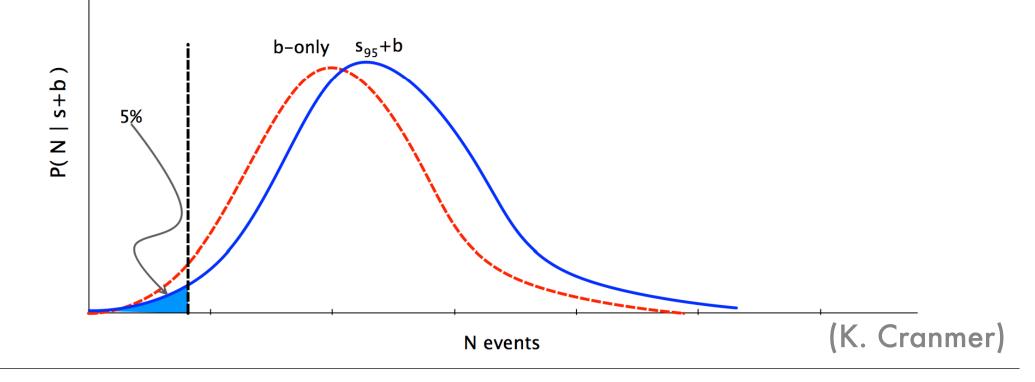


Low power

<u>What happens if</u>

- S+B looks a lot like B
- downward fluctuation

We asked for Type I error= 0.05 that means in 5% of experiments, the interval we get [0,s] will not contain the true value

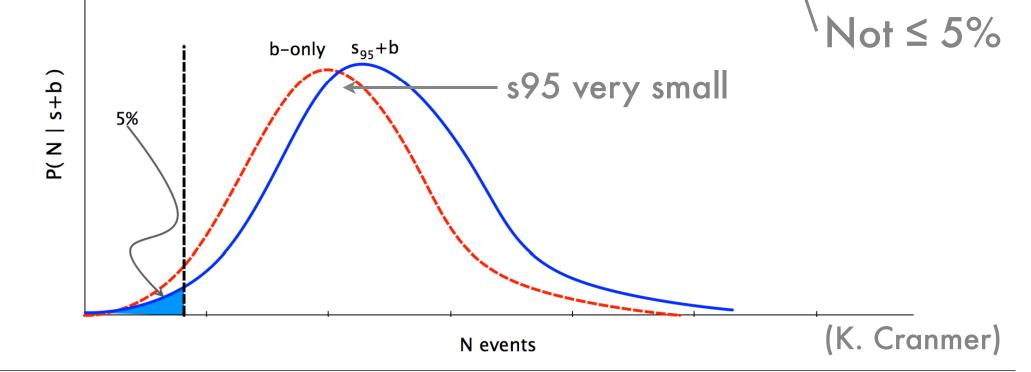


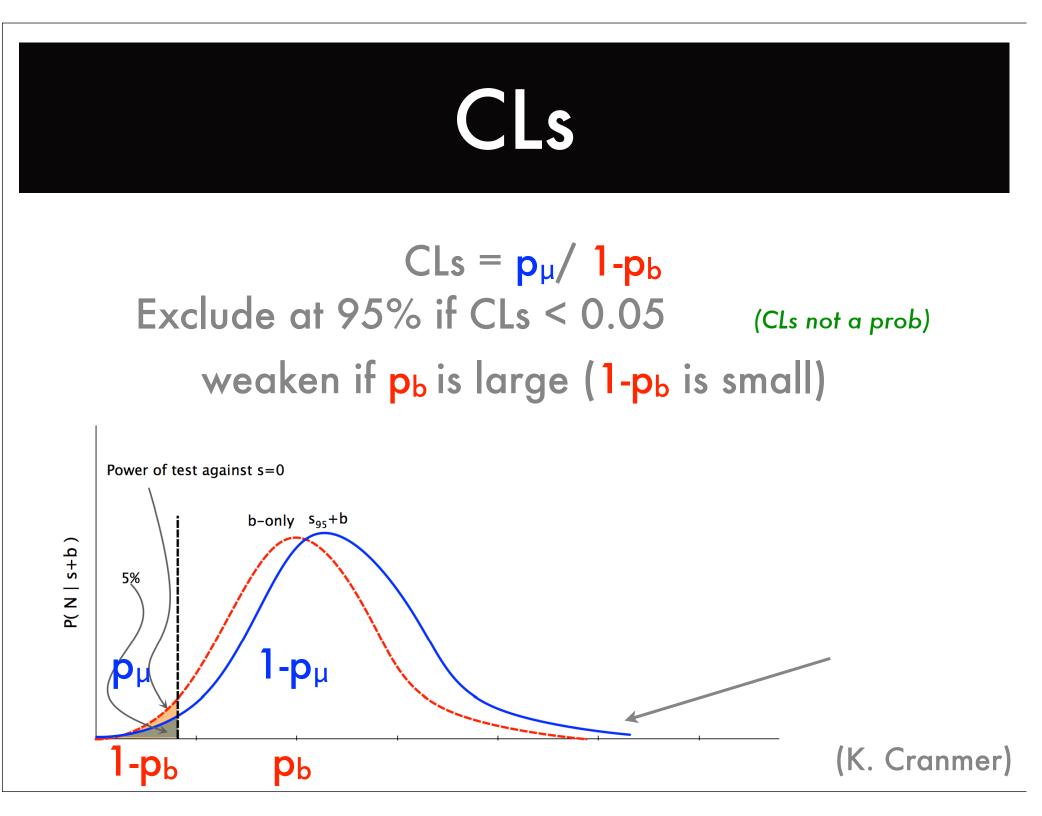
Low power

<u>What happens if</u>

- S+B looks a lot like B
- downward fluctuation

We asked for Type I error= 0.05 that means in 5% of experiments, the interval we get [0,s] will not contain the true value





