
dV/dt: Accelerating the Rate of
Progress towards Extreme
Scale Collaborative Science

Miron Livny (UW)
Bill Allcock (ANL)

Ewa Deelman (USC)
Douglas Thain (ND)

 Frank Wuerthwein (UCSD)

1

https://sites.google.com/site/acceleratingexascale

2

Goal

§  “make it easier for scientists to conduct large-scale
computational tasks that use the power of computing
resources they do not own to process data they did not
collect with applications they did not develop”

§  In practice: Monitoring, modeling and resource
provisioning

3

Overview of the Resource Provisioning Loop

3

Workload
Characterization

Resource
Allocation Execution Monitoring

Workload Archive

dV/dt Execution Traces Workload
Estimation

Monitoring Resource Usage

5

HTC Monitoring (USC and ND)

§  Job wrappers that collect information about processes
–  Runtime, peak disk usage, peak memory usage, CPU usage, etc.

§  Mechanisms
–  Polling (not accurate, low overhead)
–  ptrace() system call interposition (accurate, high overhead)
–  LD_PRELOAD library call interposition (accurate, low overhead)

§  Kickstart (Pegasus) and resource-monitor (Makeflow)

5

Gideon Juve, et al., Practical Resource Monitoring for Robust High Throughput
Computing, University of Southern California, Technical Report 14-950, 2014.

	 	 Polling	 LD_PRELOAD	 Ptrace	 (fork/exit)	 Ptrace	 (syscalls)	
CPU	 0.5%	 -‐	 12%	 0.5%	 -‐	 5%	 <	 0.2%	 <	 0.2%	
Memory	 2%	 -‐	 14%	 <	 0.1%	 ~	 0%	 ~	 0%	
I/O	 2%	 -‐	 20%	 0%	 0%	 0%	

	 	 Polling	 LD_PRELOAD	 Ptrace	 (fork/exit)	 Ptrace	 (syscalls)	
CPU	 low	 low	 low	 low	
Memory	 low	 medium	 low	 medium	
I/O	 low	 low	 low	 high	

Error (Accuracy)

Overhead

6

HPC Monitoring (ALCF)

§  Job information from scheduler (Cobalt)
–  Use scheduler data for both scheduler and individual task data
–  Job runtime, number of cores, user estimates, etc.

§  I/O using Darshan
–  Instrumentation automatically linked into codes at compile time
–  Captures POSIX I/O, MPI I/O and some HDF5 and NetCDF functions
–  Amount read/written, time in I/O, files accessed, etc.
–  Very low overhead in both time and memory

§  Performance Counters using AutoPerf
–  Using built-in hardware performance counters
–  Also enabled at compile time
–  Counters zeroed in MPI_Init, and reported in MPI_Finalize
–  FLOPs, cache misses, etc.
–  Users can take control of performance counters preventing this

from working

6

Workload Modeling and Characterization

8

CMS Workload Characteristics (USC, UW-M)

8

Characteristic Data

General Workload

 Total number of jobs 1,435,280

 Total number of users 392

 Total number of execution sites 75

 Total number of execution nodes 15,484

Jobs statistics

 Completed jobs 792,603

 Preempted jobs 257,230

 Exit code (!= 0) 385,447

 Average job runtime (in seconds) 9,444.6

 Standard deviation of job runtime (in seconds) 14,988.8

 Average disk usage (in MB) 55.3

 Standard deviation of disk usage (in MB) 219.1

 Average memory usage (in MB) 217.1

 Standard deviation of memory usage (in MB) 659.6

Characteristics of the CMS workload for a period of a month (Aug 2014)

9

����

����

��	��
�

�������

���������

���������

���
�����

	�������������

��
�����

�����������	�����

���� �����
��

���������������

����������

��������
��

���������

�������������

�����
� �������

��������!�

����
��
� �������

�������!�

����
����������

	������

���	��������!�

������"#

��
�

��
��

��
��

��
	�
�

�

��
��

��
�

��
��

��
��
�

��
��
��
��
�

��
�

��
��
�

	�
�
��
��
��
��
��
�

��

�
���
�

�
�
��
��

��
�
��
	�
�
��
�

��
�
��
��

��

�
�

��
�
�
��
��
��
��

��
�

�
�
��
��

��

��

�
�
��
��

��

��

��
��
�
��
��

��
��
�
��
��
��
��

��
��
�

�
 �
��
��
��

��
��
��
�
�!
�

�
��

�

��

�
 �
��
��
��

��
��
��

�!
�

�
��

�

��

��
��
��
��

	�
�
�
��
�

��
�	
��
��
��
�
�!
�•  Correlation Statistics

•  Weak correlations suggest
that none of the properties
can be directly used to
predict future workload
behaviors

