
git.
Tips & Tricks.

g-2 art Workshop
August 2014
Leah Welty-Rieger

Northwestern University

*The tips in this document are how I do things. There are other ways.
But you shouldn’t get into trouble my way.

1

I want to develop code!

• Awesome! We want you to too!

• How do you get started?
• That is what we are going to talk about in these slides.

• Following are some rules
• Rules? What do you mean rules? This is physics! We don’t

need rules!

• To have a consistent software process we have put in place
some simple “guidelines” [by guidelines I mean rules] to help you
AND the g-2 software community in large.

• And following the rules are some tips for
using git in a useful way
• Not including some of the really interesting things git

allows you to do.

• If you don’t know something...Just ask!
Lots of help available!

2

Get the Code
• We use the source control system called
git
• The main git webpage is full of great detailed information.

Presented here is just the tip of the iceberg. For lots more
information head to: http://git-scm.com

• Information on computing
• On Redmine. The computing “fast” index can be found here:

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/
SandCFastIndex

• The releases of our code are listed at the top with the most
recent first:

• At the time of this document the most recent release was
v201402 and instructions can be found here: https://
cdcvs.fnal.gov/redmine/projects/g-2/wiki/V201402

3

http://git-scm.com
http://git-scm.com
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/SandCFastIndex
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/SandCFastIndex
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/SandCFastIndex
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/SandCFastIndex
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/V201402
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/V201402
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/V201402
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/V201402

Few Words on git
• git is a distributed version control
system
• You are not just checking out the current tip of the source

code you are cloning the entire repository

• Every user has (essentially) a full backup
of the main server
• Any of these copies could be used to replace the the main

server in the event of a crash or corruption

• git uses a “staging” area
• Code commits can be formatted/reviewed before actually being

committed

• Don’t have to commit all the files at once

• You can if you want to, but you have the power to choose.

4

Now! Start writing code!
• NOT. SO. FAST.

• But almost.

• When you check out the code you are placed
onto the development line of code

• YOU DO NOT WANT TO DEVELOP ANY CODE ON THE
DEVELOP LINE OF CODE
• This is saved for code and analysis that has been vetted by

a series of checks and balances.

• This is true for all packages
• gm2ringsim, gm2geom, gm2analyses, etc etc.

5

First...Where Am I

• This is the way to find out what branch
you are currently sitting on
• the -a says, show me everything not just stuff I have

locally

git branch -a

The star shows
what branch you
are on

The colors for git aren’t the
default. Add:

[color]
 ui = true

to your .gitconfig file in
your home area.

6

It’s Easy to Develop Code
• So you want to write some feature...maybe
you need to redesign one of the detector
components.

• So you want to start a “feature”

• Tip on the feature name:
• Make it descriptive

• It’s very easy (I’m to fault on this one) to make a
feature branch and just stay there longer than you should.
Continuing to develop code that strays from the original
feature

• So making your feature name one specific thing might
help you just finish that one thing before moving on.

git flow feature start NewDesignTrackerModule

7

Feature Branches Are For You
• But...not necessarily *only* you because
it’s a great way to share code that might
not be ready for everyone
• PersonA: “Hey you over there. Yes you. I’m having some

problems with some code. Can you check out this branch of
code and see if you can see the issue?”

• PersonB: “Well I’m really busy...kidding, sure no problem!”

• It’s a place where you can play around
with design and know that you aren’t going
to screw up other people’s stuff.

• “But Leah, I can do that on my own. I can
just play around and try things and when
it works I can share it with everyone”

8

Then Leah’s Head Explodes
• Remember that time. When you had something
working. And then “didn’t change anything
and now it doesn’t work”

• Or had this situation:

Even just putting the date after a
file name does nothing for you

because do you really know what is
changing between the dates that

you are using the files? or do you
just use the latest file/
directory/working area?

9

Local Commits. Key.
• git allows you to make local commits when
you get to a point that is something you
want to save.
• Seriously. Use it as you would use Save when working on a

document.

• You. Can. Always. Go. Back.

• THEN if you screw something up with some
changes you can:
• SEE what changed!

