


# **NOvA** Production

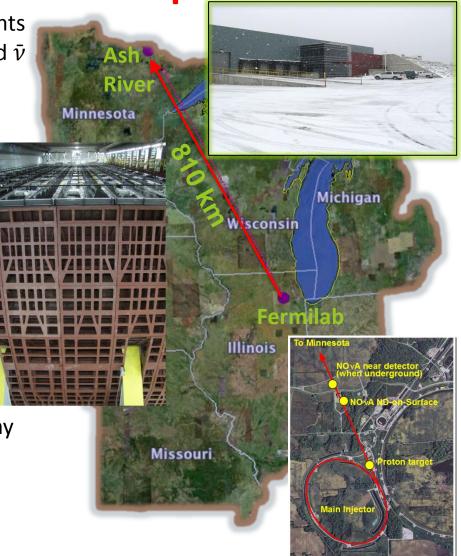
Gavin S. Davies Iowa State University On behalf of the NOvA Collaboration

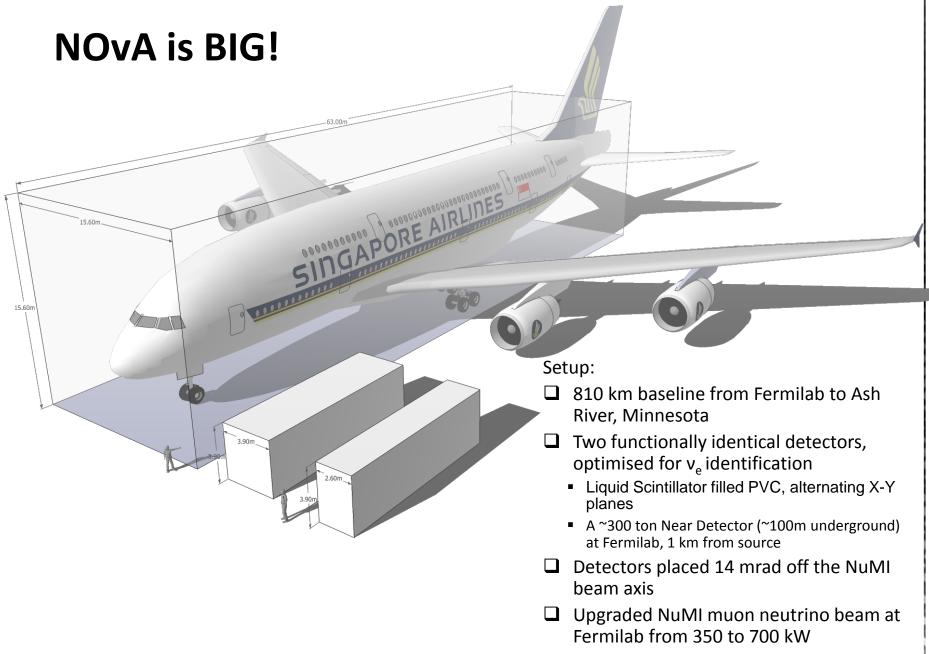
Muon g-2 Workshop, August 14<sup>th</sup> 2014



# What is NOvA?

# **NuMI Off-Axis v**<sub>e</sub> Appearance Experiment

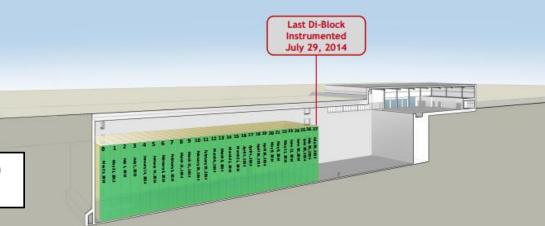

- □ Designed to make precision measurements of the  $\nu_{\mu}$  →  $\nu_{e}$  and  $\nu_{\mu}$  →  $\nu_{\mu}$  for both  $\nu$  and  $\bar{\nu}$
- 14 kt totally active, liquid scintillator, surface detector
- Optimized as a highly segmented low z calorimeter/range stack