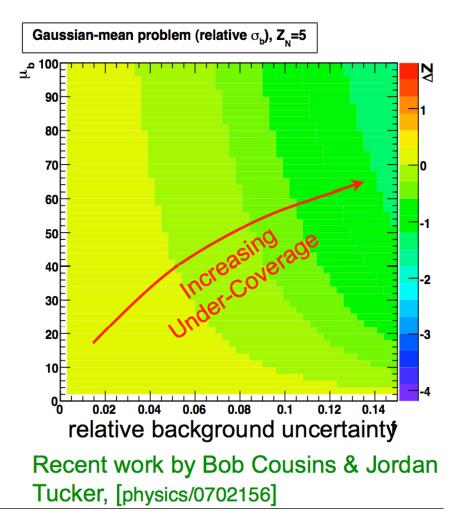
coverage

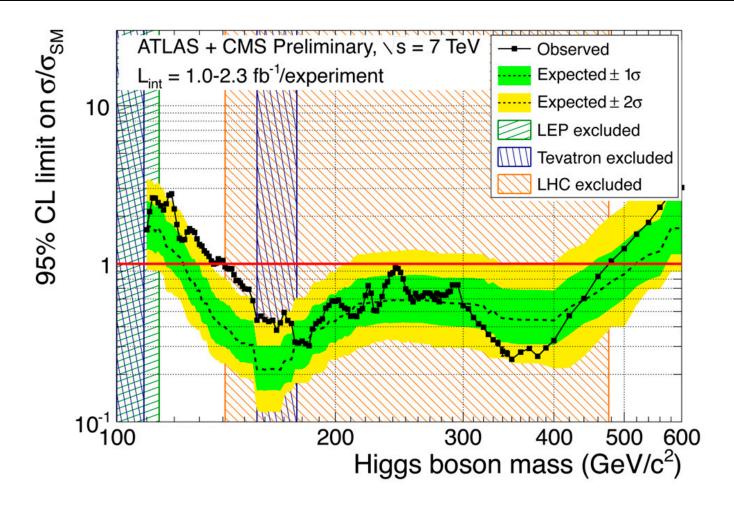
Expect 5σ to mean specific Type I error α

