J-PARC Neutrino Beam-line Upgrade

T. Nakadaira for J-PARC neutrino beam-line construction group T2K collaboration

Outline

- J-PARC neutrino beam-line
 - * Achieved beam power: ~230kW
- Basic scenario for beam power upgrade
 - * Key points for each components
 - Toward 750 kW (Design beam power)
 - Toward >1 MW beam in future

* Summary

Proton beam parameters for J-PARC neutrino beam

- Design parameters for neutrino beam-line: (~2009)
 - 30GeV 3.3×10¹⁴ [p/pulse] (4.1×10¹³ [p/bunch]×8[bunch]) Cycle 2.1[s]
- Current scenario to achieve 750kW
 - 30GeV 2.0×10¹⁴ [p/pulse] (2.5×10¹³ [p/bunch]×8[bunch]) Cycle1.28[s]
- Impact to the requirements for neutrino beam-line.
 - Advantage: Thermal shock (due to instantaneous temperature raise due to beam) is relaxed by ~40%.
 - Disadvantage: Cyclic fatigue will be increased.
 - Pulse magnets (Horn) and its power supplies, current transformar
 - Temperature cycle: Target, beam-window.
 - Other conditions are same.
 - Radiation damage, Residual dose is proportional to integrated POT.
 - Required cooling power is not changed.

J-PARC ν beam line :Primary-line

φ26mm,L=900mm

Optical Transition Radiation (OTR) Profile monitor Normal-conducting magnets

Requirements for primary-proton transport

- ★ What is limiting the beam power? \Rightarrow Beam loss : < 1 W/m
 - Avoid the quench of SC-magnets
 - Control the the residual dose for "hands-on" maintenance.
- Recent improvement of the primary-beam transport:
 - 1. All the old power supplies for the NC magnets that was made in '70s~80's are replaced by newly build power supplies. (2014)
 - 2. Enforcement of the collimator to protect SC magnets
 - 3. Vacuum pump during beam-operation is replaced; Turbo Molecular Pumps \rightarrow Ion Pumps.
 - This is one of the safety enforcement in case the beam-window between primary-line vacuum and 0.1MPa He at TS is broken.
 - To avoid that radio-active fragments from beam-window (Ti-alloy), SSEM foil (Ti) ,etc will be spread across the tunnel from vacuum pump exhaust.
 - 4. Replacement of Stainless-steel beam duct by Ti-duct. (Partially)

What we learn from ~5 years operation experience.

- Interlock system to guarantee the normal condition is important!
 - Two troubles due to loophole of the beam-interlock for beam-tuning mode.
 - Case 1: SSEMs can be inserted/extracted from the beam-orbit during beam tuning.
 - ★ The proton beam spill was extracted to neutrino beam-line during the SSEM moving by mis-operation. Proton beam hits the frame of SSEM.
 ⇒ SC-magnet quench was happened due to bean-loss.
 - Fortunately, no hardware damage. Beam interlock was revised.
 - Case 2: One bending magnet was down without warning nor interlock-signal.
 - Proton beam hits the beam-ducts, beam-monitors and magnet, and lost at the primary proton transport.
 - There is no damage in beam-duct itself, but the feed-through of one beam position monitor was damaged and vacuum leak was happened.
 - * Countermeasures:
 - * More strict logic for the beam interlock during beam tuning.
 - Rotate the position monitor by 45-deg along the beam-axis so that the abnormal proton orbit does not pass the feed-through.

Possible upgrade for > 750kW operation

- Beam monitors with low beam-loss
 - * Non destructive profile monitors is necessary. \rightarrow M. Friend's talk
- Beam-line DAQ / control system improvement:
 - Policy of the current J-PARC beam-line DAQ/control.
 - ★ For each beam spill, it is checked if all the proton beam parameters are normal.
 ⇒ If there is something strange, next proton beam spill will be aborted to MR abort dump.
 - If some trouble happens just before the MR fast extraction timing, it is impossible to stop beam.
 - Beam-line hardware was to be designed to stand against 1 abnormal beam hit, but it is difficult for >1MW beam.
 → Improving magnet trip interlocks and off-orbit blockers (collimator) is key issue.
 - Beam-line DAQ for beam monitors, online data analysis for interlock should be improved for ~1Hz Rep. rate.
 - R&D for Fast FADC is in progress.
- Optimization of the collimator?
 - * It depends on the actual beam hallo condition.