#### Tuned to:

- ✓ Reconstruct EM showers
- ✓ Measure  $\mu$  track momenta
- Identify interaction vertices and nuclear recoils

#### Goals:

- $\Box$  Measure the mixing angle  $\theta_{13}$
- □ Resolution of the neutrino mass hierarchy
- Search for CP violation in the neutrino sector
- □ Improved measurements of  $\sin^2(2\theta_{23})$  to within a few percent.
- $\Box$  Determine the octant of  $\theta_{23}$






## **NOvA Progress**

**NOvA Far Detector** 

Construction Completed: Apr 25, 2014 (14 kt) Completed July 2014!



Far Detector Complete 14 kilotons = 28 NOvA Blocks 28 blocks of PVC modules are assembled and installed in place 28 blocks are filled with liquid scintillator 28 blocks are outfitted with electronics



#### **NOvA Near Detector**

Construction Completed: Apr 24, 2014 (300 ton) Filling Status: 100% Completed: August 2014

NOvA recording data from two detectors and gearing up towards the First Physics Analysis Results early 2015 thus increasing our Scientific Computing needs going forward

# **NOvA: Available Computing Resources I**

- Virtual Machines User FNAL Computing gateway
  - □10 virtual machines: novagpvm01 –novagpvm10
  - Round-robin access through: "ssh nova-offline.fnal.gov"
- BlueArc Interactive data storage
- /nova/data (140 T), /nova/prod (100 T), /nova/ana (95 T)
- **Tape** Long term data storage
  - 4 PB of cache disk available for IF experiments
- **Batch** Data processing:
  - Local batch cluster: ~40 nodes
  - Grid slots at Fermilab for NOvA: 1300 nodes
  - Remote batch slots: Generation/simulation ready!
  - Off-site resources via novacfs (FNAL) and OSG oasis cvmfs servers

## **NOvA: Available Resources II**

#### ECL (Electronic Collaboration Logbook)

- Two logbooks currently in use for NOvA
  - Control Room General DAQ and Operations
  - Ash River Construction Assembly and Outfitting
  - Also utilise ECL as Shift Scheduler and other collaboration tools

#### Databases

- Online & Offline databases (development and production)
  - Improved monitoring tools requested (performance monitoring)
  - Database access via web server
- NOvA Hardware Databases and applications
- IF Beams databases and applications layers (beam spill info)
  - Also accessed via wda (web database access)

## **Offsite Resources**

Off-site resources via novacfs and OSG oasis CVMFS servers
 CernVM File System is a network file system based on HTTP

NOvA can currently run batch jobs at multiple offsite farms

- SMU, OSC, Harvard, Prague, Nebraska, San Diego, Indiana and U.Chicago
- We use NOvA-dedicated sites for GENIE simulation generation
- Successfully ran a first round of ND cosmics generation with Amazon EC2 (Elastic Cloud Computing) with lots of assistance from FNAL OSG group

 Amazon spot-price charges – 1000 ND cosmics jobs: Cloud ~ \$40, Data transfer ~ \$27 ~230 GB