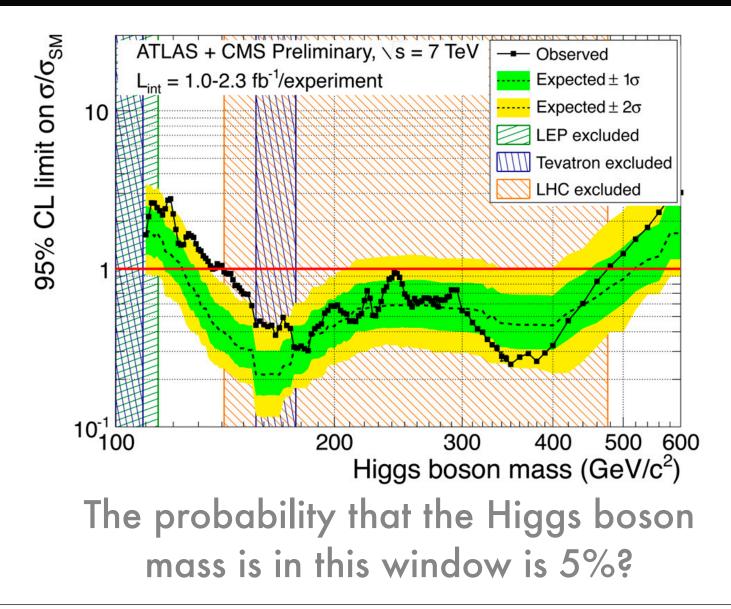
Expect 95%CL intervals to have α=0.05

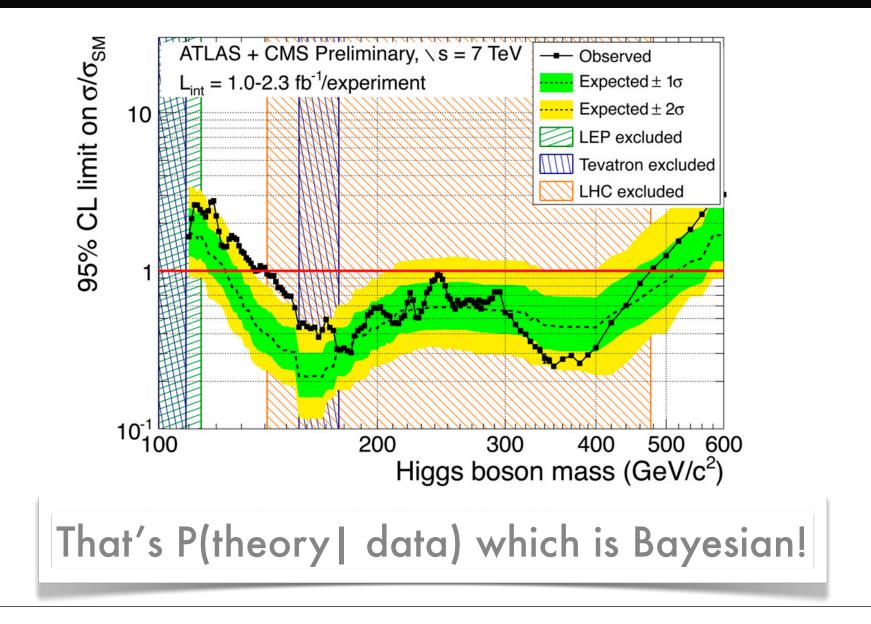
<u>Go measure it, make sure it is.</u>

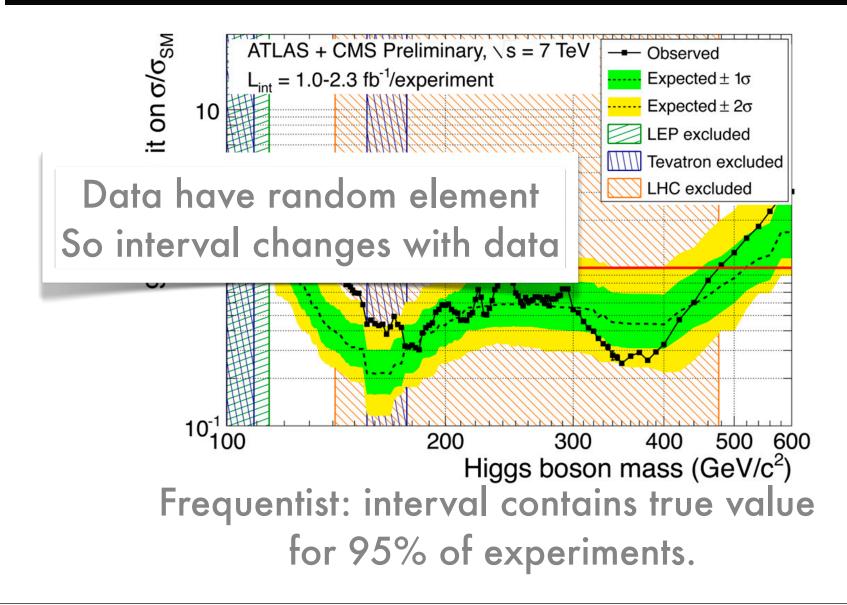
Coverage is a calibration of your statistical tools.





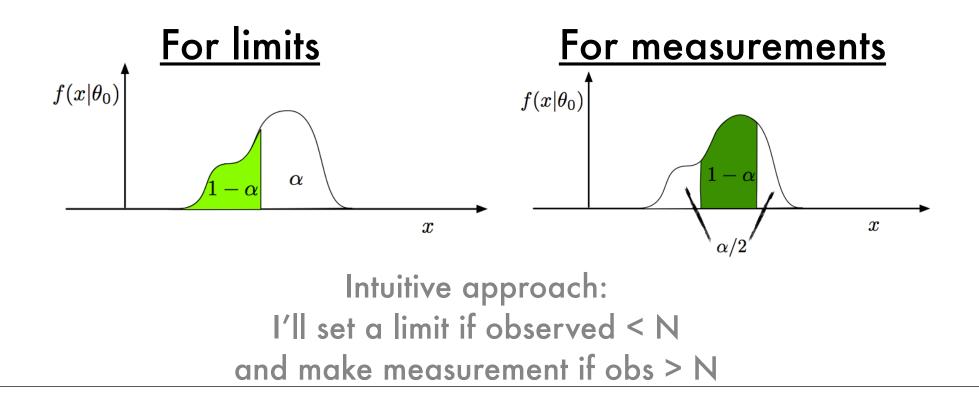




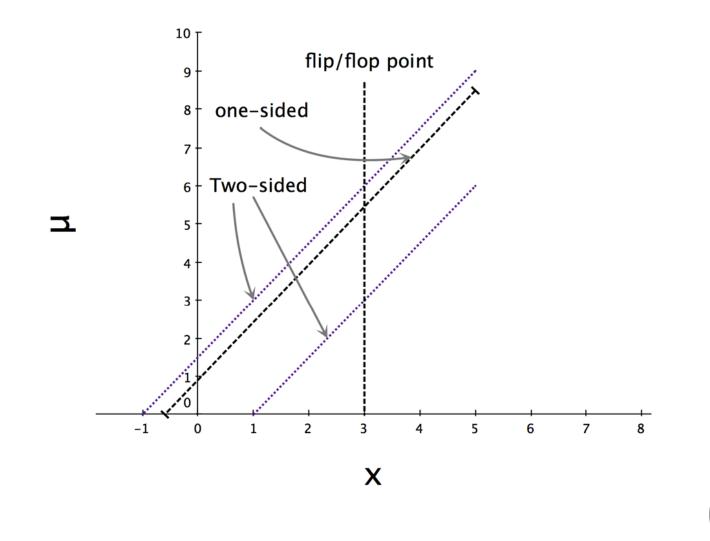


flip-flopping

You do an experiment. You don't know beforehand if you want to set an upper limit or measure a signal cross-section

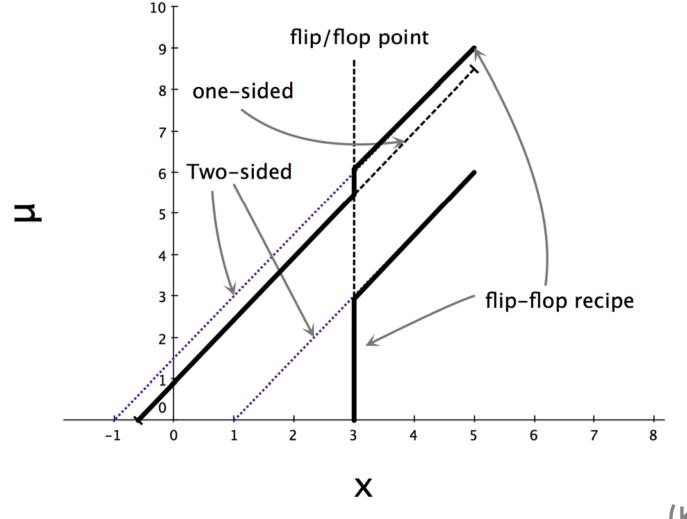


Flip-flopping



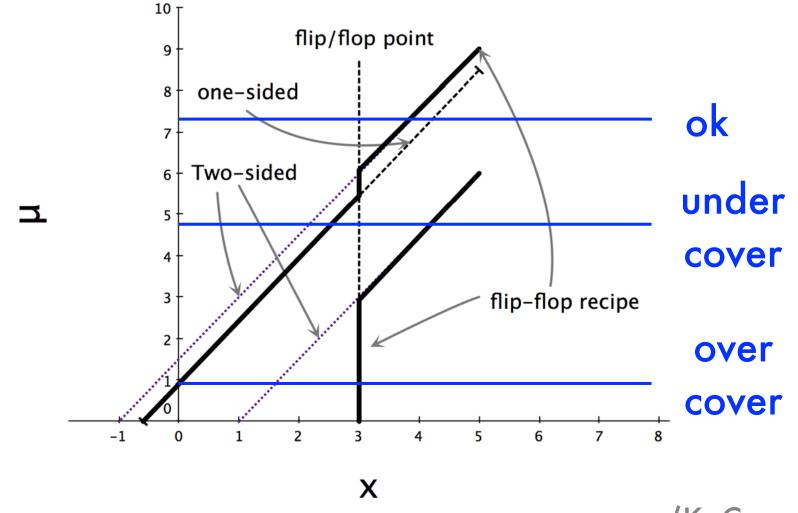
(K. Cranmer)

