T2K target

T. Nakadaira
for

J-PARC neutrino construction group
T2K collaboration

Outline

- * Overview of J-PARC v-target
- * Status of T2K target (after NBI2012 report)
 - ***** Target replacement: No.1 → No.2
 - * O₂ monitoring of cooling He
 - Reducing the oxidization is key of Hightemperature graphite target.

Thermal shock resistance of graphite target

- * Material: Isotropic graphite (IG-430 by Toyo. Tanso. Co. Itd.)
 - Tensile strength = 37.2MPa
 - Geometry: L = ~900mm (~2λ_{int}),φ=26mm (main part) (cf. proton beam size: σ_x=σ_y=4.2mm)
 ← Optimized to maximize the neutrino flux.
- * Energy deposit: 41kJ/3.3×10¹⁴ proton (30GeV 1spill)
- * Thermal shock : $\Delta T = 200K$, $\sigma_{eq} = 7.2MPa$ \rightarrow Safety factor = 3.5 (including cyclic fatigue)
- * Heat load: 19.6kW for 750kW beam

Conceptual design of J-PARC v target

Target is installed inside

electro magnetic horn.

- Co-axial two cooling tube structure to enable the target to be detached from horn.
- Contained by He-tight case made of Ti-6Al-4V
 - * t=0.3mm for beam-window part.
 - * Target case become same electric potential due to AC-coupling: O(1kV)
 - → Electric Insulation at support structure and Hetubes is necessary.
 - \rightarrow Connect to grand via high resistance (4M Ω) to avoid the charge-up.

Mechanical structure of target

Graphite-graphite bonding w/ thread structure

Spacer between cooling tube is unified to road/ tube part.

Graphite-Ti alloy parts: fixed by bolts w/ low clamping force metal seal.

Metal Resilient Seal by Mitsubishi cable industries, Ltd

Components of J-PARC neutrino target

Operation status

- * First neutrino target: Apr. 2009 ~ May.2013: No significant trouble.
 - * ~6.7×10²⁰ POT: Max beam power ~230kW
 - * CF. Much less than design beam power (750kW) / POT (~8×10²¹).
 - Muon flux and Neutrino flux are stable.
 - The horns are replaced with improved during the shutdown in 2013-2014.
 Target (#1) is also replaced by 2nd one with same design.

Pictures of T2K target #1 (used)

T2K target #2 (2014 May ~)

- Same design as T2K target #1
- * The machining precision is improved:
 - * Perpendicularity w.r.t front surface, straightness
 - By C-C bonding/purification process with alignment jigs

Center position of the target tube

12K target No.1 H: -0.25 ~ +0.2mm V: -0.15 ~ +0.2mm

T2K target No.2 H: -0.05 ~ +0.2mm

Recent works for T2K target

- * O₂ monitoring
- * The lifetime of graphite target w/ He cooling is limited by the oxidization.
- * He purity is important.
 - * Oxidization speed and Tensile strength after oxidization was measured.
 - * O₂ < 100 ppm is our goal so that the T2K graphite target can survive for 5 years.

O₂ monitoring

- * Gas-chromatography system with the gas-sampling system w/ remote operation is constructed.
 - * O₂, CO, CO₂, H₂, CH₄ can be detected: 1 ppm ~ 10000 ppm
 - Not only for target He-line, but other He-lines.

Measured He purity

- * T2K Tun-5 (5/16-6/26): 7.8×10¹⁹ POT (include beam-tuning run.)
 - * T2K target No.2 is used.
- * Concentration of O₂ is kept <100 [ppm], but
 - Increase of CO, CO₂ is observed.

	5/16	5/26
POT	0	7.8×10 ¹⁹
O ₂ [ppm]	1.7	1.8
CO [ppm]	1.0	156.7
CO ₂ [ppm]	2.6	65.1
N ₂ [ppm]	7.2	29.5
H ₂ [ppm]	2.0	245.1
CH ₄ [ppm]	0.6	33.0

Measured He purity (Cont'd)

- Two plausible possibility of O₂ contamination.
 - 1. Air leak at the seal of shaft of He compressor.
 - Air-leak rate that is estimated from N₂ concentration is less than CO,CO₂ production rate.
 - 2. He includes H₂O contamination at the beginning.
 - O₂ produced due to H₂O decomposition? H₂O contamination is not measured yet.
 - cf. Tritium measurement result after 7.8×10¹⁹ POT received.
 → HTO=36.1[Bq/L], HT=8.8[Bq/L]
 - Other possibility:
 - * Some amount of O₂ is adsorbed by the target graphite?
 - Is there the source of CO, CO₂ other than target?
 CO, CO₂ production rate is not fully correlated with beam power (target temperature.)
 - * One possibility is the oxidization of graphite parts of compressor used for lubricant.
- Countermeasures
 - * Adding the filter for He compressor system: Installation work is in progress.
 - * We plan to use commercial products: "Super Clean Gas-filter" by Scientific Glass Technology, Ltd. Filter capacity (catalog values): H₂O = 1.8 [g/unit], O2 = 500[mL], CHx = 7[g/unit]
 - Flow the He gas around the He compressor shaft.

O2 adsorptions?

Gas Measurement

- Under investigation
- Data during Beam off shows the contamination changes due to ...
 - Target graphite is exist, or not.
 - Compressor is on or off.
- * If it is true, it is better to design so that the target case can be evacuated to remove the adsorbed O₂.

Inpurity of He gas for T2K target cooling (Beam-off)

Summary

- * Overview of T2K target is introduced.
- * 1st target was used for ~6.7×10²⁰ POT(Max beam power ~230kW) without no significant trouble.
- * From May. 2014, 2nd target is used.
 - * Same design w/ good assembly accuracy.
- * O₂ monitoring system is constructed in 2013.
 - * Oxidization of graphite is monitored.
 - Improvement to reduce O₂ contamination is in progress.