• AND if you can’t unscramble it, just go back to the commit
where things worked.

• The key to helping you out of bad
situations is commit messages that mean
something

10

Commit Messages
• These are all pretty good examples

• The last one might need something more,
“to work for me” what does that mean? That
it won’t work for others?

• Second to last one...what variable names?

• But in general. Not. Bad.

11

Commit early. Commit often.

12

Commit early. Commit often.

‣ git add StationRequirement_module.cc
‣ git add util/FilterSuiteUtility.cc
‣ git add util/FilterSuiteUtility.hh
‣ git add find-and-make-golden-trackerevts.fcl

12

Commit early. Commit often.

‣ git add StationRequirement_module.cc
‣ git add util/FilterSuiteUtility.cc
‣ git add util/FilterSuiteUtility.hh
‣ git add find-and-make-golden-trackerevts.fcl

12

Commit early. Commit often.

‣ git add StationRequirement_module.cc
‣ git add util/FilterSuiteUtility.cc
‣ git add util/FilterSuiteUtility.hh
‣ git add find-and-make-golden-trackerevts.fcl
‣ git commit

12

Commit early. Commit often.

‣ git add StationRequirement_module.cc
‣ git add util/FilterSuiteUtility.cc
‣ git add util/FilterSuiteUtility.hh
‣ git add find-and-make-golden-trackerevts.fcl
‣ git commit

• At this point thrown into vi (default).
• Then enter your commit message, save the file and at that point the
commit is put *locally* into your branch.
•But only locally. Nothing on Redmine has any idea you did anything.

12

Commit early. Commit often.
T
I
M
E

‣ git add StationRequirement_module.cc
‣ git add util/FilterSuiteUtility.cc
‣ git add util/FilterSuiteUtility.hh
‣ git add find-and-make-golden-trackerevts.fcl
‣ git commit

• At this point thrown into vi (default).
• Then enter your commit message, save the file and at that point the
commit is put *locally* into your branch.
•But only locally. Nothing on Redmine has any idea you did anything.

12

Commit early. Commit often.
T
I
M
E

‣ git add StationRequirement_module.cc
‣ git add util/FilterSuiteUtility.cc
‣ git add util/FilterSuiteUtility.hh
‣ git add find-and-make-golden-trackerevts.fcl
‣ git commit

• At this point thrown into vi (default).
• Then enter your commit message, save the file and at that point the
commit is put *locally* into your branch.
•But only locally. Nothing on Redmine has any idea you did anything.

BU
T
FI
RS
T!
!!

12

Check what you did!
git diff util/FilterSuiteUtility.cc

13

Check what you did!

• I’m always worried I have
put something into the file
that I don’t really need to
push to the repository

• git diff allows you to see
exactly what lines changed

• Making the option for color in
your .gitconfig file really helps
here.

• Then before you add the file or
commit it you can just make sure
you are putting what you think you
are putting in there.

git diff util/FilterSuiteUtility.cc

13

Now, How to Really Save
• Like OH NO!!! Your laptop got stolen on
the train on your commute home. ALL THAT
WORK YOU DID WAS ONLY COMMITTED LOCALLY.

• NOT. GOOD.

• So. Back. It. Up.
• You push your changes to Redmine.

• Still on your own branch, so you still
aren’t screwing people up, you are just
backing up your work to the “cloud” (or
whatever you want to call it).

14

How to Push

15

How to Push

First time on a Feature Branch:
git flow feature publish NewDesignTrackerModule

Every subsequent time:
git pull origin feature/NewDesignTrackerModule

BUILD IT AGAIN (mrb b for us)

15

How to Push

First time on a Feature Branch:
git flow feature publish NewDesignTrackerModule

Every subsequent time:
git pull origin feature/NewDesignTrackerModule

BUILD IT AGAIN (mrb b for us)

Are these two steps necessary?
No (especially if you are the only one using a particular

feature branch and/or you see no updates after the pull)

Is it good practice anyways?
YES! Pull before you Push.

