T. Ishida

Neutrino Section, J-PARC Center, KEK on behalf of the neutrino beam group

Contents

- **1. Neutrino experimental facility at J-PARC**
- 2. Status of the facility since NBI2012
- 3. Physics reach of T2K / J-PARC to Hyper-K
- 4. Summary

1. Neutrino experimental facility at J-PARC

Conventional (horn-focused) beam-line, designed/constructed for T2K long baseline neutrino oscillation experiment & for its future upgrade to Hyper-Kamiokande

J-PARC, Tokai

Schematic overview: Tunable off-axis beam

- Conventional "horn-magnet-focused" v beam
 - 30GeV Protons on a graphite target
 - daughter $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- First application of Off-Axis(OA) beam:
 2.0~2.5° wrt. the far detector direction
 - Low-energy narrow-band beam
 - peak tuned to oscillation maximum
 - Small high-energy tail: reduce backgrounds

Primary beam-line

T.Ishida NBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23

Electromagnetic horns

 \Rightarrow T. Sekiguchi / E.Zimmerman

7

Aluminum alloy A6061-T6

- Inner conductor: t3mm, outer: t10mm.
- 320kA pulsed current (250kA in use so far)
 - Max field: ~2.1T, pulse width: 2~3ms
- Spraying water to inner conductor
 - 15kJ (beam) + 10kJ (Joule)=25kJ
 - Keep <80°C : cooling capacity <u>~2MW</u>

T.Ishida NBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23

Target / beam window

⇒ C.J.Densham / T.Nakadaira

8

- Designed for old parameters of MR 750kW beam: cycle: 2.1s, PPP: 3.3x10¹⁴
- Present expected parameters: Doubled rep-rate, MR cycle: 1.3 s, PPP: 2.0x10¹⁴ reduction
- T.Ishida NBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23

Decay volume / hadron absorber

9

T.Ishida MBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23

2. Status of the facility since NBI2012

- Long shutdown after R4 (Hadron hall accident) is devoted to replace all 3 horns
- Until Run-5: Accumulated *pot*: 7.39x10²⁰, including 0.51x10²⁰ of anti- v mode operation.

T.Ishida MBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23 10

MR Fx beam delivery status [Run-4]

As of May 16, delivered POT: ~6.7x10²⁰ > expected : ~6.5x10²⁰

Run time usage [Run-4]

- From Oct.'12 to May'13, overall running time efficiency was ~82.6%
 - Physics run: 2,326 hours over 2,816 hours of MR user beam
- Troubles at the neutrino facility was 3% (84 hours)
 - Prefilters of degassing system of He vessel cooling water were clogged (Nov,2013, ~8 h x 2)
 - Vacuum leak at primary beam-line due to beam hit (Dec.12,'13 ~35 h)
 - Network trouble (~2.5hours)

Accidental beam hit & vacuum leak [Dec.12, 2012

- Final Focusing Section: 4xQ / 1x(H+Steering) / 2x(V+Steering)
- Trouble happened during beam tuning to increase power (210→217kW)
 - Unexpected turning-off of 1 bending magnet (FVD1, 25mrad bend) without alarm
 - Beam hit the beam duct and beam monitors (SSEM/ESM).
 - The vacuum leak at a feed-through of ESM.

The feed-through causing vacuum leak

ESM.

Fixing work was completed during new-year holidays of 2013: Replace the broken ESM by spare

2012/12/27

The problematic feedthrough was on top of No damage can be identified with eyes.

MPS interlock improvements

Old Interlock

Change MPS logic

- to use always all interlock, except for beam loss monitor
- Doubling of NC magnet power supply interlock
 - In addition to the existing interlock of current fluctuation, implement an interlock for the absolute current of bending magnets

Horn water leak and drainage from He vessel

- ~10L/day (~5L/day w/o beam)
- due to temperature or vibration(?)
- On Jan.2013 the drain port of the vessel at TS B2F was opened.
 - Water comes out.
 - Transparent, with tiny yellow color.
 - possibly no corrosion at the vessel.
 - In total only 55L. pH: 8~9
 - ³H: ~4kBq/cc, ⁷Be, ²²Na
- Dew condensation continuously comes out to a drain tank, installed at the outlet of He compressor.
 - ~120L / 2 weeks, ~10L/day
 - Comparable to the leak rate.

