A beryllium material test experiment at CERN HiRadMat facility

```
P. Hurh<sup>1</sup>, B. Hartsell<sup>1</sup>, B. Zwaska<sup>1</sup>, K. Ammigan<sup>1</sup>, C. Densham<sup>2</sup>, A. Atherton<sup>2</sup>, M. Fitton<sup>2</sup>, J. O'Dell<sup>2</sup>, T. Davenne<sup>2</sup>, P. Loveridge<sup>2</sup>, O. Caretta<sup>2</sup>, S. Roberts<sup>3</sup>, V. Kuksenko<sup>3</sup>, M. Calviani<sup>4</sup>, R. Losito<sup>4</sup>
```

¹ Fermi National Accelerator Laboratory Batavia, IL 60510, USA

² STFC Rutherford Appleton Laboratory Harwell Oxford, Didcot, OX11 0QX, UK

 3 University of Oxford Oxford, OX1 3PH, UK

⁴CERN CH-1211 Geneva 23. Switzerland

9th International Workshop on Neutrino Beams and Instrumentation September 23-26, 2014 Fermilab

Outline

- Motivation and objectives of experiment
- Overview of HiRadMat facility
- Experimental specifications
- Numerical simulations
- Design overview and test matrix
- Online instrumentation
- Post-Irradiation-Examination (PIE) techniques
- Experiment status and conclusions

Motivation: To help successfully design and reliably operate beryllium windows and targets for future high intensity particle accelerator facilities, by identifying failure mechanisms of beryllium under high intensity beam conditions

- explore the onset of failure modes of various beryllium grades under controlled conditions at very high localized strain rates and temperature
- identity potential thermal shock limits of different beryllium grades
- compare experimental measurements to highly non-linear damage/failure numerical simulations for validation of material models

Motivation: To help successfully design and reliably operate beryllium windows and targets for future high intensity particle accelerator facilities, by identifying failure mechanisms of beryllium under high intensity beam conditions

- explore the onset of failure modes of various beryllium grades under controlled conditions at very high localized strain rates and temperatures
- identify potential thermal shock limits of different beryllium grades
- compare experimental measurements to highly non-linear damage/failure numerical simulations for validation of material models

Motivation: To help successfully design and reliably operate beryllium windows and targets for future high intensity particle accelerator facilities, by identifying failure mechanisms of beryllium under high intensity beam conditions

- explore the onset of failure modes of various beryllium grades under controlled conditions at very high localized strain rates and temperatures
- identify potential thermal shock limits of different beryllium grades
- compare experimental measurements to highly non-linear damage/failure numerical simulations for validation of material models

Motivation: To help successfully design and reliably operate beryllium windows and targets for future high intensity particle accelerator facilities, by identifying failure mechanisms of beryllium under high intensity beam conditions

- explore the onset of failure modes of various beryllium grades under controlled conditions at very high localized strain rates and temperatures
- identify potential thermal shock limits of different beryllium grades
- compare experimental measurements to highly non-linear damage/failure numerical simulations for validation of material models

CERN's HiRadMat facility

Proton beam energy: 440 GeV

Max. intensity: 4.9×10¹³ ppp (288 bunches of 1.7×10¹¹ ppb)

Pulse length: 7.2 μs

 \bullet 1 σ beam radius: 0.1 - 2.0 mm

HiRadMat experimental area

- 3 experimental test stands
- Remote installation of experimental tables
- $\$ 'Single-shot' experiments with annual limit $\sim 10^{16}$ pot

HiRadMat target area

- increasing proton beam intensity
 - → 72, 144, 216, 288 bunches
- varying window thicknesses
 - ⇒ 0.25, 0.75, 2 mm
- different beryllium grades/forms
 - ⇒ PF-60, S-65F (VHP), S-200F (VHP), S-200FH (HIP)
- multiple beam pulses
 - ⇒ 3 pulses of 144 bunches
- elastic/plastic stress waves
 - edge strain/vibration measurements of slugs/cylinders

- increasing proton beam intensity
 - → 72, 144, 216, 288 bunches
- varying window thicknesses
 - ⇒ 0.25, 0.75, 2 mm
- different beryllium grades/forms
 - ⇒ PF-60, S-65F (VHP), S-200F (VHP), S-200FH (HIP)
- multiple beam pulses
 - ⇒ 3 pulses of 144 bunches
- elastic/plastic stress waves
 - edge strain/vibration measurements of slugs/cylinders