Flip-flop intervals

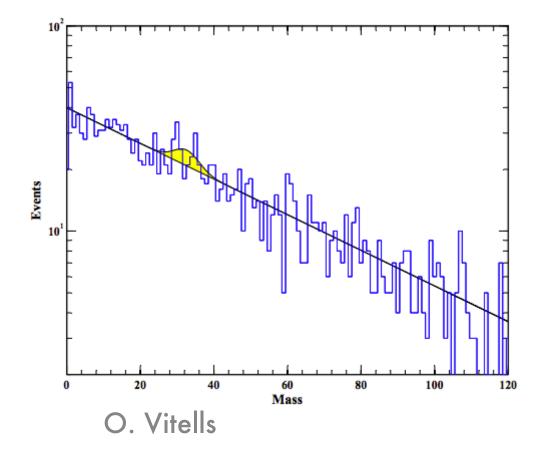


(K. Cranmer)

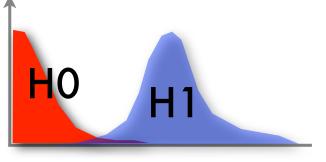
Coverage



(K. Cranmer)

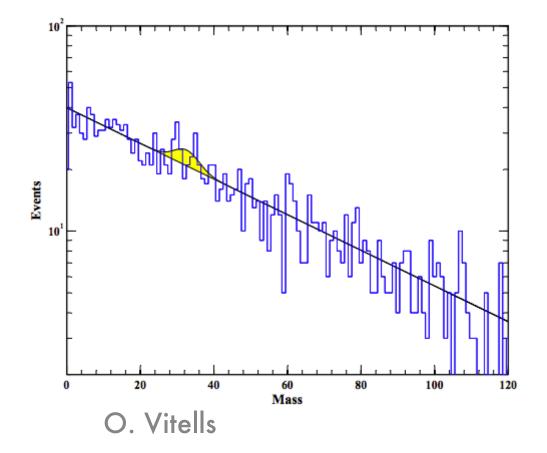


For a fixed mass and width

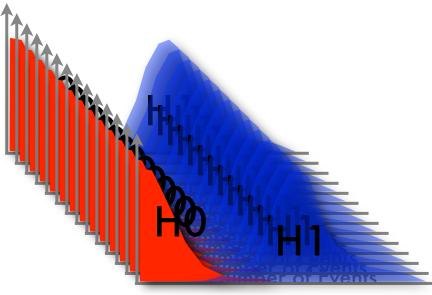


Number of Events

A well defined problem.



For unknown mass and width

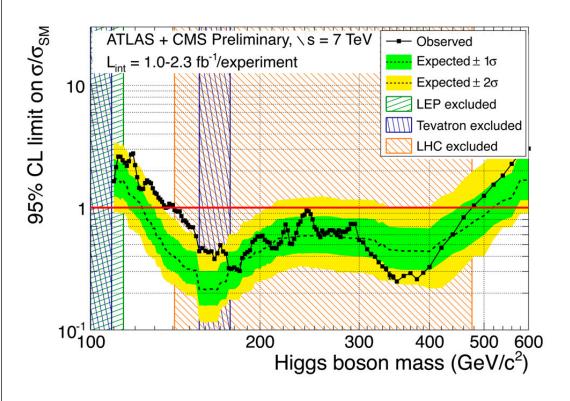


Number of Events

Many well defined problems.



Can make set of well defined limits

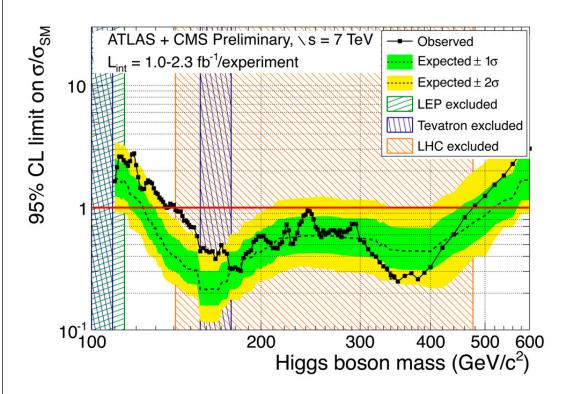


But what is significance of one-of-many results?

Prob to see a 5σ result depends on how many places you look!

 $(range \rightarrow \infty, prob \rightarrow 1)$

look elsewhere effect But what is significance limit on a/a_{SM} ATLAS + CMS Preliminary, $\ s = 7 \text{ TeV}$ --- Observed $L_{int} = 1.0-2.3 \text{ fb}^{-1}/\text{experiment}$ Expected $\pm 1\sigma$ γŚ 10 Expected $\pm 2\sigma$ FP evolute ' crossing symmetry says: To all the desperate phenomenologists out there who are waiting for the December 24, 2012 at 2:37 pm appearance of another anomaly so that they can do some "science", ATLAS experiment is seeing a resonance of the same-sign dimuon at 105 GeV. With 13fb-1 data, the significance of the bump is 5.02 sigma–around 14 events at the resonance. I hope this will keep our brilliant phenomenologists busy over the holidays in a race to build model.