We decided to continue R#4

with periodically draining water.

GLASS

0

Hydrogen Production in Horns

- After beam power reaches to >200kW, hydrogen production in horn cover gas became biggest problem.
 - Cover gas is circulating through H₂-O₂ recombine system.
 - For the 1st set of horns, only one port available for charging He gas.
 - Forced flushing was only possible with water port, when beam is off.
- On Feb.~Mar.2013 gas chromatograph was installed to TS 1F.
 - H₂ after 1 week of 220kW beam: 1.6%
 ⇔explosion limit >4%)
 - After a few times of forced flushing, it reduces to ~0.4%.
- We decided to flush horn cover gas in every week basis, on accelerator maintenance day, during R#4
 - This limits maximum acceptable beam power to ~300kW

gas chromatograph at TS-1F

- Coolant Helium gas for target, beam window, and He vessel
- Cover gas of horn cooling water

TZK v appearance observation July 19, 2013

- Definitive observation on v_{μ} turning to v_{e} (Run-1~4 data : 6.6×10²⁰pot) • Neutrino experiments come closer to see CPV in lepton sector !
 - With 10 times more data (7.8×10²¹ *p.o.t.*), T2K has the opportunity to establish *evidence* (~3 σ) of CPV.
- A prompt realization of the design beam power of 750 kW is highly desired to the J-PARC Main Ring and the neutrino experimental facility

➡T.Koseki/T.Nakadaira

A power upgrade to Mega-Watt class beam will directly enhance reach of the future project: LBL from J-PARC to Hyper-Kamiokande

Replacement of horns (2013 shutdown)

- Originally we scheduled to replace Horn-2/-3 in 2013 summer shutdown.
- Hadron hall accident \Rightarrow we encountered unexpectedly long shutdown
- Many reasons to replace all horns:
 - Water leak somewhere of horns
 - H₂ production from horn conductor-cooling water (limit beam up to 300kW)
 - Stripline cooling capacity (up to 400kW)
- We decided to replace all horns to improved spares for higher power operation

Control room

Every process managed remotely at control room

Replacement of Horns (cont.)

- Tremendous amount of works started from Jun 2013:
 - Test at KEK⇒transport to Tokai⇒assemble to support module⇒test
 - He vessel evacuation/dry air flushing \Rightarrow open vessel
 - Cooling water dilution/drainage ⇒ disassemble pipes/bus-bars
 - Remove old horn \Rightarrow inetall new horn \Rightarrow dispose old horn
 - Reassemble pipes/bus-bars⇒test⇒close vessel⇒evacuation/fill He

	FY2013										FY2014				
	Jun.	Jul.	Aug.	Sep	Oct	Νον	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug
Beam											Not approved yet!				
Deam															
Horn1	Test@KEK Assembly, test Replace, disposal														
Horn2	Test@KEK			Assembly, test Replace, disposal											
Horn3	Test@KEK			Assembly, tes Replace, dispos			isposal								
He Vessel				Evacuation, air dry					Air dry, evacuation, He filling						
Concrete		M		ovement					Reco	very					

Very aggressive (crazy?) schedule as of October 2013

T.Ishida MBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23 20

Remote maintenance

Scheme worked in perfect manner

- It only took a few hours to take out each old horn to maintenance area
- Started from Sep. ⇒completed on April
 - Only one month of delay
- Residual dose of Horn-1: ~150mSv/h
 - 6.7x10²⁰pot after 1year cooling
- Radiation level at border of control area
 - ~2.5 μ Sv, (4 μ Sv/h max) [Horn-2]