- increasing proton beam intensity
 - → 72, 144, 216, 288 bunches
- varying window thicknesses
 - → 0.25, 0.75, 2 mm
- different beryllium grades/forms
 - ⇒ PF-60, S-65F (VHP), S-200F (VHP), S-200FH (HIP)
- multiple beam pulses
 - ⇒ 3 pulses of 144 bunches
- elastic/plastic stress waves
 - edge strain/vibration measurements of slugs/cylinders

- increasing proton beam intensity
 - → 72, 144, 216, 288 bunches
- varying window thicknesses
 - → 0.25, 0.75, 2 mm
- different beryllium grades/forms
 - ⇒ PF-60, S-65F (VHP), S-200F (VHP), S-200FH (HIP)
- multiple beam pulses
 - ⇒ 3 pulses of 144 bunches
- elastic/plastic stress waves
 - edge strain/vibration measurements of slugs/cylinders

- increasing proton beam intensity
 - → 72, 144, 216, 288 bunches
- varying window thicknesses
 - → 0.25, 0.75, 2 mm
- different beryllium grades/forms
 - ⇒ PF-60, S-65F (VHP), S-200F (VHP), S-200FH (HIP)
- multiple beam pulses
 - ⇒ 3 pulses of 144 bunches
- elastic/plastic stress waves
 - edge strain/vibration measurements of slugs/cylinders

Numerical simulations

MARS energy deposition calculation¹

- lacktriangle Beam σ_r = 0.3 mm selected to push beryllium specimens to its limit
- Temperature jump ~1050°C for maximum intensity pulse
- Close to beryllium melting temperature (1280°C)
- Expect thermal shock due to large temperature gradient in material

¹ Hartsell, B., "MARS energy deposition data for beryllium samples of HiRadMat experiment', 2014.

Beam induced stress and strain

- Temperature and strain rate dependent Be strength material properties ²
- LS-DYNA elastic-viscoplastic material model (MAT 106)³

2D axisymmetric LS-DYNA model showing effective total strain

 $(4.9 \times 10^{13} \text{ protons}, \Delta T = 1050 \,^{\circ}\text{C}, 0.75 \,\text{mm} \text{ thick, beam centered on window)}$

 $t=7.2\mu s, T_{max}\sim 1050^{\circ}C$ End of pulse

 $t=0.25s, T_{max}\sim 25^{\circ}C$ End of cool-down

²Montoya, D., et al., Comportement dynamique d'une nuance de beryllium, Journal de Physique IV, 1991, vol. 1, pp. 27-34.

 $^{^3}$ LS-DYNA Keyword User's Manual, Volume II, Material Models, LSTC, 05/19/14 (r:5442).

Surface deformation and plastic strain vs. intensity and thickness

Effective strain vs. intensity (σ = 0.3 mm, after cool-down) = 0.25 mmEffective total strain (%) 0.5 100 200 250 300 Intensity (bunches)

Out-of-plane permanent surface deformation

Maximum plastic strain

- ullet Literature data predicts failure at plastic strains \sim 2% at RT
 - Be grade S-200F VHP4

⁴ Chaouadi, R. et al., "Tensile and fracture toughness test results of neutron irradiated beryllium", ITER Task T23, 1997.

Dynamic response of Be cylinders

- Elastic/plastic strain response at the edge of the cylinder
- Bervllium slugs: R = 20 mm, L = 30 mm
- Beam incident at r/R = 0.9 (2 mm from edge)
- Strain and temperature gages mounted on cylinder edge

Circumferential (y) strain on outer edge of cylinder (R = 20 mm) x 10⁻³ Beam centered at r/R = 0.9 144 bunches 288 bunches

Circumferential strain

Temperature plot showing beam location

Temporal edge temperature

Design overview

Overall layout⁵

Main features of test rig

- Double containment
- Vertical lift table
- Optical viewports
- Pumping port and filter
- Quick-disassembly system

⁵ Atherton, A. et al., "HRMT24 Experiment: test rig design", HiRadMat update meeting presentation, September 12th, 2014

Design overview

Containment box⁵

Dimensions \sim 0.60 m \times 0.35 m \times 0.30 m

Design overview

Interior layout⁵

Test matrix

ARRAY 1 - 72 bunches	t = 0.75 mm			t = 0.25 mm			t = 0.75 mm				t = 2.00 mm				t = 30 mm			
ARRAY 2 - 144 bunches																		
ARRAY 3 - 216 bunches																		
ARRAY 4 - 288 bunches																		
RRAY 5 (3 x 144 bunches)													Ш					