J-PARC v beam line: secondary line

Neutrino 2012

Target, Beam windows

- ★ Heat load ∝ Beam Power
 - * There is room to increase mass flow rate by enforcing the circulation system (compressor).
 - * It is necessary to increase the pressure of He for target cooling.
- ★ Thermal shock ∝ Protons / pulse @ profile peak.
 - * Increasing Rep. rate: No effect.
 - Increasing # of protons/spill: Thermal shock is increased linearly.
 - Criginally designed for 3.3×10¹⁴ p/spill with safety factor of ~3.
 ⇒ Now 40% margin exists for current 750kW scenario (2×10¹⁴ p/spill).
 - * Relaxed by enlarging the beam-size: Thermal shock $\propto 1/\sigma_x \sigma_y$
 - * The optimization considering the horn focusing is necessary.
 - ***** Current design: $\sigma_x = \sigma_y = 4.2 \text{ mm}(\text{target } 26 \text{ mm}\phi)$
 - \Rightarrow If $\sigma_x = \sigma_y = 4.8$ mm(target 30 mm ϕ), thermal shock reduced by ~30%.
 - Example: Graphite target for 30GeV 4.1×10¹⁴ p/spill with σ_x=σ_y=4.8mm in 1Hz (= ~2MW) is feasible.
- Radiation damage, Residual Dose ∝ Integrated POT
 - Shorter target replacement cycle: Easier remote-maintenance is important.
 - Uncertainty: Rad. damage of Ti-6AI-4V by the proton irradiation with > 1 d.p.a.

Horns

 \rightarrow T. Sekiguchi's talk

- Hydrogen production from cooling water:
- Strip-line cooling:
 - Improved horn is installed in 2013~2014 maintenance.
 - \rightarrow Acceptable beam power will be increased by enforcing He circulation system.
- High-repetition operation:
 - New power supply for 320kA -1Hz operation
 - Energy recovery (~50% of stored energy recycled)
 - Low input load
 - Each horn operated with individual PS
 - Low impedance strip-lines

Decay volume, Beam dump

- Cooling capability and radiation shields of DV is designed for 4MW.
- ***** Graphite beam dump is designed for 3MW.
 - Rad. shields for secondary-beam line is capable for 4MW by increasing the concrete block at TS.
 - No crucial damage at DV and dump is found so far.
- ***** Technical challenges for > 1MW operation: \rightarrow **1**. Ishida's talk
 - * Maintenance of Cooling water circulation system with steel plumbing.
 - Treatment of ³H produced by beam operation.

Additional TS concrete shields

* Not only for beam operation, but also for the maintenance.

Treatment of activated waste.

- Disposal of radioactive cooling water
 - 400GBq ³H produced for 750kW × 120 days
 - Dilution to 60(42) Bq/cc
 - FY2013: 73.2GBq (106 kW×10⁷ sec equiv.)
 - Drainage from NU2(TS) =20 times, NU3=23 times, 3days each
- Current capacity = ~600kW × 100days
- Reinforce capacity of cooling power and irradiated water treatment is considered.
 - * New facility buildings with large DP tanks are necessary.
 - Re-arrangement of current facility may be necessary...

Treatment of activated waste.

- ightarrow Y. Oyama's talk
- Radiation in exhaust air of TS was being the bottleneck of beam power.
- By improving air-tightness of floor / through-going ducts / reinforce air ventilation system, acceptable beam is being improved by 2 order, now 500kW~1MW.

Effort for Air-tightness at Target station

Maintained by taping technic and careful daily check...

Summary of J-PARC v beam-line upgrade scenario

Component	beam power / parameter	
omponent	limitation	upgrade
	3.3×10 ¹⁴ ррр 3.3×10 ¹⁴ ррр	
ow		
ing for conductors	2MW	
stripline cooling	400KW	1~2MW
rogen production	300kW	1~2MW
horn current	250kA	320kA
PS repetition	0.4Hz	1Hz
ne	4MW	
orber / beam dum;	3 MW	
r cooling facilities	750kW	~2MW
hielding	750kW	4MW
r leakage to the TS	500kW	~2MW
oling water drainage	600kW	~2MW
	mponent w ng for conductors stripline cooling rogen production horn current PS repetition ne orber / beam dump r cooling facilities hielding r leakage to the TS oling water drainage	ImponentlimitationImitation3.3 × 1Imitation3.3 × 1Imitation3.3 × 1Imitation3.3 × 1Imitation3.3 × 1Imitation3.3 × 1Imitation400 kWImitation300 kWImitation300 kWImitation300 kWImitation300 kWImitation300 kWImitation300 kWImitation300 kWImitation0.4 HzImitation0.4 HzImitation310 kWImitation750 kWImitation750 kWImitation500 kWImitation600 kW

- * Enforcement of Strip-line cooling, H₂ removal: w/ increasing He flow rate
- ★ Horn Power supply upgrade for 1Hz, $250 \rightarrow 320$ kA op.
- Decay Volume, Dump: 3~4MW is acceptable now.
- Target Station:
 - * Increasing the concrete shields, Further improvement of Air-tightness
- Facility
 - Enforcement of cooling water system, water drainage capacity.
- Improvement of Remote-maintenance