•  Two variables are
correlated if the ellipse is
too narrow as a line

Workload Characterization

9

10

0

1

2

1e−01 1e+01 1e+03 1e+05
Job Runtime (sec)

Pr
ob

ab
ilit

y
D

en
si

ty

0.0

0.3

0.6

0.9

1e−02 1e+00 1e+02 1e+04
Disk Usage (MB)

Pr
ob

ab
ilit

y
D

en
si

ty

0

20

40

1e−02 1e+00 1e+02 1e+04
Memory Usage (MB)

Pr
ob

ab
ilit

y
D

en
si

ty

•  Correlation measures are
sensitive to the data distribution

•  Probability Density Functions
•  Do not fit any of the most common

families of density families (e.g.
Normal or Gamma)

•  Our approach
•  Recursive partitioning method to

combine properties from the workload
to build Regression Trees

Workload Characterization (2)

10

11

•  The recursive algorithm looks
for PDFs that fit a family of
density
•  In this work, we consider the

Normal and Gamma distributions

•  Measured with the Kolmogorov-
Smirnov test (K-S test)

Regression Trees

11

The PDF for the tree node (in blue)
fits a Gamma distribution (in grey)
with the following parameters:

Shape parameter = 12
Rate parameter = 5x10-4
Mean = 27414.8
p-value = 0.17

executableSize
p < 0.001

1

≤ 27 > 27

executableSize
p = 0.004

2

≤ 25 > 25

Node 3 (n = 522)

0

20000

40000

60000

80000
Node 4 (n = 19)

●●●0

20000

40000

60000

80000

inputsSize
p < 0.001

5

≤ 28 > 28

numJobStarts
p = 0.02

6

≤ 0 > 0

Node 7 (n = 2161)

●●●●

●

●

●●

●

●●●

●
●
●●●●●●●●
●
●●●●●●

●
●
●●
●●●
●●●

●●●

●
●●●●●

●
●
●

●●
●●●●

●
●
●
●●●
●

●

●●●
●
●●

●

●
●

●

●

●

●●
●
●●●
●●●●●

●

●●●●●●
●
●

●

●●●●●●●●●●
●
●●●

●
●●●
●
●●
●●●●

●

●
●●

●

●●

●

●●

●●

0

20000

40000

60000

80000
Node 8 (n = 152)

●●●
●

●

●●

0

20000

40000

60000

80000

numJobStarts
p = 0.002

9

≤ 1 > 1

Node 10 (n = 26411)