□ Jobs can access files using SAM and write output to FNAL

□ For undirected projects, FermiGrid will consume 75% of jobs

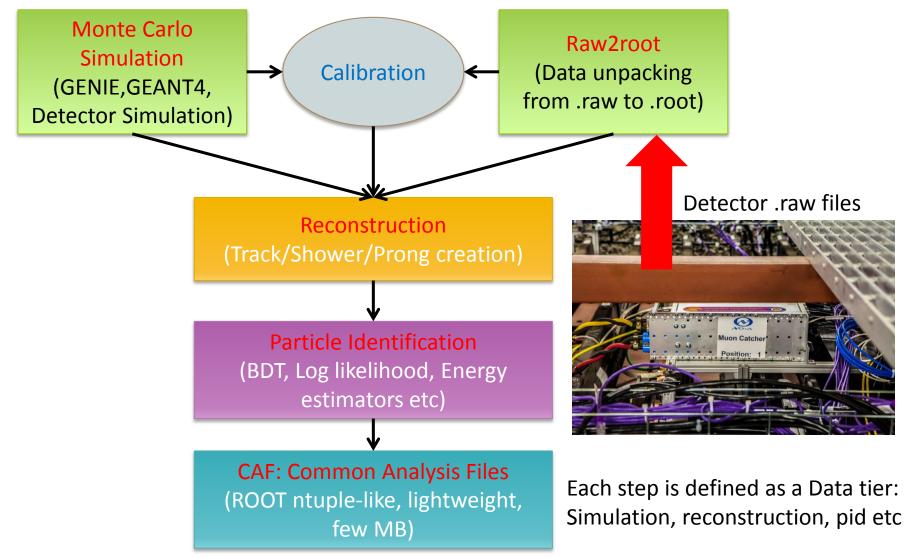
 We need a job steering site-prioritisation system to maximise use of our dedicated sites

MC Generation and Reconstruction have been run off-site successfully thus this is a viable use of resources

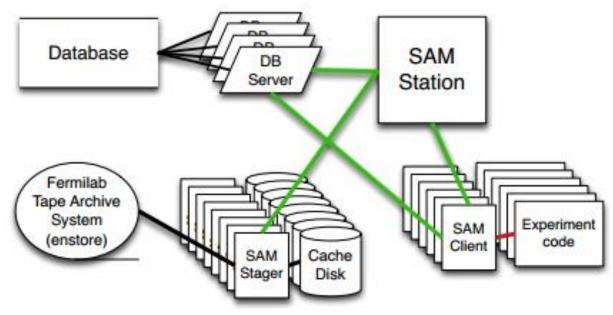
# **NOvA Offline Software**

NOvA uses ART as its underlying framework

- C++ compiled against gcc (latest and greatest)
- Relocatable ups system (/nusoft/app/externals)
  - External packages
    - ROOT/GEANT4/GENIE etc, ART-dependent (SCD-provided binaries)
  - nutools Intensity Frontier (IF) experiment-common packages (shared)
    - SimulationBase, EventGeneratorBase etc
  - novasoft (/grid/fermiapp/nova/novaart/novasvn/)
    - NOvAns maintain and is not a ups product


#### Development environment based on SRT build system

- Users develop in test releases, checking out only the package they want to edit
- Proven to work with cmake build system also
- Subversion (svn) repository for revision control


Off-site: All code distributed for slf5/slf6 via cvmfs (CernVM File System)

- oasis.opensciencegrid.org (OSG)
- novacfs.fnal.gov (FNAL)

### **NOvA Production Model**



## **NOvA and SAM**



Our detector and MC data is more than can be managed with BlueArc local disk

- □ Solution: Use SAM (worked for D0/CDF) for data set management interfaced with tape (enstore) and large dCache (pNFS) disk
- Each file declared to SAM must have metadata associated with it that can be used to define datasets
  - i.e. indexes all files according to a metadata schema
- SAM can then deliver files satisfying certain metadata requirements to analysis jobs
  - In a storage location agnostic fashion

## What is SAM?? Sequential data Access via Metadata

- SAM is a comprehensive data management and delivery system written by the Fermilab Computing Division
- Tevatron Run II experiments, CDF and D-Zero, ran with SAM, delivering up to 300TB of data per day

Interesting Fact:



In Irish Gaelic, USA = SAM, Stáit Aontaithe Mheiriceá

### SAM Metadata

- The SAM file catalogue is implemented as a physical database somewhere. Users do not (usually) interact with the database directly, but rather client programs send requests to an http(s) server called a samweb server
- Metadata is used to specify the properties of files in the DB you would like to look at. e.g:
  - data\_tier = reconstructed → only want reconstructed files
  - nova.detectorid = fd → only want far detector files
- One builds a list of metadata parameters to define a collection of like files
  - a dataset definition
- See this webpage for a full list of NOvA metadata fields
  - http://samweb.fnal.gov:8480/sam/nova/api/files/list/dimensions

