LBNE Muon System Tests

Geoffrey Mills Los Alamos National Laboratory <u>mills@lanl.gov</u>

NBI 2014 September 26, 2014

NBI – 25 September, 2014

LBNE-NuMI ND Muon System Program

• Collaboration:

- University of Colorado: A. Marino, Zack Liptak, and Eric Zimmerman +students
- Drexel University: Chuck Lane +students
- Los Alamos: Geoff Mills, Jan Boissevain + others
- Fermilab: Cory Crowley, Paul Kasley, Mark Averett, Tom Zuchnik, Mike Andrews, and others
- CERN: Heinz Pernegger, Hendrick Jansen, Matevs Cevn
- Muon measurements after the absorber
 - Single particle environment (nearly)
 - Muons are created in pion and kaon decays and bear directly on neutrino production
 - Rely only upon knowing muon energy loss and scattering in the absorber material
 - Complements other flux measurements:
 - external hadro-production measurements don't include horn and decay tunnel
 - ND neutrino measurements rely on knowing neutrino-nucleus cross sections and relative near/far detector efficiencies

LBNE Beam Configuration (older design...)

Muon-Neutrino Correlation

- Muons and neutrinos are anticorrelated in the two-body decays of pions and kaons
- Muons take most of the momentum in the decay
- For pions:
 - $\circ E_{v} = (0 0.43)E_{\pi}$
 - $\circ E_{\mu} = E_{\pi} E_{\nu} = (0.57 1.0)E_{\pi}$

LBNE Prototype Tests at NuMI

- Capitalize on opportunity to test those devices in NuMI beam during the Nova run
- Planning started August 2012
- Infrastructure put into place spring 2013
- First Cherenkov detector prototypes in place August-September 2013
- First signals observed in October, 2013
- Alcove Operational Readiness Review in February,2014
- Engineering for Alcove 1 installation in progress
- Alcove 1 installation expected after September Main Injector shutdown

Muon Spectra Before NuMI Absorber

NBI – 25 September, 2014

Alcove 2

Racks

LBNE/NuMI Cherenkov Counter

• Pressure varied from 2 atm to vacuum

PMT

Threshold Momentum 2.20 GeV to 200 GeV

Muon Beam from NuMI decay tunnel

Window Assembly

Black Flocked Liner ABS Plastic Rings

NBI – 25 September, 2014

Cherenkov Gases

Gas	(n-1) _{stp} (× 10 ⁶)	P_0^{STP} (GeV/c)	θ_{c}^{STP} (mrad), $P \rightarrow \infty$	Photons/m
Nitrogen	298	4.33	24.4	22
Oxygen	271	4.54	23.3	20
Argon	281	4.45	20.8	20.7
Neon	67.1	9.12	11.6	5.0
Helium	35.0	12.65	8.37	2.6
CO ₂	449	3.52	30.0	33

Table 1 Properties of several standard gases used in Cherenkov counters.

Argon Gas as a Cherenkov Radiator

Pressure	P_0 (GeV/c)	θ _c (mrad)	Photons/m
(atm)		P→∝	P→∝
5×10-4	200	0.5	0.5
0.1	44.5	2.1	2.1
.5	6.29	6.6	6.5
1	4.45	14.7	14.6
3	2.57	20.8	20.7
10	1.41	36.0	35.9
20	1.00	93.0	92.6

Table 2 The behavior of visible Cherenkov light from muons in Argon gas.

At NuMI Alcove 2, about 10⁵ muons/cm² are expected

NBI – 25 September, 2014

Radiator Section

Typical NuMI Beam Pulse

Beginning of Pulse Train (50 MHz RF)

Individual RF Buckets

Cherenkov Response Versus Pitch Angle

NBI – 25 September, 2014

Cherenkov Response Versus Yaw Angle

Cherenkov Response Versus Pressure

Future Plans

- Alcove 2 Cherenkov counter phase II upgrade to full pressure operation (nearly complete)
- Installation of diamond ionization detectors (DDs) (CU & CERN)
- Installation of Alcove 1 Cherenkov counter system
- Development of Stopped Muon Counter (SMCs) (see next talk)

CERN Diamond Detectors (H. Pernegger et. al.)

Alcove 1 Layout

Summary

- Alcove 2 Cherenkov System seems to functioned well in phase I operation
- Phase 2 operation at full pressure will commence after shutdown
- Signals from Cherenkov counter look very encouraging
- Future installations into alcove 1 including DDs and SMCs

• Backup Slides

MIPP π⁺ NuMI-Target Data and NA49 Data Reweighting

Stopped Muon Counter (Drexel University)

Stopped Muon Counter Response

Stopped Muon Counter Response

Dispersion in Argon

Figure 9 Wavelength dependence of the muon threshold momentum for argon for several gas pressures.

$\Delta P_{thr}/P_{thr} \sim 4\%$ over 250nm-650nm

Nues from Pion - Muon Decay Chain