Must dilute the "local" significance by LEE.

Depends on range considered!

Philosophical: other experiment influence? Prior knowledge?

What if you had 1000 graduate students

and gave them each one mass point.

As the number of grad students grows

the probability that one will have a locally significant excess goes to 1

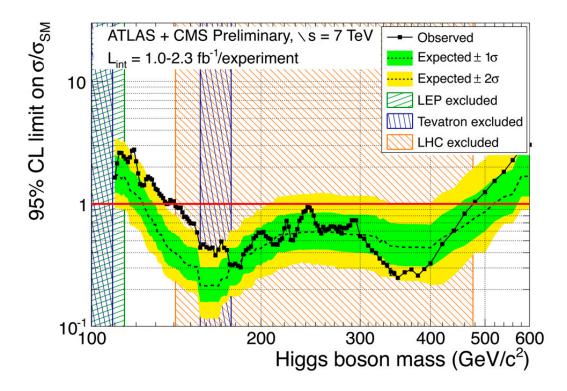
As the number of grad students grows

the probability that one will have a locally significant excess goes to 1

Is that student's result not valid?

Statistical fluctuations are valid results – they are expected! LEE when you want to make statements <u>across multiple independent tests</u>

Independent tests



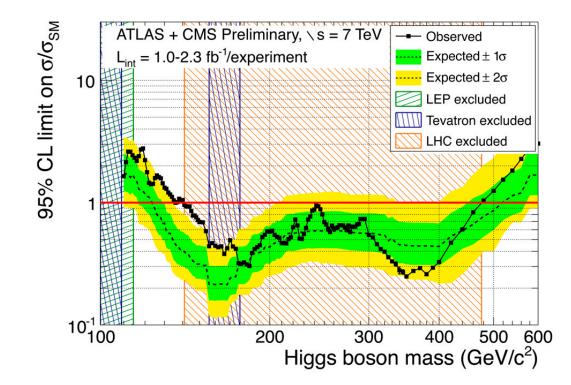
You can't make an infinite number of independent tests because we have finite resolution.

But what about...

Does the LEE apply to a set of papers from ATLAS?

<u>No</u>: if you consider each result seperately <u>Yes</u>: if you take the most discrepant result from all ATLAS papers

LEE for limits?



Search done separately at each point. Mass and width are assumed! Fluctuations at other masses ignored

Statistical questions

- For a given mass, what cross-sections are (in)consistent with the data? [cross-section limits]
- For a specific theory Z', what masses are (in)consistent with the data? [mass limits]
- What mass & cross-section are (in)consistent with the data? [cross-sec vs mass signifances]

Statistical questions

- For a given mass, what cross-sections are (in)consistent with the data? [cross-section limits]
- For a specific theory Z', what masses are (in)consistent with the data? [mass limits]
- What mass & cross-section are (in)consistent with the data? [cross-sec vs mass signifances]

Raster Scan

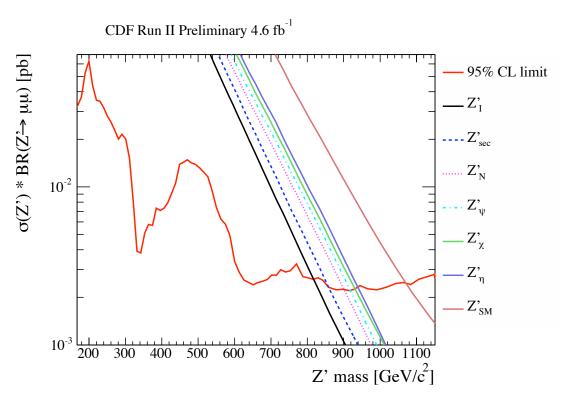
For a given mass, what cross-sections are (in)consistent with the data?

<u>Raster scan in mass</u> At a set of masses, do a cross-section analysis.

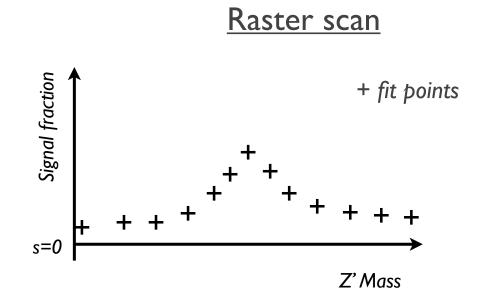
Note:

Limits are correlated in nontrivial way at different mass points

Look-elsewhere effect not accounted for



Mechanics

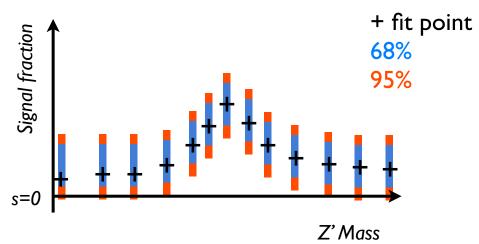


Finds set of points which maximize L(s) at each M.

The results are correlated point-to-point. By how much depends on the mass resolution and point density.

Raster scan

Raster scan



Compare each fit point with distribution of fit points for varying signal at that mass

^{point} <u>Each specific-mass analysis interval</u> based on comparison to fluctuations at <u>one</u> mass.

> Analysis is really across mass range: you would accept bump at any mass. This requires additional dilution of claimed sensitivity here. The more places you look, the more likely to are to see a fluctuation.

"Look elsewhere effect" (eg CDF Z' to ee bump at ~250 GeV)

Raster Scan

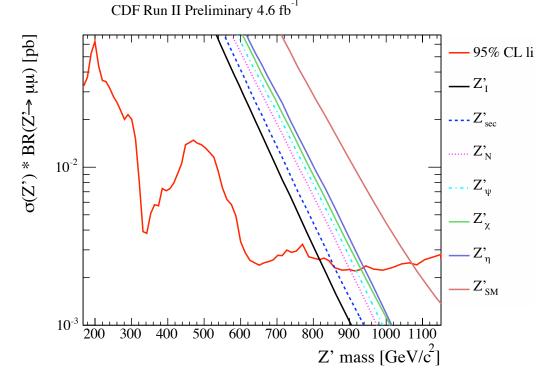
For a given mass, what cross-sections are (in)consistent with the data?

