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https://sites.google.com/site/acceleratingexascale 
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Goal 

§  “make it easier for scientists to conduct large-scale 
computational tasks that use the power of computing 
resources they do not own to process data they did not 
collect with applications they did not develop” 

§  In practice: Monitoring, modeling and resource 
provisioning 
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Overview of the Resource Provisioning Loop 
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Workload 
Characterization 

Resource 
Allocation Execution Monitoring 

Workload Archive 

dV/dt Execution Traces Workload 
Estimation 



Monitoring Resource Usage 
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HTC Monitoring (USC and ND) 

§  Job wrappers that collect information about processes 
–  Runtime, peak disk usage, peak memory usage, CPU usage, etc. 

§  Mechanisms 
–  Polling (not accurate, low overhead) 
–  ptrace() system call interposition (accurate, high overhead) 
–  LD_PRELOAD library call interposition (accurate, low overhead) 

§  Kickstart (Pegasus) and resource-monitor (Makeflow) 
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Gideon Juve, et al., Practical Resource Monitoring for Robust High Throughput 
Computing, University of Southern California, Technical Report 14-950, 2014. 

	  	   Polling	   LD_PRELOAD	   Ptrace	  (fork/exit)	   Ptrace	  (syscalls)	  
CPU	   0.5%	  -‐	  12%	   0.5%	  -‐	  5%	   <	  0.2%	   <	  0.2%	  
Memory	   2%	  -‐	  14%	   <	  0.1%	   ~	  0%	   ~	  0%	  
I/O	   2%	  -‐	  20%	   0%	   0%	   0%	  

	  	   Polling	   LD_PRELOAD	   Ptrace	  (fork/exit)	   Ptrace	  (syscalls)	  
CPU	   low	   low	   low	   low	  
Memory	   low	   medium	   low	   medium	  
I/O	   low	   low	   low	   high	  

Error (Accuracy) 

Overhead 
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HPC Monitoring (ALCF) 

§  Job information from scheduler (Cobalt) 
–  Use scheduler data for both scheduler and individual task data 
–  Job runtime, number of cores, user estimates, etc. 

§  I/O using Darshan 
–  Instrumentation automatically linked into codes at compile time 
–  Captures POSIX I/O, MPI I/O and some HDF5 and NetCDF functions 
–  Amount read/written, time in I/O, files accessed, etc. 
–  Very low overhead in both time and memory 

§  Performance Counters using AutoPerf 
–  Using built-in hardware performance counters 
–  Also enabled at compile time 
–  Counters zeroed in MPI_Init, and reported in MPI_Finalize 
–  FLOPs, cache misses, etc. 
–  Users can take control of performance counters preventing this 

from working 
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Workload Modeling and Characterization 



8 

CMS Workload Characteristics (USC, UW-M) 
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Characteristic Data 

General Workload 

    Total number of jobs 1,435,280 

    Total number of users 392 

    Total number of execution sites 75 

    Total number of execution nodes 15,484 

Jobs statistics 

    Completed jobs 792,603 

    Preempted jobs 257,230 

    Exit code (!= 0) 385,447 

    Average job runtime (in seconds) 9,444.6 

    Standard deviation of job runtime (in seconds) 14,988.8 

    Average disk usage (in MB) 55.3 

    Standard deviation of disk usage (in MB) 219.1 

    Average memory usage (in MB) 217.1 

    Standard deviation of memory usage (in MB) 659.6 

Characteristics of the CMS workload for a period of a month (Aug 2014) 
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�•  Correlation Statistics 

•  Weak correlations suggest 
that none of the properties 
can be directly used to 
predict future workload 
behaviors 

•  Two variables are 
correlated if the ellipse is 
too narrow as a line 

Workload Characterization 
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•  Correlation measures are 
sensitive to the data distribution 

•  Probability Density Functions 
•  Do not fit any of the most common 

families of density families (e.g. 
Normal or Gamma) 

•  Our approach 
•  Recursive partitioning method to 

combine properties from the workload 
to build Regression Trees 

Workload Characterization (2) 
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•  The recursive algorithm looks 
for PDFs that fit a family of 
density 
•  In this work, we consider the 

Normal and Gamma distributions 

•  Measured with the Kolmogorov-
Smirnov test (K-S test) 

Regression Trees 
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The PDF for the tree node (in blue) 
fits a Gamma distribution (in grey) 
with the following parameters: 
 
Shape parameter = 12 
Rate parameter = 5x10-4 
Mean = 27414.8 
p-value = 0.17 
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Job Estimation: Experimental Results 
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Job Runtime 

Disk Usage Memory Usage 

•  Based on the regression trees 
•  We built a regression tree per user 
•  Estimates are generated according 

to a distribution (Normal or 
Gamma) or a uniform distribution 

Average accuracy of the workload dataset 
The training set is defined as a portion of the entire workload dataset 

The median accuracy 
increases as more data is 
used for the training set  



Provisioning and Resource Allocation 
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Resource Allocation (ND) 

•  Tasks have different sizes (known at runtime) while 
computation nodes have fixed sizes 

•  Resource allocation strategies 
•  One task per node 

§  Resources are underutilized 
§  Throughput is reduced 

•  Many tasks per node 
§  Resources are exhausted 
§  Jobs fail 
§  Throughput is reduced 

Tasks Computation Nodes 
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General Approach 

•  Setting tasks 
•  What do we know? 

§  Maximum size? 
§  Size probability distribution? 
§  Empirical distribution? 
§  Perfect information? 

•  Our approach 
•  Setting task sizes to reduce resource 

waste 
§  Modeling of resource sizes (e.g., memory, 

disk, or network bandwidth) 
§  Assumes the task size distribution is known 
§  Adapts to empirical distributions 

Success 

Task of unknown size 

Compute some task size 

Run the task in a node 
with the available space. 
Monitor task, and kill it if 

resources exceeded 

Record result Record failure 

Failure 

Already max size 
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rmax

0 τ
wall time

r(t)

Resource Waste Modeling 

Model the task resource 
as a function of time 

rmax

0 τ
wall time

r(t)

Model the task resource usage as  
resource x time (area below the curve) 

rmax

ai

0 τ
wall time

r(t)

Overestimating size 
(waste is the area above the curve) 

ai

rmax

0 τ
wall time

r(t)

Underestimating size 
(waste is resource x time 
until resource exhaustion) 

rmax

0 τ
wall time

r(t)
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Single Peaks Model 
Simplifying assumption: any resource exhaustion  

only happens at time of maximum peak  
(i.e., resource usage looks like a step function) 
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Synthetic Workload Experiment 

•  Exponential Distribution 
•  5000 Tasks 
•  Memory according to an 

exponential distribution 
§  Shifted min 10 MB, truncated max 

100 MB, average 20 MB 
•  Tasks run anywhere from 10 to 20 

seconds 
•  100 computation nodes available, 

from ND Condor pool 
•  Each node with 4 cores and a limit 

of 100 MB of memory 
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Example: One,Two and Multi-step sequences with 
“Slow Peaks” 
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normalized resource 
units per task  
(less is better) 

multi-step (as previous slide,  
but in one column) one-step (always max) 

two-step (as optimal in previous table) 
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Next Steps 

§  Improve monitoring and modeling 
–  Investigate network I/O and energy 
–  Extend modeling to parallel, HPC applications 

§  Close the loop 
–  Turn on detailed monitoring in workflows 
–  Use resource predictions for provisioning and scheduling 

§  Productize tools 
–  Deploy monitoring capabilities in production environments 
–  Turn modeling software into a service 
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