15

How to Push

First time on a Feature Branch:
git flow feature publish NewDesignTrackerModule

Every subsequent time:
git pull origin feature/NewDesignTrackerModule

BUILD IT AGAIN (mrb b for us)

git push origin feature/NewDesignTrackerModule

Are these two steps necessary?
No (especially if you are the only one using a particular

feature branch and/or you see no updates after the pull)

Is it good practice anyways?
YES! Pull before you Push.

15

Oh Damn I Screwed Up
• If you decided that you don’t actually
want ANY of the changes you’ve made to a
file. You can easily just get whatever you
had in version control.

• Instead of adding it, check it back out:

• This will take you back to whatever
version was committed.

• Alternatively you can go through a file
and see what the differences are and just
change those lines.

• Commit Early. Commit Often.
• Like a good Chicagoan.

git checkout fcl/ProductionMuPlusMuonGasGun.fcl

16

Feature Completion
• Awesome! You have things working on your
feature branch
• The build works

• You want to now pull in the develop branch
onto your branch
• In theory people have been committing to develop while

you’ve been working and you want to make sure everything
works “in harmony” before pushing your stuff out to everyone

• Maybe someone changed the same file you have?

• Maybe a change you made breaks something else because you
changed a variable name, etc etc.

17

Merging. In Pictures.

18

Merging. In Pictures.

TIME

18

Merging. In Pictures.

TIME

Develop

18

Merging. In Pictures.

TIME

Develop

Feature

18

Merging. In Pictures.

TIME

Develop

Feature

You want the
develop commits on

your branch

18

Merging. In Pictures.

TIME

Develop

Feature

You want the
develop commits on

your branch

Feature
merged
with

Develop

18

Merging. In Pictures.

TIME

Develop

Feature

You want the
develop commits on

your branch

Feature
merged
with

Develop NOW! Build again. Make sure it’s all kosher.
You now *know* that whatever is on develop
is exactly what you have on your branch, and
it works so you can send it back to develop

knowing the build works.
18

git stash
• Sometimes you want to move over to another
branch and check things out, but you have
uncommitted code.
• Git will not allow you to move around with “unstashed”

changes

• git stash will stash all your changes as they stand now

• Includes modified files & new files

• Do what you want and then you can do “git stash pop” to pop
it off the heap and get your updates back

• A useful tool if you forget that you were on
develop (for example) and had changed files
• git stash

• move to feature branch

• git stash pop and updates are there for updating the feature
branch

19

Give the Hotness to All
• Before you do the actual moving over to
develop

• Send an email to gm2sim alerting people to
the changes you’ve made are going to push
to develop shortly

• People might have questions or ask for a
code review
• Which they can do on your feature branch!

• So things can be vetted and checked BEFORE it invades the
develop line.

• If you don’t hear anything back from
gm2sim follow the steps on the next page.

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/CodeReviews

20

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/CodeReviews
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/CodeReviews

Give the Hotness to All
• Now that your branch is completely up to
date with develop you can move it all back
to develop (2 Options)
1. Use git flow: git flow feature finish FeatureName

• This will merge your branch back with develop AND delete
your *local* feature branchOR

2. git checkout develop, git merge feature/FeatureBranch, git
flow feature finish FeatureBranch

• Then git commit

• mrb b
• Just to be extra extra sure the build works!

• Then git push origin develop
• I always specify where I am pushing to or pulling from so I

know exactly what I’m getting

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/CodeReviews

21

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/CodeReviews
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/CodeReviews

git log
• To see the

history of the
repository
(check ins)
simply type git
log.

• If you ever
needed to go
back to a point
in time you
would revert
back to one of
the unique
“hashes” that
identifies a
point in time

22

Conclusions
• git has more steps to get code to people
than CVS or SVN
• But it’s a lot more powerful

• Following a *few* steps makes for easier
(and more fun) development

• Don’t wait too long to come back to
develop! The merge will be more painful
the longer you wait!

• ASK QUESTIONS.
• This is a different way of the “normal” physics development,

so understandably it might be confusing.

• But lots of people around to help (Adam, Me, etc)

• Don’t be shy.

23