→ Total proton on target \sim 2.0 \times 10¹⁴

- Strain gages: positioned on beryllium slugs to measure
 - ⇒ axial strain
 - ⇒ circumferential strain
- Laser Doppler Vibrometer: to measure radial surface vibrations/displacements of slugs
- RTD sensors: to measure temporal temperature on surface of slugs
- Camera: to monitor any unforeseen events during the experiment
- Experimental data from strain gages, LDV and RTD sensors will help validate numerical simulations

- Strain gages: positioned on beryllium slugs to measure
 - ⇒ axial strain
 - ⇒ circumferential strain
- Laser Doppler Vibrometer: to measure radial surface vibrations/displacements of slugs
- RTD sensors: to measure temporal temperature on surface of slugs
- Camera: to monitor any unforeseen events during the experiment
- Experimental data from strain gages, LDV and RTD sensors will help validate numerical simulations

- Strain gages: positioned on beryllium slugs to measure
 - ⇒ axial strain
 - ⇒ circumferential strain
- Laser Doppler Vibrometer: to measure radial surface vibrations/displacements of slugs
- RTD sensors: to measure temporal temperature on surface of slugs
- Camera: to monitor any unforeseen events during the experiment
- Experimental data from strain gages, LDV and RTD sensors will help validate numerical simulations

- Strain gages: positioned on beryllium slugs to measure
 - ⇒ axial strain
 - ⇒ circumferential strain
- Laser Doppler Vibrometer: to measure radial surface vibrations/displacements of slugs
- RTD sensors: to measure temporal temperature on surface of slugs
- Camera: to monitor any unforeseen events during the experiment
- Experimental data from strain gages, LDV and RTD sensors will help validate numerical simulations

Post Irradiation Examination (PIE)

PIE at University of Oxford

- Profilometer/AFM: to measure permanent surface out-of-plane displacements
- EBSD: pre-irradiation mapping of grain structure and possibly post-irradiation localized deformation/crack analysis
- SEM: surface evolution analysis
- 3D FIB-SEM: 3D analysis of crack morphology

Atomic Force Microscopy

Profilometer system

Electron Backscatter Diffraction

Summary of measurements

- ✓ Dynamic vibration and strain response
- ✓ Temporal temperature profile
- ✓ Out-of-plane plastic deformation profile
- ✓ Crack/failure detection and fracture surface morphology
- ✓ Localized deformation due to grain orientation
- ✓ Camera to capture unforeseen events

- Experiment proposal submitted in March 2014
- Proposal preliminary acceptance: June 2014
- Scientific and technical board review: Oct 2014
- Potential beam time for experiment: Spring 2015

- Exploratory study to probe damage mechanism of beryllium
- Compare damage mechanism and response of different beryllium grades
- Identify any primary failure mode for the various grades/conditions
- Attempt to benchmark macro-scale simulations and material strength models with experimental measurements

- Experiment proposal submitted in March 2014
- Proposal preliminary acceptance: June 2014
- Scientific and technical board review: Oct 2014
- Potential beam time for experiment: Spring 2015

- Exploratory study to probe damage mechanism of beryllium
- Compare damage mechanism and response of different beryllium grades
- Identify any primary failure mode for the various grades/conditions
- Attempt to benchmark macro-scale simulations and material strength models with experimental measurements

- Experiment proposal submitted in March 2014
- Proposal preliminary acceptance: June 2014
- Scientific and technical board review: Oct 2014
- Potential beam time for experiment: Spring 2015

- Exploratory study to probe damage mechanism of beryllium
- Compare damage mechanism and response of different beryllium grades
- Identify any primary failure mode for the various grades/conditions
- Attempt to benchmark macro-scale simulations and material strength models with experimental measurements

- Experiment proposal submitted in March 2014
- Proposal preliminary acceptance: June 2014
- Scientific and technical board review: Oct 2014
- Potential beam time for experiment: Spring 2015

- Exploratory study to probe damage mechanism of beryllium
- Compare damage mechanism and response of different beryllium grades
- Identify any primary failure mode for the various grades/conditions
- Attempt to benchmark macro-scale simulations and material strength models with experimental measurements

- Experiment proposal submitted in March 2014
- Proposal preliminary acceptance: June 2014
- Scientific and technical board review: Oct 2014
- Potential beam time for experiment: Spring 2015

- Exploratory study to probe damage mechanism of beryllium
- Compare damage mechanism and response of different beryllium grades
- Identify any primary failure mode for the various grades/conditions
- Attempt to benchmark macro-scale simulations and material strength models with experimental measurements