Works at primary line

- The bombarded final bend (FVD2) was rolled out from beamline [Oct. 2013]
 ⇒no damage was found.
- For bends (PD1, PV2, FVD1, FVD2), stainless steel ducts were replaced with titanium alloy ones (Oct.~Nov. 2013)
- 4 ESMs downstream of the bends were rotated by 45 deg (Nov.~Dec. 2013)

T2K Run-5

- Beam commissioning started from May16,2014
- Very careful beam studies
 - Beam-based-alignment of secondary line w/ horn off (Beam scan)
 - MUMON measurement guaranteed relative alignment of new set of horns wrt the baffle collimator is < 2mm

⇒T.Hiraki

- Physics run with anti-neutrino mode operation was started on June 4, 2014
- On June 8, 1st beam-induced candidate event was observed at Super-Kamiokande
- 0.51x10²⁰ of anti- v mode operation by June 26

3. Physics reach of T2K/J-PARC to Hyper-Kamiokande

J-PARC PAC May.2014 (C.K.Jung)

Optimum Run Strategy to Sustain the Best Sensitivity on δ_{CP} throughout T2K Runs

Reconfirmation of 50%:50% Strategy

- Previously, based on the future sensitivity task force study in 2013 we concluded that 50%:50% nu-mode to antinu-mode run ratio is a reasonable optimal choice to reach our long-term physics goals
- A new study reconfirmed that 50%:50% ratio is optimal to sustain the best sensitivity on δ_{CP} throughout T2K runs

Expected $\Delta \chi^2$ for δ_{CP} =0 hypothesis as func. of POT

Sensitivities in combination with NOVA

- Based on NOVA's TDR: 1.8×10^{21} POT for v and 1.8×10^{21} POT for anti- v modes.
- Dashed (solid) curves: normalization systematics (not) considered
- T.Ishida NBI2014 : The 9th International Workshop on Neutrino Beams & Instrumentation, FNAL, Sep.23 25

LBL experiment from J-PARC to Hyper-Kamiokande

Hyper-Kamiokande Project

0.,

- P58: A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande was presented at 18th J-PARC PAC (May 2014) with many updates on sensitivities to δ_{CP} based on the recent progress
 - With integrated beam power of **7.5MW** × **10**⁷s (1.56x10²² POT), CP violation will be established (>3 σ) for 76% of δ_{CP} space. ⇒Lol can be found at J-PARC PAC page.
- You can find further information on 5th Hyper-Kamiokande Open Meeting at Vancouver (July 2014)

⇒http://indico.ipmu.jp/indico/conferenceDisplay.py ?confld=34

4. Summary

- Operational status of the neutrino experimental facility:
 - ~230kW continuous operation for the T2K experiment has been realized since Oct. 2012 to May 2013 (Run-4)
 - With this much of beam power, we encountered many serious troubles:
 - Vacuum leak at primary beam-line due to accidental beam hit
 - Horn water leak
 - Hydrogen production in horn cover gas ………
 - Thanks to the struggles we observed v_e appearance with 7.3 σ significance.
 - We highly appreciate strong supports from NBI community !
 - Many works during shutdown 2013 ~ 2014
 - ▶ Replacing all horns / improve MPS / replace beam ducts…
 - Anti-neutrino mode running was started from Run-5 (end of May~June 2014).
 - Accumulated *pot*: 7.39×10^{20} , with 0.51×10^{20} of anti-*v*
- We are expecting much more outputs
 - T2K+NOVA has good opportunity to observe CPV / MH with $2\sim 3\sigma$ significance
 - For the next period Oct. 2014 Jun. 2015 (Run 6), T2K requests 4.4 x 10²⁰ POT [4.0 x 10²⁰ anti nu-mode]
 - Hyper-K project requests $7.5MW \times 10^{7}s$ for the neutrino facility to establish CPV