Simulated.detectorID Simulated.fcl\_addition Simulated.firstRun Simulated.firstSubRun Simulated.generator Simulated.genie\_method Simulated.genieflavorset

#### samweb

One can create dataset definitions, list files etc by querying the samweb client database

Command-line or web-based GUI: http://samweb.fnal.gov:8480/sam/nova/definition\_editor/mc\_datasets.html

Examples of typical queries after telling samweb which experiment

% samweb —e nova list-definition-files tute-prodartdaq\_S14-02-05CryFD\_r1000001 % samweb —e nova count-definition-files tute-prodartdaq\_S14-02-05CryFD\_r1000001

*OR* one can ask samweb to *describe-definition* and use that query if you maybe want to trim it or changes parameters Then can list-files, count-files, locate-file, get-metadata

% samweb —e nova list-files "data\_tier artdaq and nova.detectorid fd and simulated.generator cry and simulated.base\_release 'S14-02-05' and nova.subversion 2 and nova.label beta and simulated.firstrun 1000001"

% samweb –e nova count-files <query> % samweb locate-file <sub>fardet\_cosmics\_all\_200\_r01000001\_s19\_S14-02-05\_v2\_20140213\_205247\_hero4902.rc.fas.harvard.edu\_1393880230\_17959\_0.sim.daq.root novadata:/nova/prod/mc/S14-02-05/fd (Bluearc) enstore:/pnfs/nova/mc/S14-02-05/fd/000051210(578@vpe195) (dcache)</sub>

## Other Useful Utilities

In the past, users would do their testing on individual files before going large scale

- Yes, keep doing this!!
- There are two methods for doing this, namely:
  - ifdh\_fetch
    - Copies file to local location, assuming it doesn't have a bluearc location
    - <u>https://cdcvs.fnal.gov/redmine/projects/ifdhc/wiki</u>
    - Command from the web-based IF tools package IFDHC (from IF Data Handling, ups distributed)
      - Replaces the old CPN interface
  - samweb2xrootd
    - Stream file directly from SAM location, no copying required
    - Xrootd+SAM+ART interface
    - My favourite
    - nova –c eventdump.fcl `samweb2xrootd <filename>` ; et voila. As long as the file is in the SAM DB you don't care where it lives!!
- In both cases, all you need is the filename (no path) since all files must have unique names to be stored in SAM.

## **NOvA Job Submission**

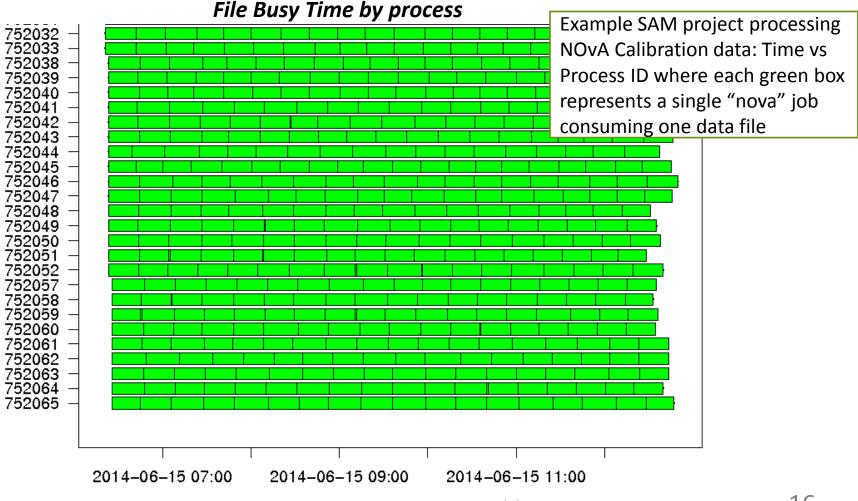
Once a dataset (file-list) has been created one submits using jobsub with SAM