<u>Summary</u>

Raster scan in mass answers this question

Note:

This technique cannot be used to assess the significance of an excess or the insignificance of noexcess across masses.



Statistical questions

- For a given mass, what cross-sections are (in)consistent with the data? [cross-section limits]
- For a specific theory Z', what masses are (in)consistent with the data? [mass limits]
- What mass & cross-section are (in)consistent with the data? [cross-sec vs mass signifances]

Raster Scan

For a specific Z' theory, what masses are (in)consistent with the data?

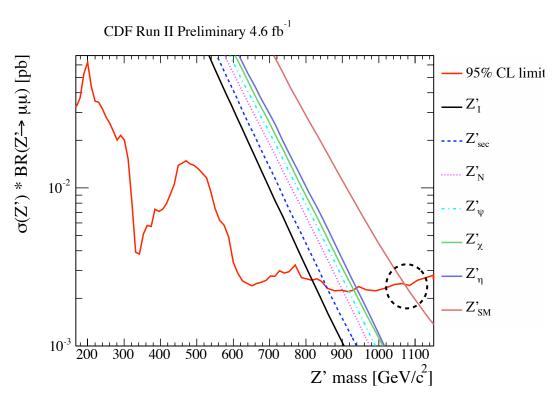
<u>Compare cross-section limits to theory</u>

Find point of intersection. Quote result.

No look-elsewhere effect:

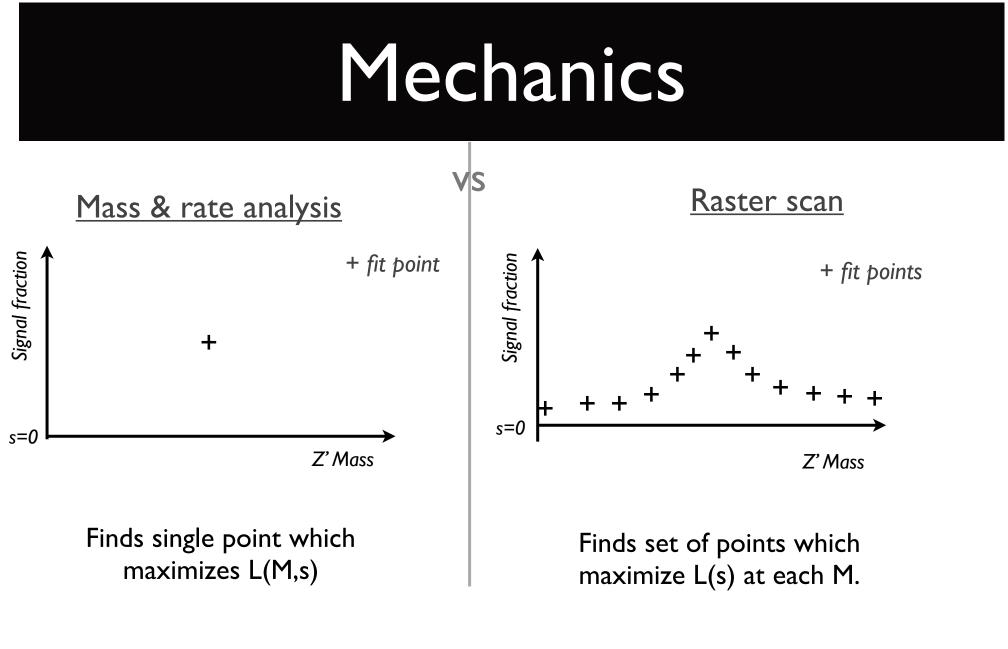
If Nature has a Z' at some mass, only need to worry about statistical correctness at that mass.

If Nature doesn't have a Z', then all exclusions statements are correct.

