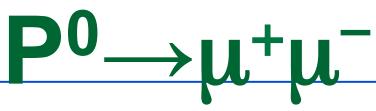
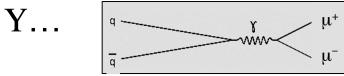


Sheldon Stone Aug. 20, 2014

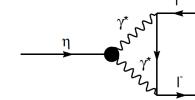
 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$



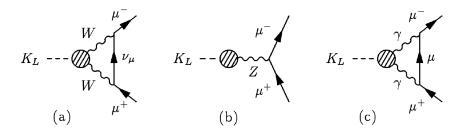
- What mesons do you know that decay into $\mu^{+}\mu^{-}?$
 - Spin-1 mesons formed of $q\overline{q}$, including ρ , ω , ϕ , ψ ,



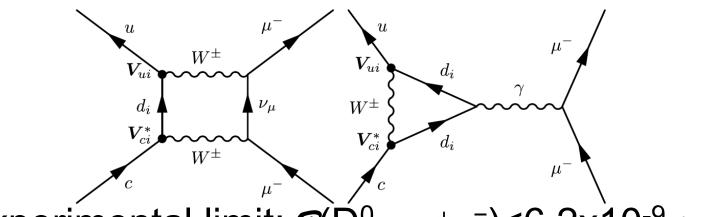
Spin-0 mesons η , K_{L}^{0} , (note helicity supression)



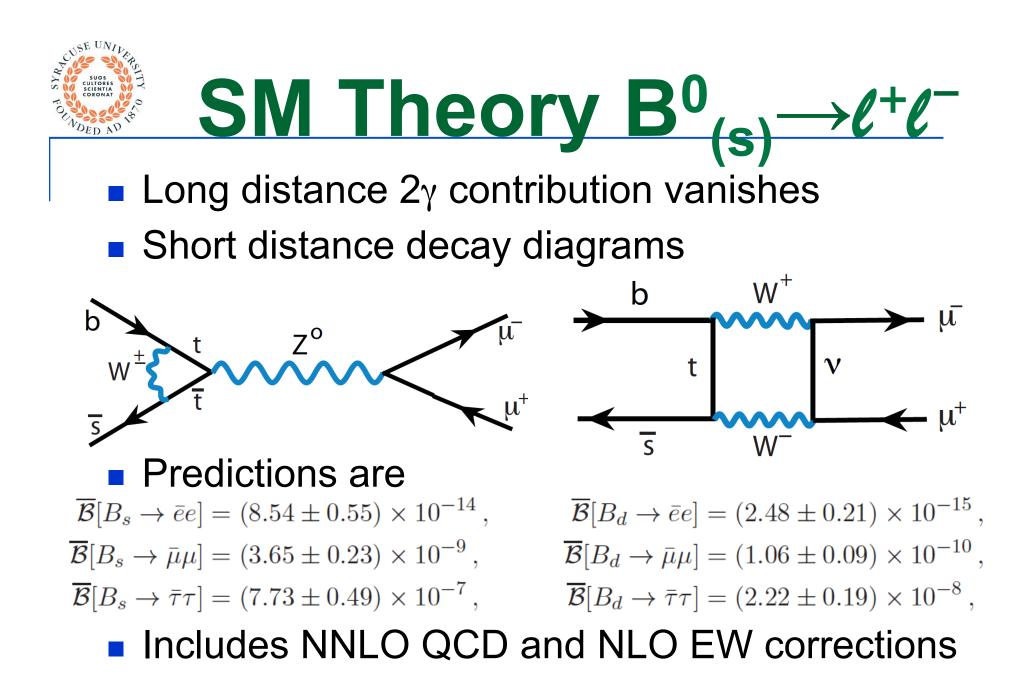
similar diagram for K_L,
 γ diagram dominates



- The 2γ intermediate decay is highly suppressed
 ~few x 10⁻¹³ (<u>hep-ph/0112235</u>)
- Short distance diagrams are very small ~10⁻¹⁸



- Experimental limit: 𝔅(D⁰→μ⁺μ⁻)<6.2x10⁻⁹ (LHCb arXiv:1305.5059)
- Good place to search for New Physics, but experimentally difficult; why?



Questions

 $\overline{\mathcal{B}}[B_s \to \bar{e}e] = (8.54 \pm 0.55) \times 10^{-14} ,$ $\overline{\mathcal{B}}[B_s \to \bar{\mu}\mu] = (3.65 \pm 0.23) \times 10^{-9} ,$ $\overline{\mathcal{B}}[B_s \to \bar{\tau}\tau] = (7.73 \pm 0.49) \times 10^{-7} ,$ $\overline{\mathcal{B}}[B_d \to \bar{e}e] = (2.48 \pm 0.21) \times 10^{-15} ,$ $\overline{\mathcal{B}}[B_d \to \bar{\mu}\mu] = (1.06 \pm 0.09) \times 10^{-10} ,$ $\overline{\mathcal{B}}[B_d \to \bar{\tau}\tau] = (2.22 \pm 0.19) \times 10^{-8} ,$

- Why is e⁺e⁻ rate so small?
- Why are the predictions different for the 3 leptons, does this violate lepton universality?
- Why isn't τ⁺τ⁻ easier than μ⁺μ⁻ as the predicted branching ratio is larger?

Experiment-overview

- Want to measure the branching ratio, the fraction of the time the B goes to $\mu^+\mu^-$
- \blacksquare Need to detect the $\mu^+\mu^-$
- Need to know how many B⁰ or B_s we have
- Inclusive b production was measured by LHCb to be ~300 µb at 7x7 TeV
- So in 10⁷ sec (1 year of running) at *L*=4x10³²/cm²•s, # b's is 10¹², (CMS~10x larger) but need to account for B fractions (f_d~1/3, f_s~1/10), acceptance, trigger ... HCPSS14, August, 2014

Trigger for μ⁺μ⁻ LHCb CMS

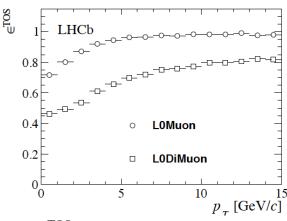
- Hardware level: One muon with p_T>1.76 GeV (also a track multiplicity cut), or two muons with √p_{T1}p_{T2}>1.6 GeV
- Higher level: Impact Parameter (IP) cut & invariant mass requirement
- Trigger eff ~90%