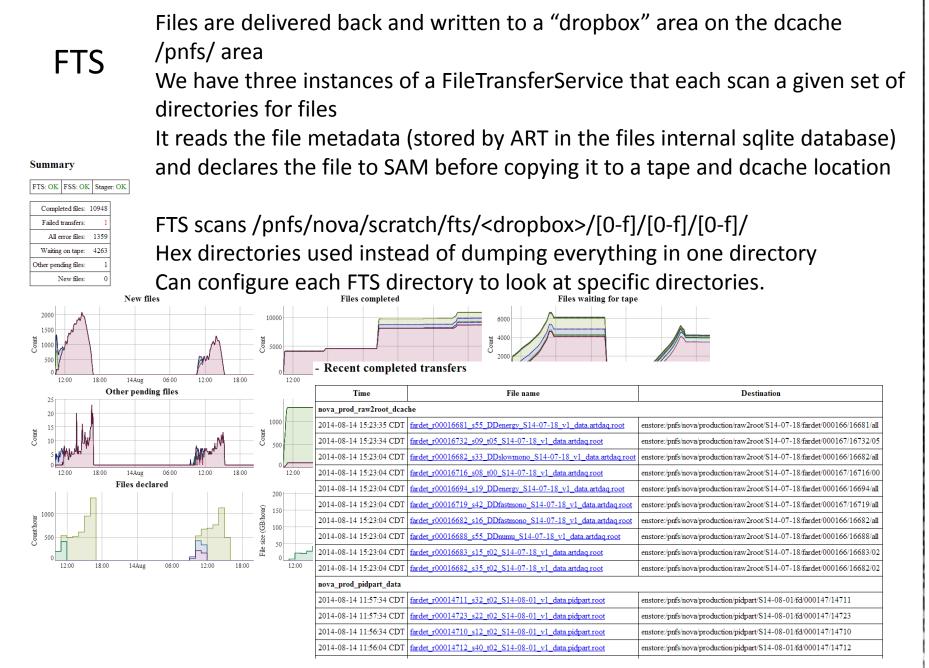
We can submit using FNAL resources or steer the jobs off-site (both work successfully for NOvA)

- □ You start a SAM PROJECT (all arguments within jobsub)
- Jobsub integrates data transfer and details of maintaining grid proxies. The actual data transfer is handled by IFDHC selecting files from your dataset
- You specify your ART executable (i.e. nova), code to be sourced and any other SAM relevant commands

NOvA wrote a python script to be the ART executable (it runs nova)

- https://cdcvs.fnal.gov/redmine/projects/novaart/repository/entry/trunk/Metadata/samUtils/runNovaSAM.py
- Allows us to:
  - define filenames
  - copy out to a hex directory structure
  - skip certain filetypes: empty files, corrupt...
  - construct appropriate metadata


Example job submission is here:


https://cdcvs.fnal.gov/redmine/projects/novaart/repository/entry/trunk/Utilities/batch/SAMSubmitTemplat e.sh

- We can do "1-to-1 input-to-output" style jobs that users of condor are familiar with but we can also do multi-input jobs thanks to the ART-SAM interface
  - Have the node the jobs land on run the nova executable for multiple files serially
  - If you have 100 files you could submit 10 jobs, each with 10 files processed within!!

