T2K target T. Nakadaira for J-PARC neutrino construction group T2K collaboration #### Outline - * Overview of J-PARC v-target - * Status of T2K target (after NBI2012 report) - ***** Target replacement: No.1 → No.2 - * O₂ monitoring of cooling He - Reducing the oxidization is key of Hightemperature graphite target. #### Thermal shock resistance of graphite target - * Material: Isotropic graphite (IG-430 by Toyo. Tanso. Co. Itd.) - Tensile strength = 37.2MPa - Geometry: L = ~900mm (~2λ_{int}),φ=26mm (main part) (cf. proton beam size: σ_x=σ_y=4.2mm) ← Optimized to maximize the neutrino flux. - * Energy deposit: 41kJ/3.3×10¹⁴ proton (30GeV 1spill) - * Thermal shock : $\Delta T = 200K$, $\sigma_{eq} = 7.2MPa$ \rightarrow Safety factor = 3.5 (including cyclic fatigue) - * Heat load: 19.6kW for 750kW beam #### Conceptual design of J-PARC v target Target is installed inside electro magnetic horn. - Co-axial two cooling tube structure to enable the target to be detached from horn. - Contained by He-tight case made of Ti-6Al-4V - * t=0.3mm for beam-window part. - * Target case become same electric potential due to AC-coupling: O(1kV) - → Electric Insulation at support structure and Hetubes is necessary. - \rightarrow Connect to grand via high resistance (4M Ω) to avoid the charge-up. #### Mechanical structure of target Graphite-graphite bonding w/ thread structure Spacer between cooling tube is unified to road/ tube part. Graphite-Ti alloy parts: fixed by bolts w/ low clamping force metal seal. Metal Resilient Seal by Mitsubishi cable industries, Ltd Components of J-PARC neutrino target #### Operation status - * First neutrino target: Apr. 2009 ~ May.2013: No significant trouble. - * ~6.7×10²⁰ POT: Max beam power ~230kW - * CF. Much less than design beam power (750kW) / POT (~8×10²¹). - Muon flux and Neutrino flux are stable. - The horns are replaced with improved during the shutdown in 2013-2014. Target (#1) is also replaced by 2nd one with same design. #### Pictures of T2K target #1 (used) ## T2K target #2 (2014 May ~) - Same design as T2K target #1 - * The machining precision is improved: - * Perpendicularity w.r.t front surface, straightness - By C-C bonding/purification process with alignment jigs Center position of the target tube **12K target No.1** H: -0.25 ~ +0.2mm V: -0.15 ~ +0.2mm T2K target No.2 H: -0.05 ~ +0.2mm #### Recent works for T2K target - * O₂ monitoring - * The lifetime of graphite target w/ He cooling is limited by the oxidization. - * He purity is important. - * Oxidization speed and Tensile strength after oxidization was measured. - * O₂ < 100 ppm is our goal so that the T2K graphite target can survive for 5 years. ## O₂ monitoring - * Gas-chromatography system with the gas-sampling system w/ remote operation is constructed. - * O₂, CO, CO₂, H₂, CH₄ can be detected: 1 ppm ~ 10000 ppm - Not only for target He-line, but other He-lines. #### Measured He purity - * T2K Tun-5 (5/16-6/26): 7.8×10¹⁹ POT (include beam-tuning run.) - * T2K target No.2 is used. - * Concentration of O₂ is kept <100 [ppm], but - Increase of CO, CO₂ is observed. | | 5/16 | 5/26 | |-----------------------|------|----------------------| | POT | 0 | 7.8×10 ¹⁹ | | O ₂ [ppm] | 1.7 | 1.8 | | CO [ppm] | 1.0 | 156.7 | | CO ₂ [ppm] | 2.6 | 65.1 | | N ₂ [ppm] | 7.2 | 29.5 | | H ₂ [ppm] | 2.0 | 245.1 | | CH ₄ [ppm] | 0.6 | 33.0 | ## Measured He purity (Cont'd) - Two plausible possibility of O₂ contamination. - 1. Air leak at the seal of shaft of He compressor. - Air-leak rate that is estimated from N₂ concentration is less than CO,CO₂ production rate. - 2. He includes H₂O contamination at the beginning. - O₂ produced due to H₂O decomposition? H₂O contamination is not measured yet. - cf. Tritium measurement result after 7.8×10¹⁹ POT received. → HTO=36.1[Bq/L], HT=8.8[Bq/L] - Other possibility: - * Some amount of O₂ is adsorbed by the target graphite? - Is there the source of CO, CO₂ other than target? CO, CO₂ production rate is not fully correlated with beam power (target temperature.) - * One possibility is the oxidization of graphite parts of compressor used for lubricant. - Countermeasures - * Adding the filter for He compressor system: Installation work is in progress. - * We plan to use commercial products: "Super Clean Gas-filter" by Scientific Glass Technology, Ltd. Filter capacity (catalog values): H₂O = 1.8 [g/unit], O2 = 500[mL], CHx = 7[g/unit] - Flow the He gas around the He compressor shaft. # O2 adsorptions? Gas Measurement - Under investigation - Data during Beam off shows the contamination changes due to ... - Target graphite is exist, or not. - Compressor is on or off. - * If it is true, it is better to design so that the target case can be evacuated to remove the adsorbed O₂. #### Inpurity of He gas for T2K target cooling (Beam-off) #### Summary - * Overview of T2K target is introduced. - * 1st target was used for ~6.7×10²⁰ POT(Max beam power ~230kW) without no significant trouble. - * From May. 2014, 2nd target is used. - * Same design w/ good assembly accuracy. - * O₂ monitoring system is constructed in 2013. - * Oxidization of graphite is monitored. - Improvement to reduce O₂ contamination is in progress.