- Hardware level: Two muon candidates
- Higher level:
 - Dimuon mass cut
 - 7 GeV data: p_T>4 GeV for each muon, p_T(B)>3.9 GeV unless one μ has |η|>1.5 in which case p_T(B)>5.9 GeV
 - B GeV data: small changes
- Trigger efficency lower than for LHCb

Normalization modes

LHCb

- $B^-\rightarrow J/\psi K^-$, $\psi \rightarrow \mu^+\mu^-$, similar trigger
- B⁰→K⁻π⁺, same topology, different trigger
- Trigger eff of $B^- \rightarrow J/\psi K^-$



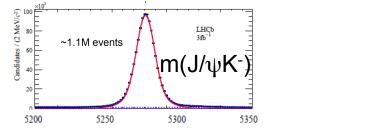
Efficiency ε^{TOS} of $B^+ \to J/\psi(\mu^+\mu^-)K^+$ as a function of p_T (J/ψ) for LOMuon and LODiMuon

```
HCPSS14, August, 2014
```

CMS

- B⁻→J/ψK⁻, ψ→μ⁺μ⁻
- $B_s \rightarrow J/\psi \phi$, $\psi \rightarrow \mu^+ \mu^-$, $\phi \rightarrow K^+ K^$ used for checking simulations
- BDT selection (neural network) – will discuss later, also LHCb
- Overall detection efficiencies for B⁰→µ⁺µ⁻ is about 0.3%

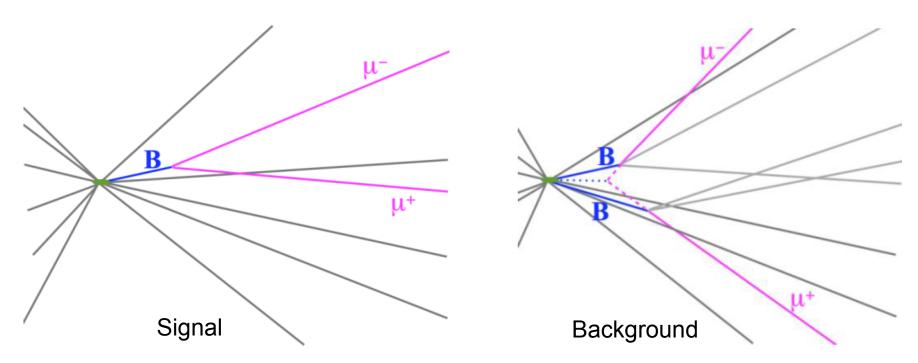
8



Main background

■ b \rightarrow X $\mu\nu$ ~10%, b \rightarrow cX, c \rightarrow Y $\mu\nu$ ~10%

So bb→X'µ⁺µ⁻ ~4x10⁻², compared with signal in SM ~4x10⁻⁹.



HCPSS14, August, 2014

BDT selection for $\mu^+\mu^-$

Idea of multivariate analyses is to use the variables & their correlations, rather than make rectangular cuts. Improves efficiency for a given background rejection

LHCb variables

- Muons: IP significance, distance of closest approach of μ⁺ & μ⁻, isolation, polarization ∠, Δη & Δφ
- Define P_{thrust} as the Σ**p**_i of all tracks consistent with coming from the other B. Then for
- B candidate: decay time, IP, p_T, isolation, ∠ between p_B & P_{thrust}, & ∠ between µ⁺ direction & P_{thrust} in B rest frame

CMS variables

- B-vertex fit χ^2 /ndof
- Distance of closest approach of μ^+ & μ^-
- the 3D pointing \angle wrt pv
- 3D flight length significance
- 3D impact parameter (IP) of the B candidate
- IP significance

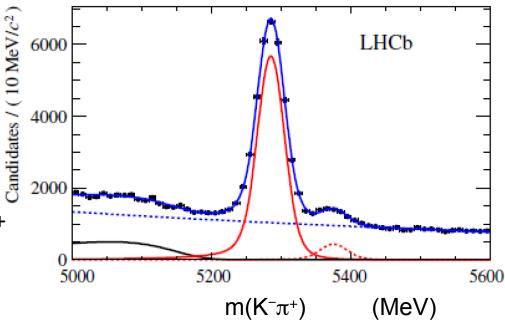
BDT discrimination

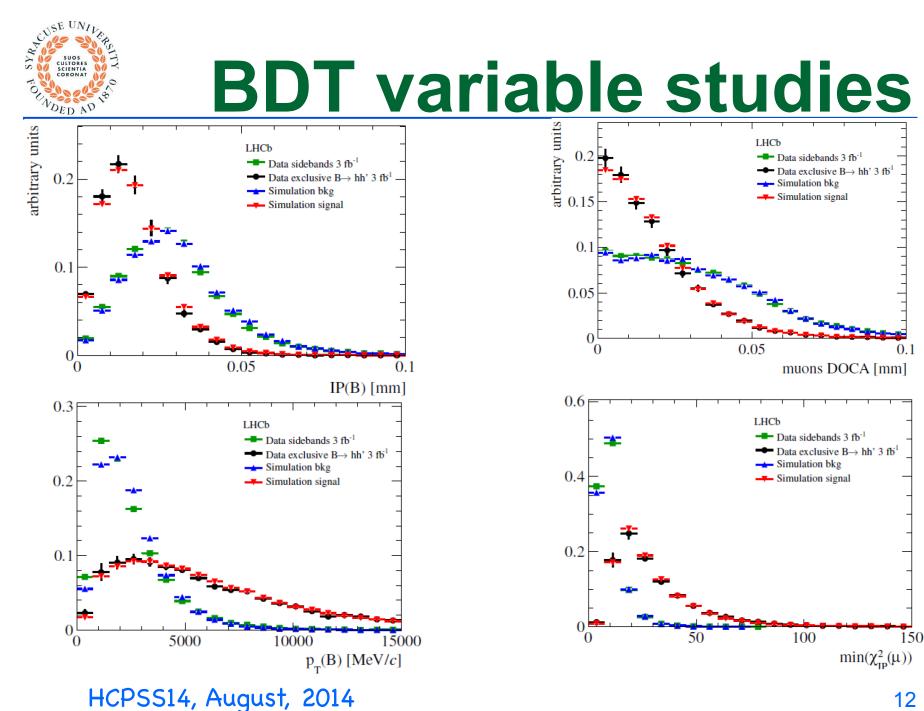
Basic idea is to use a sample for signal & a separate sample for background. The program then figures out the best discrimination based

on ONE variable

- Some examples from LHCb
 - Signal samples from $\frac{1}{2}$ simulation and B→h⁻h'⁺
 - Background samples from simulation and

