Dark Energy, Large Scale Structure, Cosmological Computing

Nick Gnedin
DOE Triennial Review
Rockville, July 30, 2014
Dark Energy

Constraining DE and Modified Gravity w/ Combined Surveys

- Imaging surveys (2D) constrain DE and MG via weak lensing: DES, LSST
- Redshift surveys (3D) constrain DE/MG via Redshift Space Distortions (RSD) and BAO: eBOSS, DESI
- Overlapping 2D and 3D surveys provide stronger constraints
- Quantified these “same sky” benefits
- Optimized spectroscopic target selection from imaging surveys
- Results impact design of cosmic surveys

Kirk, etal 2014, Jouvel, etal 2014 (including Frieman)
Dark Energy

Improving Supernova Constraints on Dark Energy

• Improve & rigorously test (via simulations) method for turning SN light curves into distance estimates
• Control dominant SN distance systematic via improved cross-calibration of SN surveys: JLA combines SDSS-II SN [led by Frieman] and SNLS survey data
• Results in tightest & robust DE constraints to date
• Relieves previous tension with Planck CMB results
• Plan: apply these techniques to DES SN data and develop for LSST

Dark Energy

Improving Galaxy Photometric Redshift Estimates

- Dark Energy constraints from imaging surveys (DES, LSST) rely on galaxy photometric redshifts: $z = f(\text{galaxy color})$
- Calibration of photo-z estimators limited by incomplete spectroscopic training sets
- Photo-z errors dominant source of DE systematics
- Using new, deep spectroscopy to develop improved photo-z estimates
- Developing recent method of angular cross-correlations to improve redshift estimates for DES and LSST

Frieman, Lin, U. Chicago student Helsby
Dark Energy

Weak Lensing: Systematics

- Information in lensing (constraining power) moves to small scales (where it is harder to extract) due to gravity.
- By analyzing the spectrum of the log of the relevant field (convergence κ), re-capture this “lost” information,
- “Figure of Merit” quantifies information in the 8D parameter space: do a factor of 10 better with the log transform,

Seo, Sato, Takada, & Dodelson 2011
Dark Energy

Gravitational Lensing: Baryonic Effects

• “Baryonic effects” is a major systematic error. They cannot be simulated directly yet with enough precision, need to be mitigated by other means.

• **Adaptive Refinement Tree** (ART) code is the state-of-the-art cosmological hydro code; it can model a wide range of relevant physical processes.

• We use the ART code to explore the “phase space” of baryonic physics (gas cooling, star formation, stellar feedback, etc).

• Plan: complete simulations for all physical limits.
Dark Energy

GravitationaL Lensing: Baryonic Effects

- Baryonic effects bias cosmological constraints.
- Standard method: parameterize and marginalize.
- Novel, Principal Component Analysis (PCA) based method removes almost all of the bias – a significant improvement over the standard method.

Eifler, etal 2014 (including Dodelson, Gnedin)
Dark Energy

Future Probes

- A promising technique for a “Stage V” experiment is 21cm intensity mapping redshift surveys.
- Pathfinder projects are under way: CHIME, Tianlai,…
- New foreground removal techniques have been developed.

Shaw, et al 2014 (including Stebbins)
Dark Energy

WYSIWYG Cosmology

• Developed very simple observational form of space-time geometry.
• Plan: Develop techniques to use proper motions redshift drift to determine curvature w/o assumption.

\[ds^2 = -c^2 dT^2 + c^2 \left(dT - \frac{dt}{1+z} \right)^2 + (ds - v dt) \cdot (ds - v dt) \]

\[dT = T dt + \delta_z T dz + \delta_\theta^a T d\theta^a \]

\[ds \cdot ds = d\theta^a D_{ab} d\theta^b \]

\[v \cdot ds = \partial^a D_{ab} \partial^b \]

\[v \cdot v = \partial^a D_{ab} \partial^b \]

