LBNE MUON MONITORS

ZACHARY LIPTAK
UNIVERSITY OF COLORADO BOULDER
9/26/2014

Outline

- * Introduction/goals
- * Stopped µ-monitors
 - * Current Design
 - * R&D
 - * Simulations
- * Gas Cherenkov monitors
- * Status and Plans

Goals

- Stopped muons remain in the rock downstream of the absorber after beam pulses
 - Distributed as a function of initial energy
- Make small, specialized modular detectors to observe these decays for:
 - Beam composition
 - Absolute muon flux
- Incorporate with beam MC to constrain neutrino spectrum
- Intend to make calorimeter-type detectors large enough to to contain enough of an EM shower to distinguish between Michel electrons and neutron interactions or radioactive decays.
 - Current design: Cherenkov inner detector with liquid scintillator veto

Goals

- These monitors can solve some of the major issues with conventional muon monitoring:
 - Observe individual Michel decays → provide known efficiency & absolute normalization
 - Stopped muons provide a unique range, not just an integral over a threshold
 - Fitting for lifetime provides an independent check that signal is coming from muons

From K. Hiraide, Muon monitor using the decay electrons, NBI2003 Workshop

Strategy

- Energy loss of muons in the beam dump
- Range of electrons in the concrete

We can measure muons of 5.2~7.0GeV/c by counting the decay electrons

- •Counting the decay electrons from muons stopping at the wall of μ -pit
- Measuring spatial and time distributions of events

Time distribution of events

- Accumulated 19,178 spills
- Sum of 6 counters

We succeeded in measuring of the decay electrons with good S/N.

Feasibility

- Precedent exists for this type of measurement
 - Kyoto group was able to observe stopped muons at K2K

Some environmental differences present new challenges:

- Rate is 2 orders of magnitude higher than K2K
 - → increased signal + bg
 - Need to wait longer for signal to be at a reasonable level

Gated PMT R&D

- Develop and test a gated PMT base system
 - * Huge amount of light need to turn PMT off during the initial pulse then quickly turn back on for signal measurement
 - * Working with Charles Lane to produce gated bases to satisfy this condition
 - BNL g-2 experiment faced similar constraints see below

Blanking and Flash Studies for Photomultiplier Tubes

Jinsong Ouyang and William E. Earle
Physics Department, Boston University, Boston, MA 02215

By using switching circuitry with cascaded high-voltage transistors to switch the voltage on a selected dynode, the gain of a photomultiplier tube can be quickly reduced to near-zero. After being off for several microseconds, the photomultiplier tube can be returned to its normal operating gain in less than half a microsecond. Immediately after the return to normal gain, the variation of the electron transit time shift and the change of signal charge caused by switching is less than 5 ps and 0.3%, respectively, over a 1 ms time interval. A laser flash applied while the tube is switched off does not affect the electron transit time or signal charge after the tube is switched back on.

Current Design - Stopped Muon Monitor

Placement

- * Stopped µ-monitors and gas Cherenkov monitor can be placed after absorber
 - * SMMs can be in individual alcoves, or one large alcove separated as shown

R&D Items: µ Detection

- * Original water Cherenkov design only sensitive to μ+
 - * Shorter-lived stopped μ⁻ will be depleted while μ⁺ rates are still very high
 - * μ can be captured on carbon, giving 12B
 - * High-energy β with a 30 ms lifetime
 - * If these decays can be detected (likely with separate signal processing), then the rate of stopping μ^- may also be measured.

R&D Items: µ Detection

- Original design called for water Cherenkov with external carbon boundary
 - * Steel detector boundaries or graphite shield
- * Simulations show that ¹²B decays are much more readily detected if they originate in the inner detector

Solution: Replace water with mineral oil to produce ¹²B in the ID volume

Simulations

- * Two students developing GEANT4 simulations at CU
- * Effective modeling of signal/veto response, containment, &c.

* Currently studying how detector reflectivity affects light yield

Simulations II

- * Simulations have already led to several design changes, e.g.:
 - * Replacement of water with mineral oil in main detector volume
 - * Removal of WLS fibers (unnecessary given expected light yield)

Simulations III

- * Background considerations included in simulations
 - * Neutrons incident on detector
 - * Fast and thermal neutrons both considered

* Unsure of neutron flux in alcoves

Mechanical Status

- Coming to a conclusion on final prototype design with CU machine shop
- * Some details to be worked out before we start cutting metal
 - * Welding: need to ensure welder will fit where it needs to go
 - * PMT + Base assembly has to fit inside tubes

SMM Plans/R&D

- * Plan to build prototype at Boulder Fall 2015
 - * Prototype testing to be carried out using cosmics at CU
- * After that Deployment in NuMI beam

- * Primitive prototype currently exists in NuMI Alcove
 - * ...but has not produced much useful data

Gas Cherenkov Detector

- Vacuum chamber filled with argon gas
- A flat mirror directs Cherenkov light towards photodetector
- Variable index of refraction from the pressure of the chamber gas
- Adjustable orientation

Slide content Courtesy P. Madigan

NuMI Beamline detector showing accurate signal - POT correlation

Slide content Courtesy P. Madigan

Cosmic muon detection

- Triggered by coincidence of the two scintillators
- Raw PMT output is recorded by an oscilloscope
- Analysis program using both a Gaussian fit and oscilloscope output
- Generates a tree with information on the timing, integral, and peak of each event

Slide Courtesy P. Madigan

Conclusions

- * Two complementary systems being developed for muon monitoring after the absorber
- * Stopped muon monitor prototype to be built soon
 - * Cosmic ray testing at CU
 - * Followed by testing in NuMI beam
- * Gas Cherenkov prototype already running
- Currently also testing on cosmics

NuMI tests

Prototype already in NuMI Alcove 2

Exponential fit of decay suggests muon decays