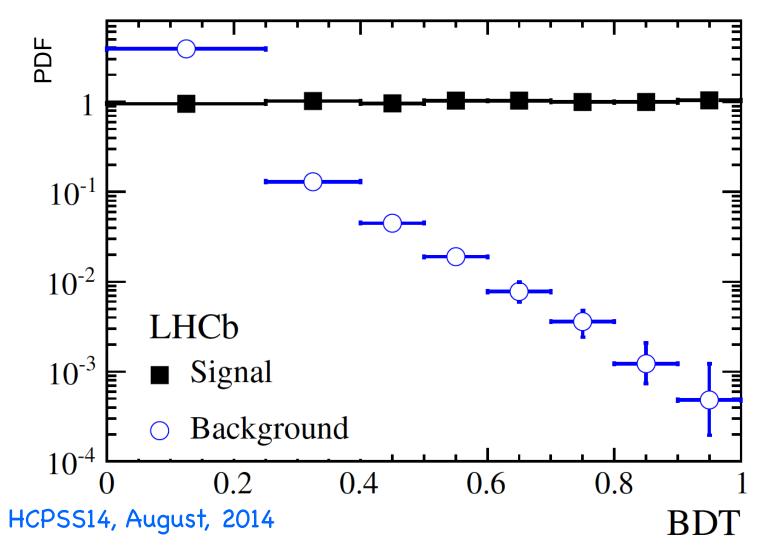
sidebands of the dimuon mass



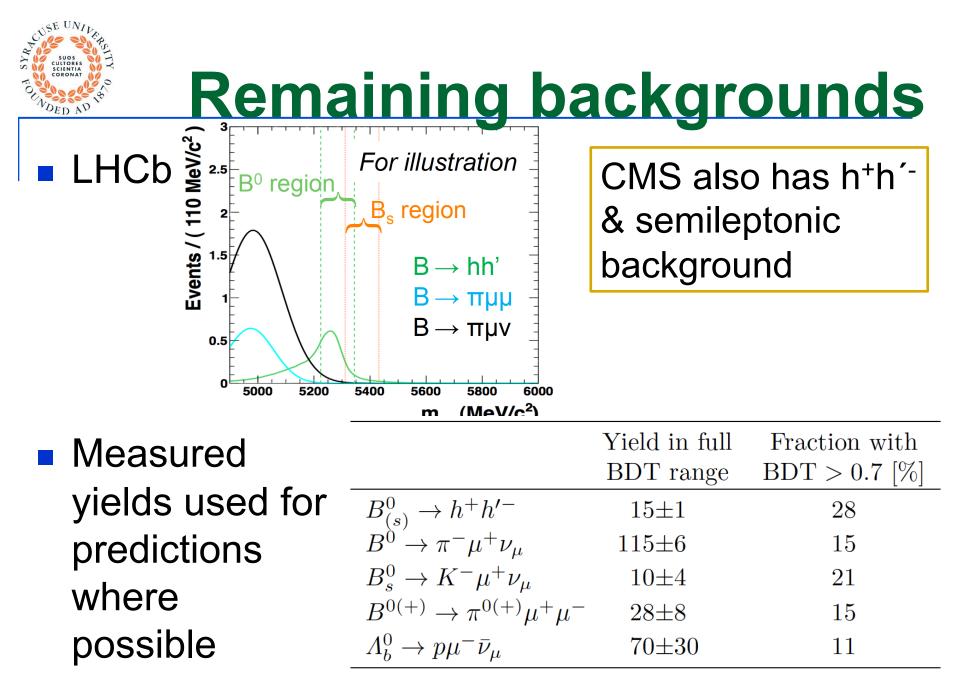


BDT output

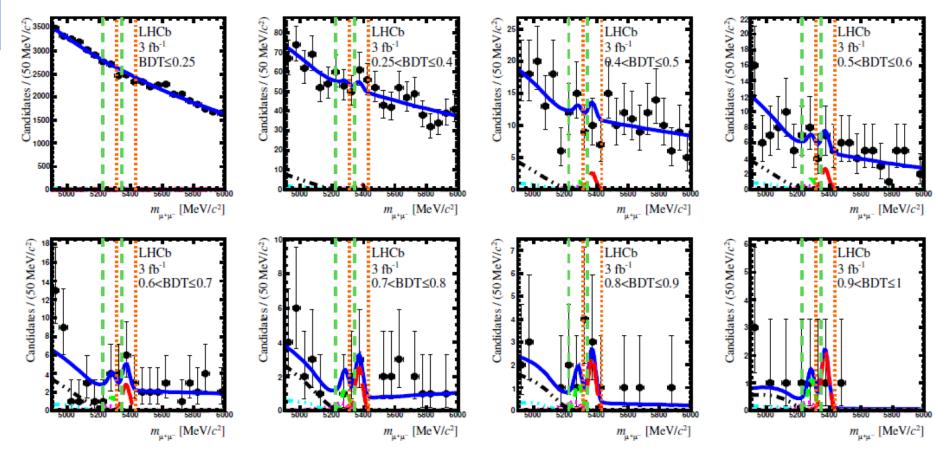
Tuned to be flat for signal



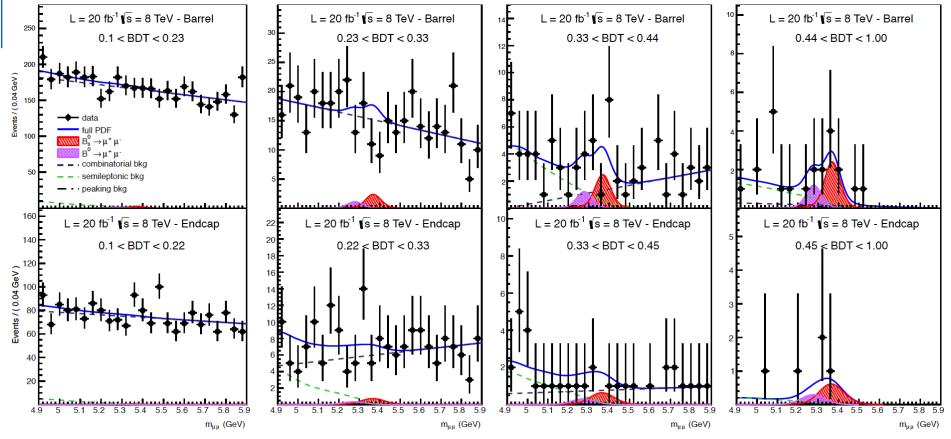
13



LCb fit results

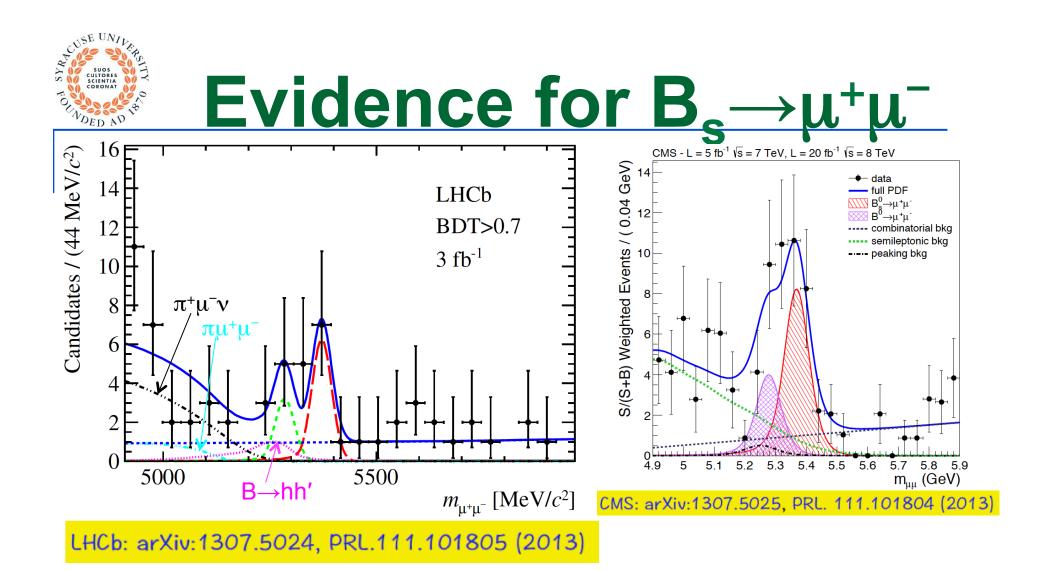


CMS fit results



HCPSS14, August, 2014

16



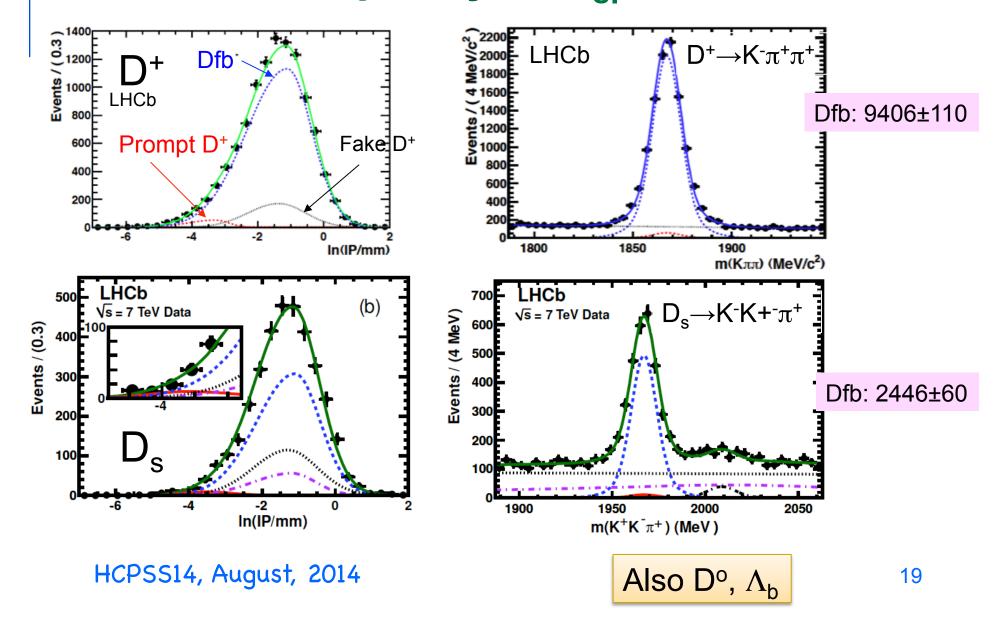
of B

- We now have signal yields.
- Branching fraction requires # signal /#B_s
- #B_s determined by LHCb