Stebbins 2012

t - time of observation
z - measured redshift
\(\theta^a \) - angle on sky
metric variables:
D_{ab} - 2x2 symmetric tensor gives angular diameter distance / shear
\(\theta' \) - proper motions
T - universal time defined by matter flow (related to redshift drift)
Effect of Cosmic Reionization on the CMB

- Cosmic Reionization is an ionized screen in front of the CMB.
- Highlighted by Snowmass working group as one of the few areas of simulation work in which significant progress can be expected in the near term.
- Numerical work has started; bias in cosmological constraints has been investigated.
- Plan: explore reionization constraints on dark matter annihilation, continue numerical work.

Dizgah, et al. 2014 (including Gnedin)
Large Scale Structure

Plan: Constraining Dark Matter with Cosmic Reionization

- Dark Matter models that reproduce the observed gamma-ray emission from the center of our Galaxy also predict sub-dominant, but not negligible contribution to cosmic reionization.
- Using our latest simulations, we can now reliably model that contribution at all cosmic times.
- Plan: explore the effect of DM annihilation on reionization; conversely, constraint DM models from the existing observations of high redshift universe.
Large Scale Structure

Growth of LSS as a Probe of Dark Matter

- The growth of large-scale structure also serves as a probe of the nature of dark matter and dark energy/modified gravity.
- There exist observational hints that the number of relativistic degrees of freedom is different from the canonical value $N_\nu = 3$.
- We explored the properties of decaying dark matter that mimic extra relativistic degrees of freedom, and placed new constraints on them.

Change in the Hubble constant

Hooper, et al 2012 (including Gnedin)
Large Scale Structure

Testing Nonlocal Gravity Models

- The Deser-Woodard model of nonlocal gravity is an attractive explanation for the current epoch of acceleration.
- It introduces no new mass scale, while all other modified gravity models introduce a new, tiny mass scale of order the current Hubble parameter.
- Dodelson & Park solved for the evolution of linear perturbations in this model and then compared them to the observational constraints.

GR+DE favored over Nonlocal Models

*Park & Dodelson 2012
Dodelson & Park 2013*
Cosmological Computing

Cosmological Numerical Simulations

- Numerical simulation is a main tool for making cosmological predictions.
- We designed and produced several simulation sets for weak lensing and CMB modeling:
 - Specifically designed to explore extreme limits of baryonic effects
 - Largest volume, multiple independent realizations
 - Publicly available
- Plan: extend existing simulation sets; investigate numerical convergence requirements for each simulated problem.
Cosmological Computing

Organizational Efforts

- Multi-lab national initiative (ANL, FNAL, SLAC, LBL, BNL) since 2011 – Cosmic Frontier Computational Collaboration (CFCC).
- Successful Scientific Discovery with Advanced Computing (SciDAC) Program proposal (2012) [Supports code development, porting, etc]
- Effective collaboration with Fermilab Computing Division.

Virgo Consortium (Germany+UK) [30+ FTE]
Project Horizon (France+Spain) [20+ FTE]
Cosmological Computing

CosmoSIS: Cosmological Survey Inference System

- Designed by Theory & Combined Probes Working Group in Dark Energy Survey (Dodelson, co-convener) to help the collaboration work together to extract tightest constrains on dark energy.
- Software Framework empowers multiple users to develop and share code, combine analyses, and produce robust cosmological parameter constraints.
- Already in use in DES, likely to become the community tool for DESI, LSST.
- Use software development expertise of Fermilab Computing Division.
Summary

We do a wide range of scientific work, from pure theory to experiment/theory interface.

- **Dark Energy**: theory/analysis support for DES, weak lensing, Baryonic Acoustic Oscillations, supernovae
- **Large Scale Structure**: numerical simulations for weak lensing and CMB, dark matter constraints
- **Cosmological Computing**: simulation code development and design, modern analysis framework, CFCC has formed