# **Example SAM project**

- **Scalability is proven in IF experiment environment**
- Successfully processed required full Data and MC datasets in time for Neutrino 2014
- Monitoring is via a SAM Station monitor: <u>http://samweb.fnal.gov:8480/station\_monitor/nova/stations/nova/projects</u> (lists all projects running)





#### MC Generation

- Use do all of our Monte Carlo simulation generation off-site!
- We utilise CVMFS for delivering the experiment software to the offsite locations via the OpenScienceGrid (OSG)
- Gives us access to several thousand nodes instead of swamping FNAL resources
  - We can generate 2 Million Far Detector cosmic spills in a single day! Fast turnaround!
- One unique feature is that we produce a fcl file for every file that we simulate
- We declare the fcl files to SAM and are then able to make a dataset definitions with the fcl files
  - Makes submission easy as each job is a single fcl: nova –c <fcl file>
- The neutrino flux files that we use for generation are on the cvmfs servers and can be read in by the ART jobs
- Typical cache required 4 8 GB of memory cache and 50 -100 GB of hard disk cache (NOvA request: 3GB memory, 50GB disk)
  - Example: Currently to start a NOvA production job we load ~0.5 GB flux file, but then for multiple jobs that same file is available in the cache so is only loaded once for the first job

### More neat tricks

#### **Draining datasets**

- You can be clever with your dataset creation query
- If you know you're running another step on your dataset, say you're running PID after reconstruction, you can add a query in your dataset to tell it to run files that are not parents of a file in the following data\_tier (so they are not a parent of a PID file for example) (*not isparentof:()*)
- □ The query can get even more clever:

% samweb —e nova list-files "pidpart.base\_release 'S14-07-18' and data\_tier pidpart and nova.detectorid nd and simulated.volume rock\_detector and ischildof:( isparentof:( isparentof:( data\_tier lempart and nova.release 'S14-05-05' ) ) ) and not isparentof:( data\_tier pid and pid.base\_release 'S14-08-01' )"

This is what we do to process each data\_tier to make sure the project runs until there are no more files to process. It keeps running until it can't find a file with no children declared in SAM

#### Data Keep-up datasets

For our daily data keep-up processing we create datasets regularly based on a particular run's start time (a metadata field).

#### **Project Recovery**

- □ If some jobs failed (many reasons) you still would like them to run to completion
- One can re-run the job with a new dataset defined, based on only those files that didn't complete
- □ % samweb —e nova project-recovery -e nova --useFileStatus=0 --useProcessStatus=0 <dataset> (where dataset is the dataset that you ran originally)

This creates a query that you can then create a new definition for and resubmit a new project

## Summary

□ I've given you a whirlwind tour of NOvAs Production effort

- Many cool features that we are using and we're very pleased with how well everything is working
- ART/SAM/IFDHC/jobsub/CVMFS/xrootd/dCache/enstore etc
- NOvA Production group provided with a large amount of coordination, cooperation and support from the SCD Data Handling group in transition to SAM as well as the support from the ARTists
  - In lead up to Neutrino 2014 we fully utilised the SAM system for production purposes with great success and fast turnaround
- Off-site resources performing well CPU is not a limiting factor
  We're happy to help g-2 borrow some of the methods we use and learn from our experiences

### Documentation

- Taking Global Scale Data Handling to the Fermilab Intensity Frontier http://iopscience.iop.org/1742-6596/396/3/032069/
- https://cdcvs.fnal.gov/redmine/projects/sam-web/wiki
- http://samweb.fnal.gov:8480/sam/nova/api/files/list/dimensions
- http://samweb.fnal.gov:8480/sam/nova/definition\_editor/
- Example submission template:
  - https://cdcvs.fnal.gov/redmine/projects/novaart/repository/entry/trunk/Utilities/batch/SAMSubmitTemplate.sh
- Example SAM project:
  - http://samweb.fnal.gov:8480/station\_monitor/nova/stations/nova/projects/gsdavies-PCHitMC-S14-03-24-20140331\_1454
- Monitoring
  - https://cdcvs.fnal.gov/redmine/projects/nova\_sam/wiki/Monitoring\_Links
- Email: nova\_sam@fnal.gov (or SAMWise as we like to say!)
- Check the NOvA SAM Redmine wiki page: https://cdcvs.fnal.gov/redmine/projects/nova\_sam/wiki