- Semileptonic method uses the fact that the semileptonic decay widths Γ(b_i→X_iμν) are equal for all b species. Since Γ(b_i→X_iμν)=yield/τ_{bi} (known) measuring these modes gives production ratios, i.e. f_s/f_d

$$\frac{f_s}{f_u + f_d} = \frac{n_{\text{corr}}(B_s^0 \to D\mu)}{n_{\text{corr}}(B \to D^0\mu) + n_{\text{corr}}(B \to D^+\mu)} \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{\bar{B}_s^0}}$$

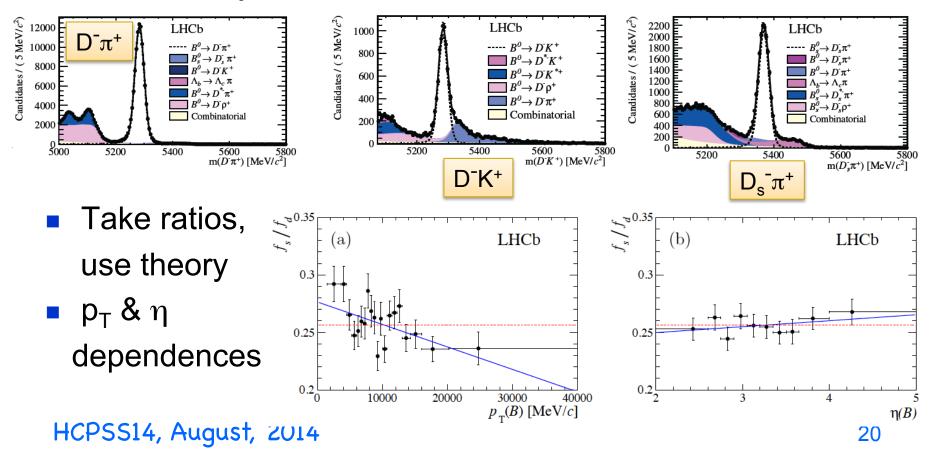
■ Ncorr($B_s \rightarrow D\mu$) is $D_s X\mu + DKX\mu$ (arXiv:1111.2357)

