ATLAS Connect

A US ATLAS project following the OSG Connect pattern

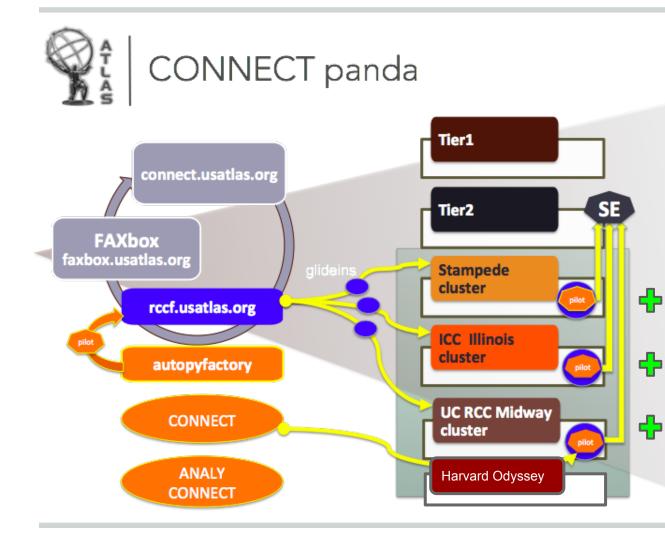
Rob Gardner • University of Chicago

OSG Council Meeting, University of Oklahoma 22 October 2014

Objectives of ATLAS Connect

- Provide:
 - User login service providing a virtual Tier-3 cluster-like processing environment for batch (like OSG Connect)
 - Connect Tier-3 sites to additional resources
 - Connect additional (non-WLCG) resource targets to the Panda WMS (campus clusters, XSEDE clusters)
- Leverage simple, robust services
 - OSG/CI Connect (HTCondor, Globus, Bosco), xrootd, http, AutoPyFactory, Panda

Distributed resource targets

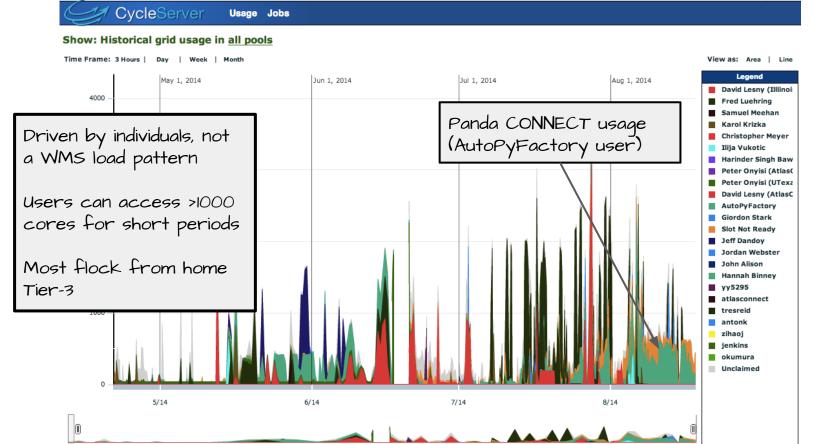

- Goal is to make the connection lightweight
 - Local site provides only a user account, and optionally a squid
- We deal with the heterogeneity:
 - IP connectivity, software access, squid, data access
- Site retains control over priorities
- Operated by US ATLAS staff

User login service

- A simple sign-up service is available from connect.usatlas.org
- Authorization through institutional affiliation

Responsibility lies with the PI

- Emulate a Tier 3 login server
- See accompanying document "The ATLAS Connect Virtual Cluster Service"



Pilots scheduled to glideins receive jobs From CERN

Input data via FAX, outputs written to a Tier-2 storage element "SE"

For many clusters, the issue is access to CVMFS served software

C f monitor.usatlas.org:8080/usage/current.s 4 ->

œ Logged in as guest Log Out

숬

Resource target challenges

Worker node IP connectivity

Software Access

Here of course we are speaking of software distributed via CVMFS

Data Access

Six ways to CVMFS (1/2)

• NativeCVMFS: Install CVMFS on every node

cymfs rpms are installed on every node by site administrators (standard for a WLCG site)

the WLCG / OSG standard

- FUSE mounted http-based CVMFS file system, also compatibility libraries above SL6.x
- Needs some local disk for the cache
- Configure for ATLAS, OASIS and MWT2 repositories
- Best performance

Ο

- ParrotCVMFS: I/O trap and redirect to a CVMFS Alien Cache
 - Emulates a NativeCVMFS installation but doesn't require FUSE kernel modules
 - Therefore no system changes needed by remote site administrators
 - Performance can be impacted depending on the application
 - For ATLAS, we found certain applications didn't perform well or caused other exceptions
- nfsCVMFS: Access CVMFS repositories via an NFS server
 - CVMFS client installed on NFS server
 - /cvmfs exported to compute nodes via NFS
 - Good performance

Deployed and operational on UChicago "Midway" cluster

Six ways to CVMFS (2/2)

- PortableCVMFS: User job mounts all repositories
 - Bring a CVMFS client with the job
 - Need to install FUSE and fuse kernel module
 - Needs some local disk for the cache
 - Same performance as NativeCVMFS
- Dependency bundling

- Use tools to gather dependencies and place into a package, for execution on remote sites: auditing step. (DASPOS helping here with Parrot and PTU)
- CVMFS is only needed on an "auditing" host, not on the compute node
- Stratum-R: Replicate all repositories to a local Linux file system
 - Copy the compressed repositories to a local disk via cvmfs_server snapshot from a nearby stratum-1 (in our case, Fermilab)
 - Uncompress and replicate to local disk; becomes a "Stratum-R", an rsync-able source of CVMFS managed software

NEW! stratum-r concept under test

• Rsync targets targets are shared file systems mounted to worker nodes (e.g. Stampede)

Stratum-R: our current best option

- For sites that want to use a project area on a shared filesystem like Lustre or GPFS
 - Campus clusters, XSEDE clusters, HPC sites
- Replicating CVMFS repositories to a Linux file system via "rsync" is not an option
 - Very slow network latency
 - Also generates load on Squid proxies and Stratum-1 server
- Idea: Build a local Stratum-1 to bypass network, squid and keep overhead local
 - Use "cvmfs_server snapshot" to create a Stratum-1 replication ("stratum-r")
 - Use snapshot to incrementally update
 - Install CVMFS client to use stratum-r as its source
 - Use "DIRECT" for Squid proxy
 - rsync from "/cvmfs" to local Linux file system on the stratum-r server (all I/O is local)
 - Then, rsync to remote clusters in the normal way (one file system to another)
- The target filesystem on the compute site should mounted to all worker nodes
 - Symlink "/cvmfs" to the location of replicated repositories in the project area
 - Jobs access repositories from the local disk copy, like any other project/application on the cluster

Only local admin action!

Conclusions

We finally are on the doorstep to accessing our allocation on Stampede!

Solution applicable for the next XSEDE or campus cluster

Applies to OASIS \rightarrow for OSG and Campus sourced applications and software environments on XSEDE sites