Booster Neutrino Beamline Flux Prediction

Z. Pavlovic

NBI 2014, Fermilab 09/26/14

- Proton delivery:
 - 8 GeV protons from Booster
 - Average rate up to 5Hz
 - 4.2e12 PPP
- Horn:
 - Neutrino mode +170kA
 - Antineutrino mode -170kA

Experiments

- Past/Current
 - MiniBooNE
 - MicroBooNE
 - SciBooNE
 - SciBath
- Future:
 - LAr1ND
 - ICARUS
 - CENNS/Captain

•

Neutrino flux prediction

- Geant4 based MC used to
 predict the flux
- Hadron production cross sections tuned to external data

	$ $		$\overline{\nu}_{\mu}$ 3.26×10^{-11}	
Flux $(\nu/\mathrm{cm}^2/\mathrm{POT})$				
Frac. of Total		93.6%		5.86%
Composition	π^+ :	96.72%	π ⁻ :	89.74%
	K^+ :	2.65%	$\pi^+ \rightarrow \mu^+$:	4.54%
	$K^+ \rightarrow \pi^+$:	0.26%	K^{-} :	0.51%
	$K^0 \rightarrow \pi^+$:	0.04%	K^0 :	0.44%
	K^0 :	0.03%	$K^0 \rightarrow \pi^-$:	0.24%
	$\pi^- ightarrow \mu^-$:	0.01%	$K^+ \to \mu^+$:	0.06%
	Other:	0.30%	$K^- \rightarrow \pi^-$:	0.03%
			Other:	4.43%
	ν_e		$\overline{ u}_e$	
Flux $(\nu/\mathrm{cm}^2/\mathrm{POT})$	2.	$.87 \times 10^{-12}$		3.00×10^{-13}
Frac. of Total		0.52%		0.05%
Composition	$\pi^+ \rightarrow \mu^+$:	51.64%	K_L^0 :	70.65%
	K^+ :	37.28%	$\pi^- ightarrow \mu^-$	19.33%
	K_L^0 :	7.39%	K^- :	4.07%
	π^+ :	2.16%	π^- :	1.26%
	$K^+ \rightarrow \mu^+$:	0.69%	$K^- \rightarrow \mu^-$:	0.07%
	Other:	0.84%	Other:	4.62%

Pion production

- Sanford-Wang fits:
 - HARP (thin target)
 - 8.89GeV p on Be target
 - P = 0.75 6.5 GeV/c, $\theta = 30 - 210 \text{ mrad}$
 - E910
 - 6.4, 12.3, 17.5 GeV/c
 - $P=0.4 5.6 \text{ GeV/C}, \theta = 18 400 \text{ mrad}$
- Fits done both for pi+ and pi-

Phys. Rev. D79, 072002 (2009)

Kaon production

- Feynman scaling based parameterisation used to fit world K+ production data
- Sanford-Wang fits to K0s production data from BNL E910 and KEK Abe et al.

Kaons in BNB

- Kaon production further constrained by SciBooNE measurements
- Found production to be 0.85+-0.12 relative to the global fit to kaons (with 30% error)

Wrong signs

- Significant numu component in antineutrino mode (~16%)
- Not constrained well by HARP/E910
- In-situ measurement in MiniBooNE
 - Numu CCQE angular fit
 - $CC\pi^+$ rate
 - µ⁻ capture

Flux uncertainty

- Propagate uncertainties using many MC worlds to build error matrices that capture correlations between bins of neutrino observables
 - spline fits through HARP data
 - kaon fits
 - Hadron cross sections on Be and Al
 - Horn focusing
 - POT counting
- For numu/numubar CCQE measurement resulting flux uncertainty was at 9-10% level

Reinteractions in BNB

 At Booster energies ~90% of pions contributing to neutrino flux from primary p+Be interactions

HARP thick target analysis

DATA	Beam radius cut (reduce the edge effect)	P.O.T
MB100	0.4 cm	622791
MB50	0.4 cm	814749
Empty	0.4 cm	475776
Be5	1.0 cm	13070000
Empty	1.0 cm	1990000

Revisiting HARP

- BNB MC correctly models reinteractions – see talk by A. Wickremasinghe at flux workshop (09/22)
 - Extrapolation to thick target agrees at 1% level
- Analysis using alternative (Extended Sanford Wang) parametrisation fitted to HARP only data results in 2% change in neutrino flux
 - Within the expected systematic error

Single detector

- MiniBooNE $\nu_{_{\!\!\!\!\!\!0}}$ appearance analysis further constrains flux by simultaneously fitting $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!}}$ and $\nu_{_{\!\!\!\!\!\!\!\!\!\!\!}}$

Multiple detectors

- SciBooNE/MiniBooNE muon (anti)neutrino disappearance analysis
- Flux/cross-section uncertainties cancel, detector do not

Multiple detectors

- LAr1ND will serve as a near detector for MicroBooNE and any future Far Detector experiment
- Compared to Sci/MiniBooNE expect better cancellation of detector systematics

Low energy neutrinos at BNB

 Looking at neutrinos near target hall

Low energy neutrino physics

- Core collapse supernova physics
 - Only a couple of v-N cross sections are measured in SN energy range
 - Important for SN neutrino detection
 - Understanding the supernova explosion process
- Coherent Elastic Neutrino Nucleus Scattering (CENNS)
 - Has not been observed yet
 - Background for dark matter searches
 - Neutron form factor
 - Neutrino magnetic moment
 - Test week mixing angle
 - Non Standard Model Interactions
- Sterile neutrinos and neutrino oscillations
 - L/E with lower energy -> observe oscillation in detector

Slide courtesy J. Yoo

Multipurpose beamline

- Search for Dark Matter in beam off-target mode
- Reduce neutrino flux by ~50 times (background for DM search)
- Collected 1.9e20 POT

Summary

- 12 years of experience running with BNB
- Well understood neutrino flux
 - Constrained using external hadron production measurements
 - Years of running experiments
- Many experiments using the BNB facility
- Exciting future experimental program ahead

Backup

Stable running

• 2 target/horn assemblies

/POT × 10 -17

160

140

120

100

80

60

40

20

• 96 million pulses with 1st horn

6.27e+20 v POT

1.13e+21 ⁷ POT

31/Dec/04

01/Jan/04

- 367 million pulses with 2nd horn
- Neutrino flux remained extremly stable over 12 years of running
- No degradation in flux or energy spectrum