Production fractions: B→**DX**μν **use equality of** Γ_{sl} **& known** τ's



Hadronic

 Hadronic method – uses hadronic two-body decays: B_s→D_sπ⁻, B⁰→D⁰π⁻, B⁰→D⁰K⁻& form-factor ratio from theory (arXiv:1106.4435)



Branching fraction

- Using measured f_s/f_u=f_s/f_d=0.259±0.15
- & relative μ⁺μ⁻ yields with respect to normalization modes

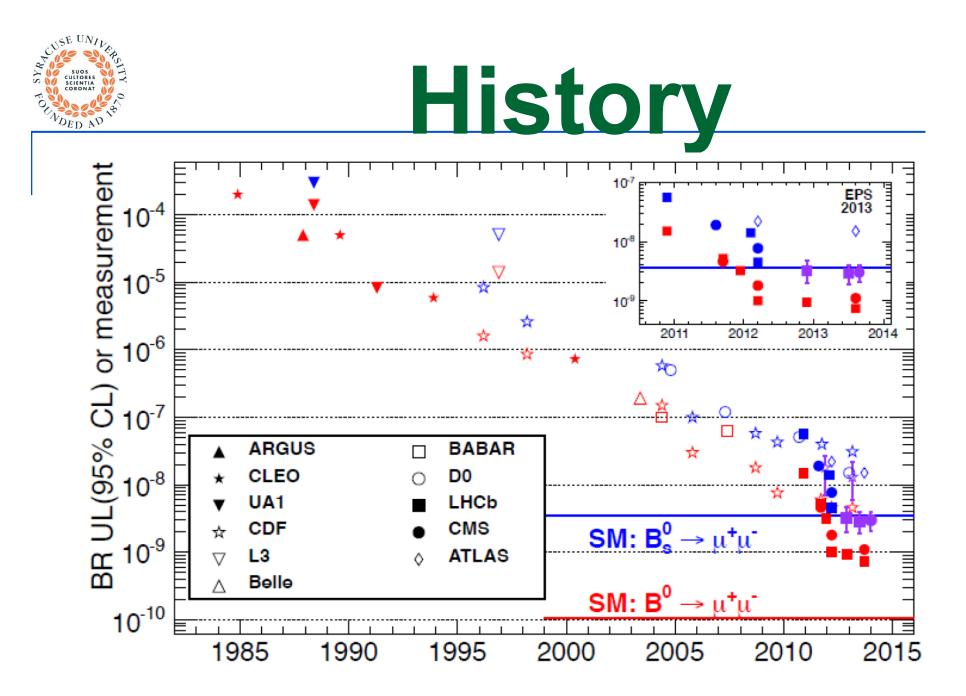
HCb:
$$\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9}, \longrightarrow 4.00$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}) \times 10^{-10}$

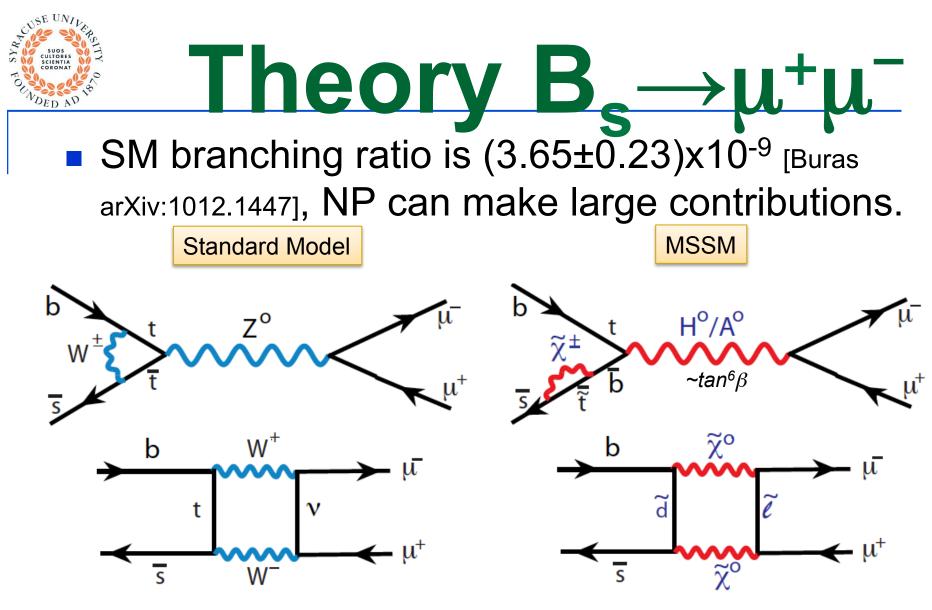
CMS:
$$\begin{array}{rcl} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& \left(3.0 \, {}^{+1.0}_{-0.9}\right) \times 10^{-9}, \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& \left(3.5 \, {}^{+2.1}_{-1.8}\right) \times 10^{-10} \end{array} \xrightarrow{-->} 4.3d$$

- Avg: $\mathscr{B}(B_s \rightarrow \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$
- Avg: $\mathscr{B}(B^0 \rightarrow \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$ (not significant)