●

●
●
●

●
●

●

●●●●●●●

●
●

●●

●
●

●

●

●●

●

●
●●●

●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●
●

●
●●●

●
●●
●

●

●

●

●

●

●
●
●

●

●●●
●●

●

●●●●●
●
●●●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●
●

●

●

●●●●

●

●

●

●

●●
●
●

●
●

●
●

●

●

●
●●

●
●

●●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●●
●●

●

●

●

●
●
●●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●
●●
●
●

●

●
●
●

●
●●●

●

●

●
●●

●
●
●●

●

●
●

●
●
●
●
●

●

●●

●
●
●
●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●
●

●
●
●
●

●
●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●

●

●●

●
●●

●
●●

●
●

●
●
●

●

●

●

●

●●
●

●
●
●
●

●

●

●
●

●
●
●

●●
●
●
●
●
●●
●

●●
●

●●
●

●●
●
●●●
●
●
●
●●●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●
●

●

●●●●●
●●●●
●

●●●

●

●●

●

●

●

●●

●

●

●●
●
●●●●●

●

●
●

●

●
●●

●
●●
●
●

●

●●●●
●
●

●●

●●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●
●●●●
●
●

●

●

●●
●●

●

●●

●●
●
●●●●

●

●●●
●

●

●●●
●
●●

●

●●
●

●●●

●

●
●
●
●●
●●●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●●

●

●
●
●

●
●

●●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●●
●●

●

●

●

●

●

●●
●

●

●

●

●
●●

●●

●●●

●●

●
●
●
●
●

●

●●●

●
●

●

●
●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●●
●

●●
●
●●
●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●
●●

●
●

●

●
●●

●

●
●

●

●
●●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●●

●●●

●

●

●
●●●

●

●
●
●
●
●
●

●
●
●

●●

●

●●●
●

●●

●

●

●●
●

●

●●

●

●

●

●
●
●
●●
●●●
●●

●

●

●

●

●

●

●●

●

●
●

●
●●●●
●
●●
●●
●
●

●●●

●

●●

●

●●●
●

●●●

●

●

●

●
●
●●

●●●
●
●

●
●

●
●●
●
●
●

●

●

●

●
●

●●

●

●

●

●
●●●●●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●
●
●●

●
●●●●●
●●●●
●

●

●●

●

●

●

●

●●●●●
●
●
●
●●●●●●

●
●●●
●●●
●
●●
●●
●●

●

●
●●●●
●

●
●●●
●

●

●
●

●

●●●
●

●
●
●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●●●

●

●●

●

●

●

●●

●●
●

●

●
●●

●●●

0

20000

40000

60000

80000
Node 11 (n = 665)

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●●
●

●

●
●

●

●

●

●●●
●

●
●

●

●
●
●

●

●

●
●

●

●●
●●

●
●

●●

●

0

20000

40000

60000

80000

0e+00

2e−05

4e−05

6e−05

20000 40000 60000
Runtime (sec)

Pr
ob

ab
ilit

y
D

en
si

ty

12

Job Estimation: Experimental Results

12

Job Runtime

Disk Usage Memory Usage

•  Based on the regression trees
•  We built a regression tree per user
•  Estimates are generated according

to a distribution (Normal or
Gamma) or a uniform distribution

Average accuracy of the workload dataset
The training set is defined as a portion of the entire workload dataset

The median accuracy
increases as more data is
used for the training set

Provisioning and Resource Allocation

14

Resource Allocation (ND)

•  Tasks have different sizes (known at runtime) while
computation nodes have fixed sizes

•  Resource allocation strategies
•  One task per node

§  Resources are underutilized
§  Throughput is reduced

•  Many tasks per node
§  Resources are exhausted
§  Jobs fail
§  Throughput is reduced

Tasks Computation Nodes

14

15

General Approach

•  Setting tasks
•  What do we know?

§  Maximum size?
§  Size probability distribution?
§  Empirical distribution?
§  Perfect information?

•  Our approach
•  Setting task sizes to reduce resource

waste
§  Modeling of resource sizes (e.g., memory,

disk, or network bandwidth)
§  Assumes the task size distribution is known
§  Adapts to empirical distributions

Success

Task of unknown size

Compute some task size

Run the task in a node
with the available space.
Monitor task, and kill it if

resources exceeded

Record result Record failure

Failure

Already max size

15

16

rmax

0 τ
wall time

r(t)

Resource Waste Modeling

Model the task resource
as a function of time

rmax

0 τ
wall time

r(t)

Model the task resource usage as
resource x time (area below the curve)

rmax

ai

0 τ
wall time

r(t)

Overestimating size
(waste is the area above the curve)

ai

rmax

0 τ
wall time

r(t)

Underestimating size
(waste is resource x time
until resource exhaustion)

rmax

0 τ
wall time

r(t)

16

Single Peaks Model
Simplifying assumption: any resource exhaustion

only happens at time of maximum peak
(i.e., resource usage looks like a step function)

17

Synthetic Workload Experiment

•  Exponential Distribution
•  5000 Tasks
•  Memory according to an

exponential distribution
§  Shifted min 10 MB, truncated max

100 MB, average 20 MB
•  Tasks run anywhere from 10 to 20

seconds
•  100 computation nodes available,

from ND Condor pool
•  Each node with 4 cores and a limit

of 100 MB of memory

17

0

100

200

300

400

500

0 25 50 75
memory

ta
sk

 c
ou

nt

18

(1.00) (0.43) (0.37)
100%

90.0%

10.0%

77.7%

19.0%

3.0%

0.33%

0.02%

0

µ

µ + 1σ

µ + 2σ

µ + 3σ

µ + 4σ

µ + 5σ

µ + 6σ

µ + 7σ

µ + 8σ

al
lo

ca
tio

n
siz

e

Example: One,Two and Multi-step sequences with
“Slow Peaks”

18

normalized resource
units per task
(less is better)

multi-step (as previous slide,
but in one column) one-step (always max)

two-step (as optimal in previous table)

19

Next Steps

§  Improve monitoring and modeling
–  Investigate network I/O and energy
–  Extend modeling to parallel, HPC applications

§  Close the loop
–  Turn on detailed monitoring in workflows
–  Use resource predictions for provisioning and scheduling

§  Productize tools
–  Deploy monitoring capabilities in production environments
–  Turn modeling software into a service

19

