
Workshop on Computing, Software,
Simulation and Offline Code & Physics

August 2014 - Fermilab

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

The plan for this workshop

2

Tuesday: Introduction to Art
!

Wednesday: Introduction to the Simulation
!

Thursday: More advanced Art and Offline code 
 and how other experiments use Art
!

Friday: Physics questions and moving forward

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

We’ll scratch the surface

3

There is a lot to cover and you won’t be an expert
when this workshop is done. But,
!

o You’ll know the basics
!

o You’ll know where to look for information
!

o You’ll be able to ask questions
!

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

An architecture

4

I’m slowly but surely writing an architecture and
implementation document for Muon g-2 software and
computing.
!

!

An architecture describes computing resources,
components and interconnections. The implementation
describes how the architecture is used to manage,
generate, and process scientific data to obtain physics
results.

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Principles of the architecture

5

Reproduce Results
!

Enable Collaboration
!

Emphasize Physics, not Computing
!

Enable Participation from Everyone

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

The overall architecture

6

Muon g-2
DAQ

Data
Management
Architecture

Software
Architecture

Development
Architecture

Raw
Data Results

Data
Files

Execution
Architecture

Executables
& Libraries

Software
Releases

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Software & Development Arch

7

Physicist

Interactive Node/Laptop

Development
Environment

Interactive
Analysis

Results

Source Code
Management

Documentation
System

Release
Management

Application
Delivery

Job
submission

client

Data
Management
Architecture

Batch
Jobs

Check in/out Docs

Tag for release

Release

Executables
& Libraries

Executables
& Libraries

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Software & Development Impl

8

Physicist

Interactive Node/Laptop

mrb
environment

Interactive
Analysis

Results

git Redmine

Relocatable
UPS CVMFS

jobsub
client

Data
Management

Batch
Jobs

Check in/out Docs

Tag for release

Release

Executables
& Libraries

Executables
& Libraries

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

And there’s the Art framework

9

Your
physics
code

More
physics
code

Your
friend’s
code

Dynamic
library loading I/O handling Event Loop &

paths

Run/Subrun/
Event stores

Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

What a framework gives you

10

Allows you to write your physics code without worrying about the
infrastructure. Makes it easy to work with others.  
But not for free – you have to learn it!
!
Some people find such a system constraining:
 Infrastructure is hidden behind the scenes from you
 Your ideas may not be included
 You have to trust a system you didn’t write
 You miss out on the fun of writing super-cool complicated C++ code
!
Some people find such a system liberating:
 You can concentrate on physics code 
 Your C++ is pretty easy (you are using a complicated system, not writing it) 
 You get to miss out having to maintain the complicated C++ code (yay!)
 You can use code from others and share yours with others
 You can get services for free (e.g. data handling)

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Why is this important?

11

The story

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

In g2migtrace/src/primaryConstruction.cc

12

// constructionMaterials is essentially a "materials library" class.	
// Passing to to construction functions allows access to all materials	
!
 /**** BEGIN CONSTRUCTION PROCESS ****/	
 	
 // Construct the world volume 	
 labPTR = lab -> ConstructLab();	
 // Construct the "holders" of the actual physical objects	
#ifdef TESTBEAM	
 ArcH.push_back(labPTR);	
#else	
 ArcH = arc->ConstructArcs(labPTR);	
#endif	
 // Build the calorimeters	
 // cal -> ConstructCalorimeters(ArcH);	
 station->ConstructStations(ArcH);	
#ifndef TESTBEAM	
 // Build the physical vacuum chambers and the vacuum itself	
 VacH = vC -> ConstructVacChamber(ArcH);

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

In g2migtrace/src/primaryConstruction.cc

13

// constructionMaterials is essentially a "materials library" class.	
// Passing to to construction functions allows access to all materials	
!
 /**** BEGIN CONSTRUCTION PROCESS ****/	
 	
 // Construct the world volume 	
 labPTR = lab -> ConstructLab();	
 // Construct the "holders" of the actual physical objects	
#ifdef TESTBEAM	
 ArcH.push_back(labPTR);	
#else	
 ArcH = arc->ConstructArcs(labPTR);	
#endif	
 // Build the calorimeters	
 // cal -> ConstructCalorimeters(ArcH);	
 station->ConstructStations(ArcH);	
#ifndef TESTBEAM	
 // Build the physical vacuum chambers and the vacuum itself	
 VacH = vC -> ConstructVacChamber(ArcH);

I don’t think we can’t simultaneously
maintain this code and our sanity

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

In g2migtrace/src/primaryConstruction.cc

14

// constructionMaterials is essentially a "materials library" class.	
// Passing to to construction functions allows access to all materials	
!
 /**** BEGIN CONSTRUCTION PROCESS ****/	
 	
 // Construct the world volume 	
 labPTR = lab -> ConstructLab();	
 // Construct the "holders" of the actual physical objects	
#ifdef TESTBEAM	
 ArcH.push_back(labPTR);	
#else	
 ArcH = arc->ConstructArcs(labPTR);	
#endif	
 // Build the calorimeters	
 // cal -> ConstructCalorimeters(ArcH);	
 station->ConstructStations(ArcH);	
#ifndef TESTBEAM	
 // Build the physical vacuum chambers and the vacuum itself	
 VacH = vC -> ConstructVacChamber(ArcH);

What if we have a  
different test beam?