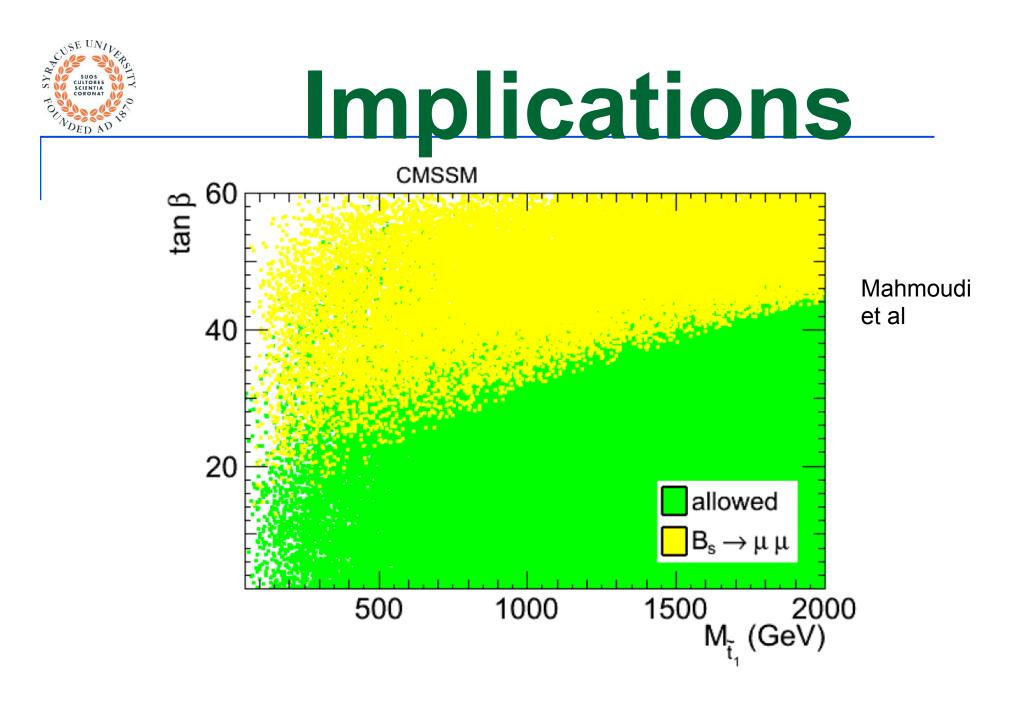
Upper limit < 5.7x10⁻¹⁰ @ 90% c.l.

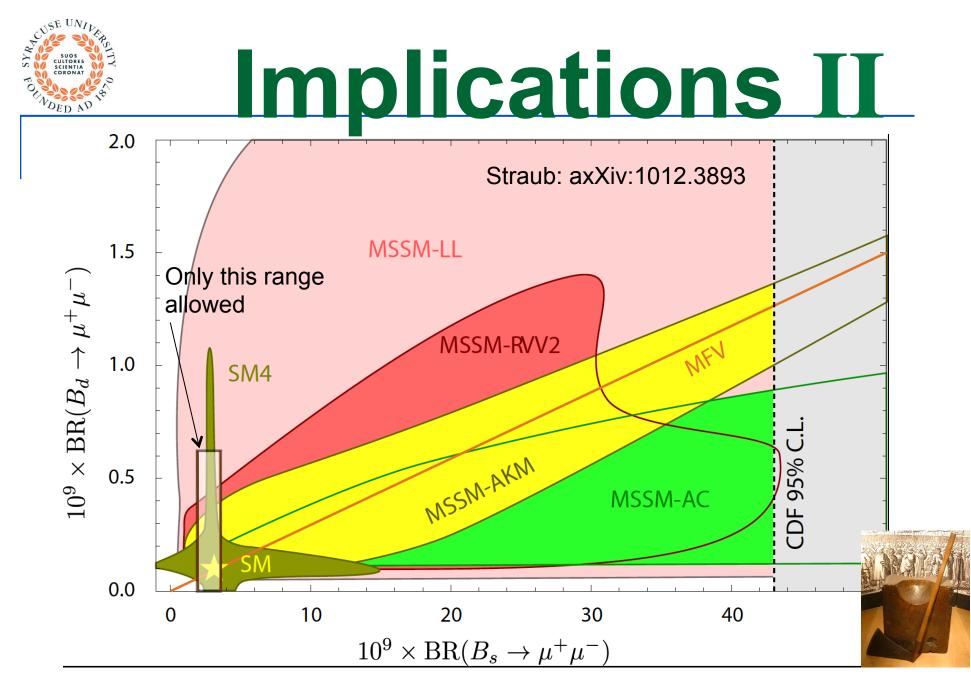


HCPSS14, August, 2014



Many NP models possible, not just Super-Sym
 HCPSS14, August, 2014
 23





HCPSS14, August, 2014

An Aside on lifetimes

Γ(t) for neutral B decays

• Recall
$$\Gamma \bullet \tau = \hbar$$

 $\Gamma[f, t] = \Gamma(B_s(t) \to f) + \Gamma(\overline{B}_s(t) \to f)$
 $= \mathcal{N}_f \left[e^{-\Gamma_L t} |\langle f| B_L \rangle|^2 + e^{-\Gamma_H t} |\langle f| B_H \rangle|^2 \right] \cdot$
 $= \mathcal{N}_f |A_f|^2 \left[1 + |\lambda_f|^2 \right] e^{-\Gamma t} \left\{ \cosh \frac{\Delta \Gamma t}{2} + \sinh \frac{\Delta \Gamma t}{2} \mathcal{A}_{\Delta \Gamma} \right\}$
 $A_{\Delta \Gamma} \equiv -2 \operatorname{Re}(\lambda_f) / \left(1 + |\lambda_f|^2 \right), \quad \lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}$
• Shape is not exponential & depends on decay mode. To 2nd order
 $\Gamma[f, t] \propto e^{-\Gamma t} \left[1 + \frac{1}{2} \left(\frac{\Delta \Gamma}{2} t \right)^2 + A_{\Delta \Gamma} \left(\frac{\Delta \Gamma}{2} t \right) \right]$

B_s versus **B**⁰

- For B⁰ $\Delta\Gamma_d/\Gamma_d$ has been measured as 0.015±0.018 by B factories [PDG], so decay can be treated as purely exponential ($\Delta\Gamma_d$ <0.032 ps⁻¹ @ 95% cl) consistent with theoretical prediction of 2x10⁻³ ps⁻¹ [arXiv:0412007]
- For B_s , $\Delta\Gamma$ is not small and $A_{\Delta\Gamma}$ depends on decay mode, mainly through \overline{A}_f/A_f as q/p has been measured as being small
- For "flavor specific" B_s decay modes, where $B_s \rightarrow f$ & $\overline{B}_s \rightarrow \overline{f}$ the decay is the sum of two exponentials & here