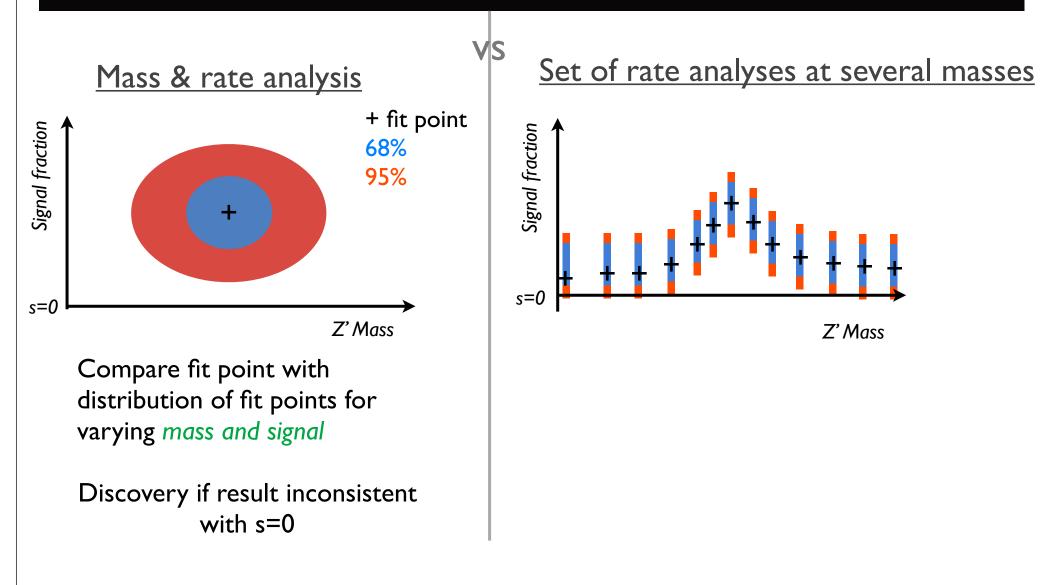


Statistical questions

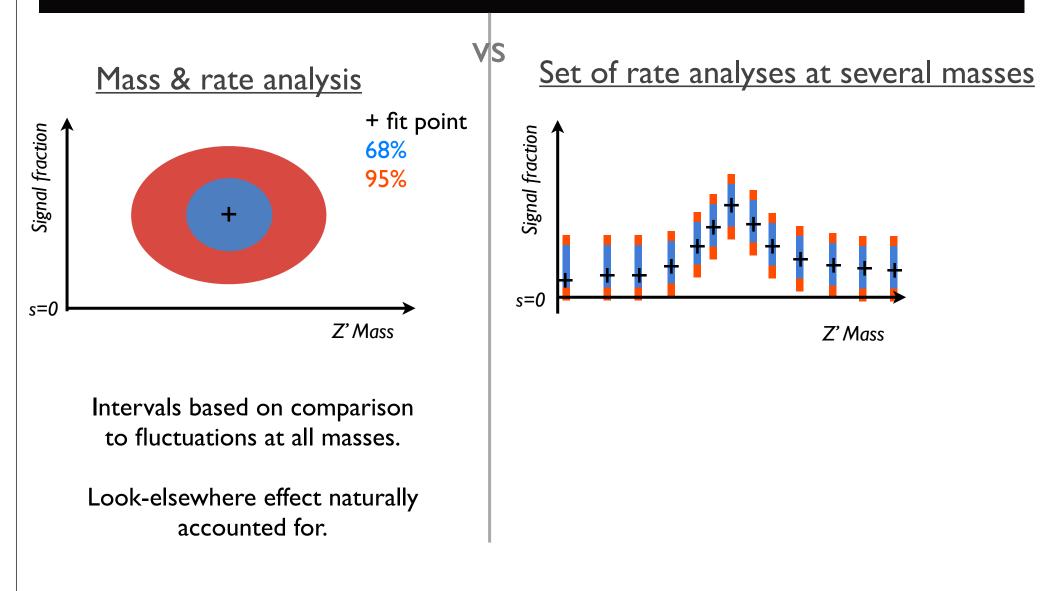
- For a given mass, what cross-sections are (in)consistent with the data? [cross-section limits]
- For a specific theory Z', what masses are (in)consistent with the data? [mass limits]
- What mass & cross-section are (in)consistent with the data? [cross-sec vs mass significances]



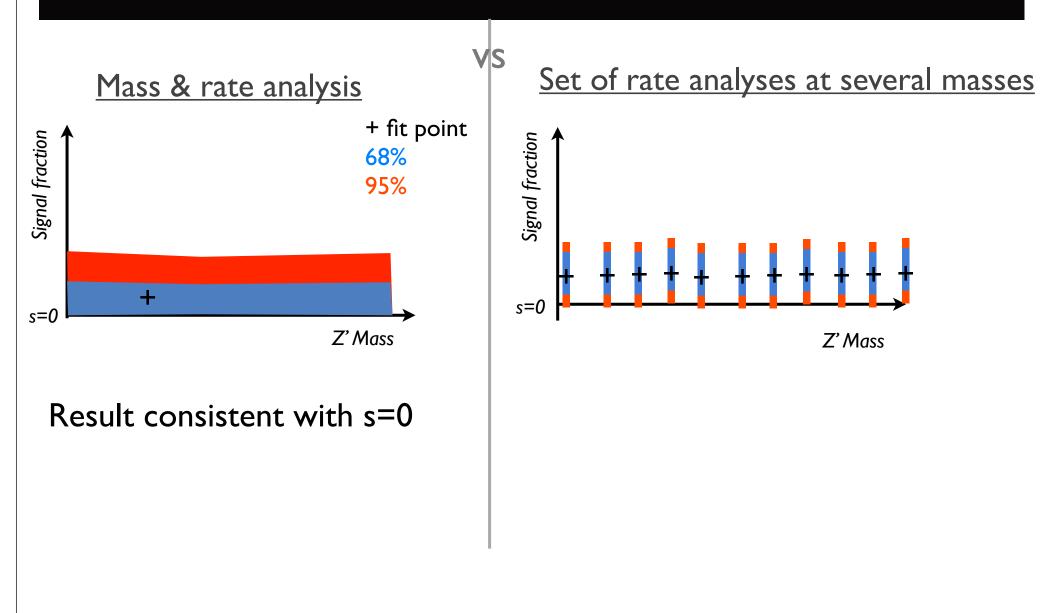
What does discovery look like?



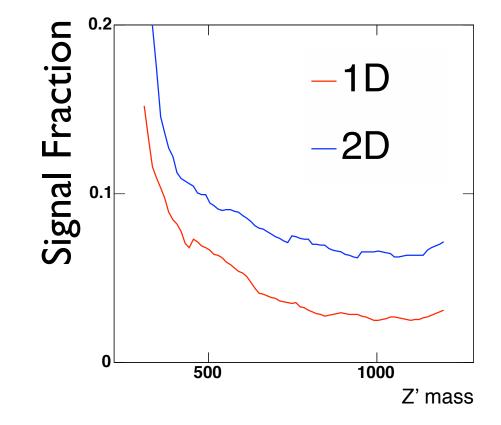
What does discovery look like?



What do limits look like?



Exclusion with 2D?