What if I want a

different detector

configuration?

this kind of code is

hard to excise later

I don’t think we can’t simultaneously
maintain this code and our sanity

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Maintaining sanity is hard

15

It’s hard to blame the person who did this
!

He just wanted results!
!

We don’t have a system that tries to make this easy
!

It’s not the system’s fault - it wasn’t written for that
!

Writing such a system is hard (need experts)
!

Learning such a system is non-trivial too

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Use a system that makes this easy

16

Want a system that makes it easy to work together
!

ART
!

Modular (you write modules that piece together)
Built in Root i/o
Built in Configuration System
!

The idea:
Using ART, build a modular Geant4 system where the
configuration file defines the simulation
!

Here’s a little bit about ART (not a full tutorial)...
!

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

What does a framework do?

17

Your
physics
code

More
physics
code

Your
friend’s
code

Dynamic
library loading I/O handling Event Loop &

paths

Run/Subrun/
Event stores

Messaging Configuration

Provenance
generation Metadata

Code you write Code you use from the
framework

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

What do you write?

18

You write modules that can access data and do things at certain times

Begin job

Begin runR1

Begin subrunS1

Process event (produce, filter, analyze)E1

Process event (produce, filter, analyze)E2

Process event (produce, filter, analyze)E3

End subrun
End run...

End job

Types of MODULES:
(All modules can read data from the event)
!
o Input source:
A source for data. E.g. a ROOT file or
Empty for start of simulated data
!
o Producers:
Create new event data from scratch or by
running algorithms on existing data
!
o Filters:
Like producers, but can stop running of
downstream modules
!
o Analyzers:
Cannot save to event. For, e.g. diagnostics
plots
!
o Output module:
Writes data to output file (ROOT). Can
specify conditions and have many files Output file(s)

Input source

All modules can make
and write out ROOT
histograms and Trees

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Chain modules - but an important golden rule

19

Modules must only pass data to each other via the EVENT

EVENT

Hits

Si
m

ul
at

io
n

Clustered
Hits

C
lu

st
er

in
g

Tr
ac

ki
ng

Tracks

Diagnostics

Modules should not communicate
with each other, except through the
event. 

Restriction is necessary to break
chain, handle multiprocessor
processing and for sanity.
!
 There are RUN and  
 SUBRUN buckets too

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

An example config (FHICL) file

20

!
Note empty source
!
analyzers
!
module label and module_type
!
Run this with
!
!

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

An example “Hello world” module

21

HelloWorld1_module.cc

!
Note no header
!
override is helpful
!
Must have
DEFINE at bottom
!
The “artmod”
scripts writes this
skeleton for you
!
This gets built
into its own
shared object

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Services – an extremely useful feature

22

Globally accessible objects can be managed by ART as Services
!
Provide functionality to many modules (same object is accessible to all modules)
 Examples:
 Message facility, timers, memory checkers, Random numbers, Geometry information
!
Since a service is an ordinary C++ object, it can hold data and state
!
BUT - Remember the golden rule! Event information goes into the EVENT, not a service
!
Easy to create:
 Your class .cc file simply needs
!
!
Easy to use:
!
The handle acts
just like a pointer to
the object

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Services must be in your FHICL

23

!

!

e.g. Gm2PhysicsList_service.cc
!

Build system creates
artg4example_Gm2PhysicsList_service.so
!
Specifying Gm2PhysicsList in FCL will
find it in your LD_LIBRARY_PATH

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Summary

24

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Where to look for documentation

25

g-2 Redmine wiki (fast computing index)
!

Art Workbook
!

Art Tutorial
!

Other experiments’ documentation
!

C++ Class and Wiki
!

Previous workshops

https://indico.fnal.gov/conferenceDisplay.py?ovw=True&confId=8568
https://cdcvs.fnal.gov/redmine/projects/fnal-soft-school-summer-2014/wiki

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Note

26

Note that we’re using a new version of art and g-2
software (gm2 v5_0_0)
!

This is an intermediate version!

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Demo

27

[Flip to architecture implementation]
!
Log into gm2gpvm (ssh). Explain gm2gpvm machines.
[try Mac and virtual machine too]
!
Explain CVMFS, setup environment
!
Show UPS. $PRODUCTS. Ups list. Ups active.
!
Show gm2 v5_0_0
!
Make development area (mrb newDev). Show structure.
!
Check out gm2artexamples (mrb g). Branches. git flow
!

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Demo continued

28

CMakeLists.txt, product_deps
!
Setup environment (. mrb s) FHICL_FILE_PATH
!
Build (mrb b)
!
Try gm2 -c hello1.fcl
!
Go through annotated example. Show libraries
!
Show how modules and data are discovered. Try missing symbol.
Dependencies follow headers, not libraries [otool -L; ldd; c++filt]
!
Data best practices
!
Art best practices

Muon g-2 August 2014 Workshop | Adam Lyon 2014 August 12

Demo continued

29