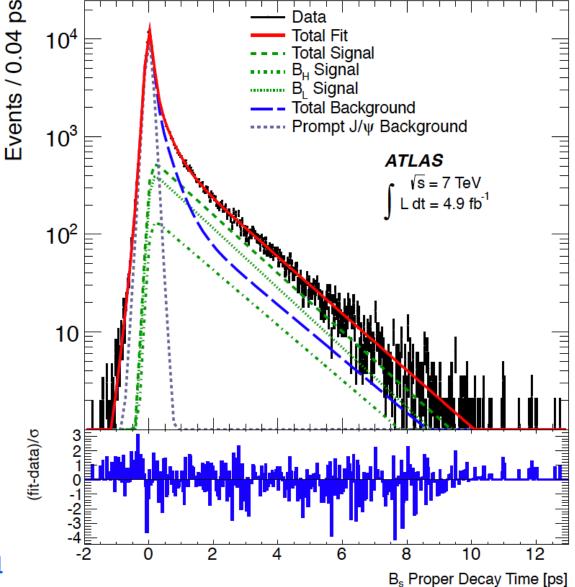
$$\Gamma_{s} = \Gamma_{flavor \ specific} \left(1 - \left(\frac{\Delta \Gamma_{s}}{2\Gamma_{s}} \right)^{2} \right) / \left(1 + \left(\frac{\Delta \Gamma_{s}}{2\Gamma_{s}} \right)^{2} \right)$$

Measurement of Γ_s

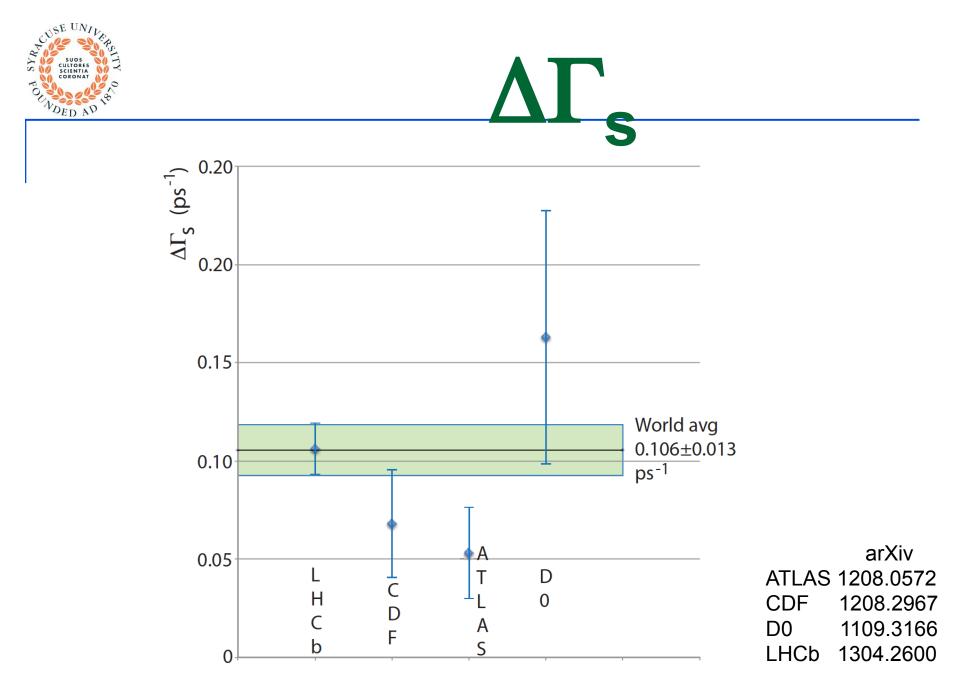
- Here Γ_s is determined along with information on CP violation – direct measurements
- I use the measurements from $B_s \rightarrow J/\psi \phi$ from CDF, D0, ATLAS & LHCb (also $J/\psi \pi^+\pi^-$). Γ_s values are obtained from the lifetime fit along with the CPV measurement. (Both flavor tagged & untagged data are used)
- This differs from HFAG

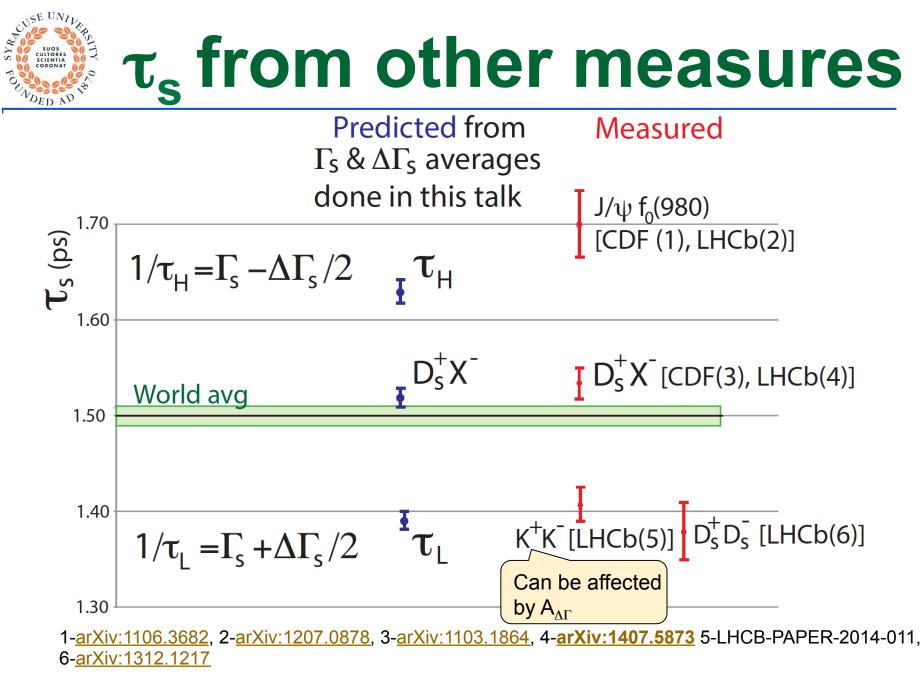
Fit returns
 B_L & B_H
 distributions
 as well as a
 value for the
 CP violating
 phase