<u>2D limits are weaker</u>

More fluctuations everywhere

Upshot

Raster scan in mass

Statistically kosher at each point. If mass is unknown can only be used for exclusion. Gains exclusion power by sacrificing discovery potential.

mass vs cross-section

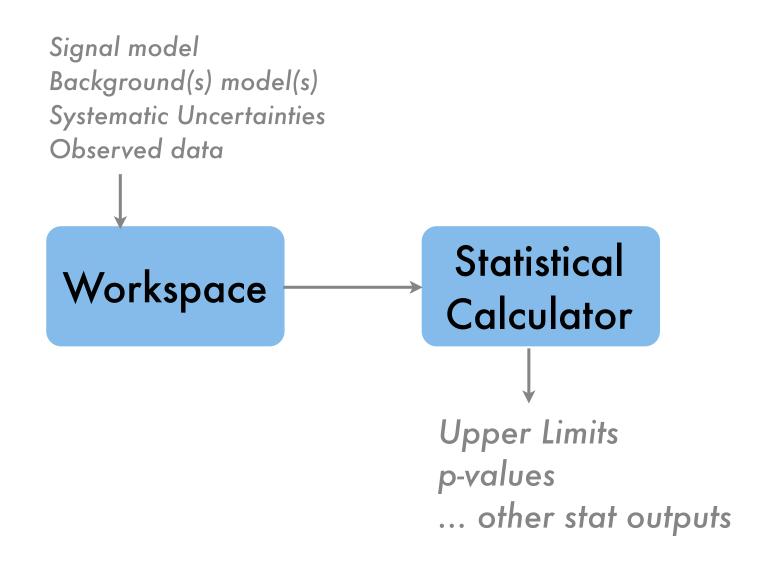
Well founded, more power for discovery, but weaker for exclusion.

Philosophy

Kosher to use both, as long as you always quote both

Tools and How-tos

RooStats basics



Tutorials

Google

roostats tutorial

Web

Videos Shopping

News Images

Search tools

More -

About 4,740 results (0.27 seconds)

Roostats tutorials - Root

root.cern.ch/root/html534/tutorials/roostats/index.html - ROOT -

C tutorial demonstrating and validates the RooJeffreysPrior class; 7. ModelInspector.C **RooStats** Model Inspector new; 8. MultivariateGaussianTest. You've visited this page 2 times. Last visit: 8/17/14

WebHome < RooStats < TWiki

https://twiki.cern.ch/twiki/bin/view/**RooStats**/WebHome
CERN
Oct 21, 2013 - NEW Opportunity to contribute to RooFit/RooStats development ... **RooStats tutorials** at 2012 Bonn school on limit setting and global fits: slides ...
You've visited this page many times. Last visit: 4/6/14

RooStatsTutorialsAugust2012 < RooStats < TWiki

https://twiki.cern.ch/twiki/.../RooStats/RooStatsTutorialsAugust201...
CERN
Jump to Exercises for this tutorial (Part 1) -). Below will given code snippets showing how to build some different analysis models and then on how to run ...
Introduction to RooStats - Getting started with the software
You've visited this page 2 times. Last visit: 4/6/14

RooFit/RooStats tutorials for INFN School of ... - TWiki

twiki.cern.ch > TWiki > RooStats Web < CERN < Jun 14, 2013 - This is a set of RooFit/RooStats tutorials given at INFN school of statistics (3-7 June 2013), see the school agenda. The required materials used ...

[PDF] RooStats tutorials

mon.iihe.ac.be/trac/t2b/.../RooFitRooStats tutorial summary GVO.pdf -

Signal model Background(s) model(s) Systematic Uncertainties Observed data

Workspace

<u>Example</u>:

Number counting exp. Nsig = 3.0 Nbg = 0.5 Nobs = 3 No systematics (other than Lumi)

Signal model Background(s) model(s) Systematic Uncertainties Observed data

Workspace

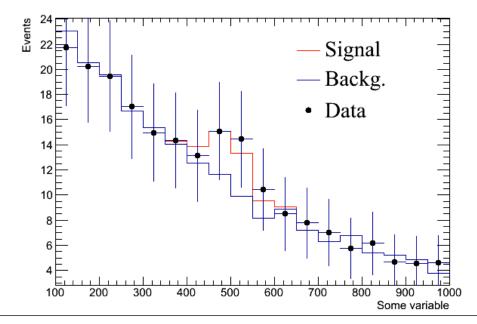
<u>Example</u>:

Number counting exp. Nsig = 3.0Nbg = 0.5 ± 0.1 Nobs = 3

Signal model Background(s) model(s) Systematic Uncertainties Observed data

Workspace

Example: Shape fit Nsig = 10.0 Nbg = 200 Nobs = 210

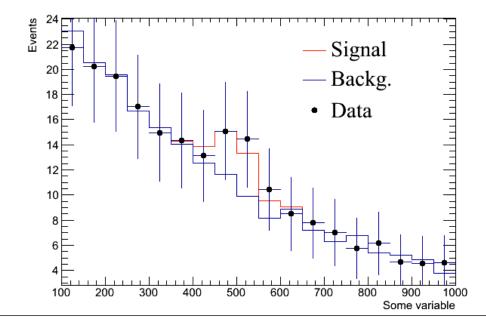


Signal model Background(s) model(s) Systematic Uncertainties Observed data

Workspace

<u>Example</u>:

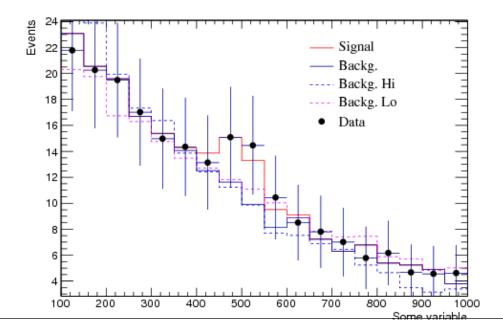
Shape fit Nsig = 10.0 Nbg = 200 ± 20 Nobs = 210



Signal model Background(s) model(s) Systematic Uncertainties Observed data

Workspace

Example: Shape fit Nsig = 10.0 Nbg = 200 with shape unc. Nobs = 210



The end!

"Bayesians address the question everyone is interested in, by using assumptions no-one believes"

"Frequentists use impeccable logic to deal with an issue of no interest to anyone"

-L. Lyons