G. Aad et al., ATLAS, JHEP 1212 (2012) 072



Exp.	∫ ∠ (fb ⁻1)	$\Gamma_{ m s}$ (ps ⁻¹)	ArXiv
ATLAS	4.9	0.6700±0.0070±0.0040	1208.0572
CDF	9.6	0.6545±0.0081±0.0039	1208.2967
DO	8.0	0.6930±0.0182	1109.3166
LHCb	1	0.6610±0.0040±0.0060	1304.2600
Average		0.666±0.0045	
		τ_{s} =1.500±0.010	





Rare Decays - Generic

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + \text{h.c.}$$

- C_i are Wilson coefficients, O_i are 4-fermion operators. C_iO_i for SM, C_iO_i are for NP. $P_{R,L} = (1\pm\gamma_5)/2$. O´=O with $P_{R,L} \rightarrow P_{L,R}$
 - $O_{7} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \qquad O_{8} = \frac{gm_{b}}{e^{2}} (\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)G^{\mu\nu\,a},$ $O_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$ $O_{S} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), \qquad O_{P} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell),$
- Each process depends on a unique combination.

- For SM only have C₁₀, since C'₁₀, C^(*)_S & C^(*)_P are negligibly small
- Define new combination of Wilson coeff for further use in NP models

$$P \equiv \frac{C_{10} - C'_{10}}{C_{10}^{SM}} + \frac{m_{B_s}^2}{2m_{\mu}} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_P - C'_P}{C_{10}^{SM}}\right) \equiv |P|e^{i\varphi_P},$$

$$S \equiv \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}} \frac{m_{B_s}^2}{2m_{\mu}} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_S - C'_S}{C_{10}^{SM}}\right) \equiv |S|e^{i\varphi_S}.$$

• In SM P=1, S=0

More definitions

$$S_{\mu\mu} = \frac{|P|^2 \sin(2\varphi_P - \phi_s^{\rm NP}) - |S|^2 \sin(2\varphi_S - \phi_s^{\rm NP})}{|P|^2 + |S|^2},$$
$$\mathcal{A}_{\Delta\Gamma}^{\mu\mu} = \frac{|P|^2 \cos(2\varphi_P - \phi_s^{\rm NP}) - |S|^2 \cos(2\varphi_S - \phi_s^{\rm NP})}{|P|^2 + |S|^2}.$$

Time dependent rate

- In the μ⁺μ⁻ final state the sum of the final state helicities must be 0. Since helicities are difficult to measure, sum over L & R states
- Then we can construct the untagged lifetime as (see arXiv:1303.3820)

 $\langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle \equiv \Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)$

$$= \frac{G_F^4 M_W^4 \sin^4 \theta_W}{4\pi^5} \left| C_{10}^{\text{SM}} V_{ts} V_{tb}^* \right|^2 F_{B_s}^2 m_{B_s} m_\mu^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}} \\ \times \left(|P|^2 + |S|^2 \right) \\ \times e^{-t/\tau_{B_s}} \left[\cosh\left(y_s t/\tau_{B_s}\right) + \mathcal{A}_{\Delta\Gamma}^{\mu\mu} \sinh\left(y_s t/\tau_{B_s}\right) \right].$$

37

Lifetime & CPV

- So measuring the lifetime allows a determination of $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ which is sensitive to NP
- Considering that we have about 30 events now in each experiment, this will take a while
- Can also hope to measure CPV

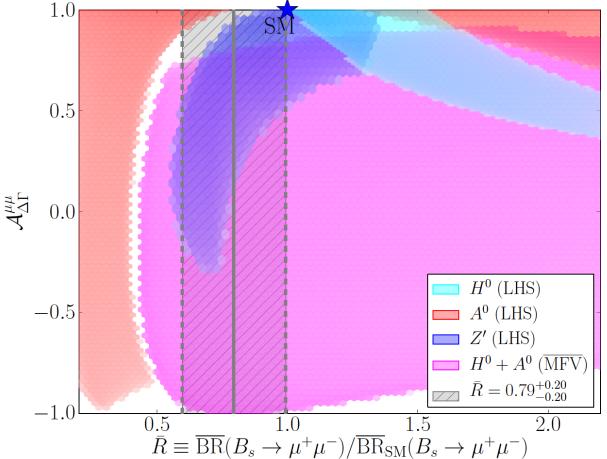
 $\frac{\Gamma(B_s^0(t) \to \mu^+ \mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)}{\Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)} = \frac{S_{\mu\mu} \sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma}^{\mu\mu} \sinh(y_s t/\tau_{B_s})}$

But this will take even more data

Different models

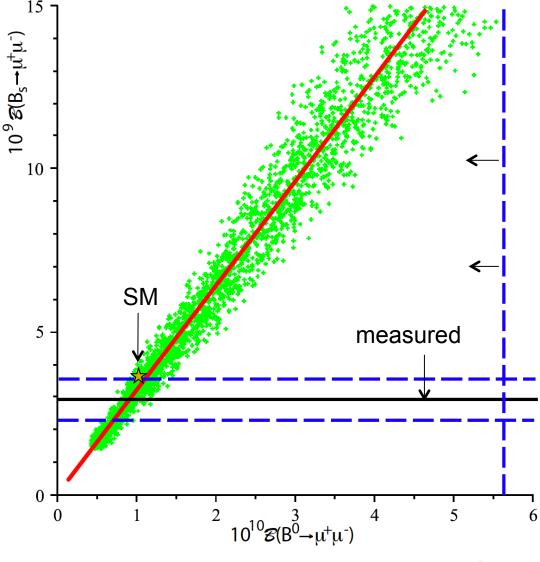
See arXiv:1303:3820

- LHS≡Left handed scheme
- A⁰ new
 pseudoscalar
- H⁰ new scalar



What about MFV?

- In principle, ratio of B0/Bs can show if NP is consistent with MFV
- Correlation shown for a genic model with Higgs-mediated FCNC consistent with MFV. Green points give the uncertainties



Conclusions

- $\mathscr{C}(B^0_s \rightarrow \mu^+ \mu^-)$ measured and consistent with SM
- More precise determination of *S* will limit models or show NP
- Other variables in the decay, the lifetime and CP asymmetry can also show NP, either generically or reflect specific models
- Much information also from a definitive determination of $\mathscr{C}(B^0 \rightarrow \mu^+ \mu^-)$

