

Total Loss Monitor Radiation Safety System

Neutrino Beams and Instrumentation Workshop 2014

A. Leveling 9/26/14

background:

- At Fermilab, high power beams are being planned for existing facilities which have insufficient passive shielding, e.g.,
 - Muon Campus(13 W -> 8 kW)
 - Booster (~35 kW -> 80 kW)
 - Main Injector (700 kW -> 2 MW)
- Supplemental shielding addition is not possible and/or very costly and/or impractical
- Historically, Fermilab has used passive shielding in conjunction with interlocked radiation detectors to provide comprehensive protection necessary to meet the requirements of the Fermilab Radiological Controls Manual (FRCM)

Motivation for TLM:

- Large numbers of additional interlocked detectors (chipmunks) would be required for some installations, e.g.,:
 - Muon campus (42->200 mu2e experiment)
 - Booster (48->? PIP/PIP-II)
- AD received encouragement from the Fermilab ESH&Q Section in May 2011 to pursue development of a long detector system

Examples of Chipmunk and TLM installations

TLM system diagram

- Detector works in ion chamber mode
 - 800 volt detector bias
- Argon/CO₂ detector gas
 - Nominally 25 cc/min

- Electrometer output is calibrated in units of nC/TTL pulse
- Heartbeat provided by 10
 Tohm resistor (83 pA = 5
 nC/min)

TLM system design requirements:

- Limit beam losses to the level of 1 watt/meter
- The TLM electrometer must be able to collect charge with a 100% duty factor, i.e., no dead time for integrator reset
- TLM system must connect directly to the existing Radiation Safety System (RSS), via existing radiation interlock cards
- Include a rigorous testing program and calibration schedule
- The response of the TLMs must be characterized and /or predictable for a wide range of beam loss conditions
- The TLM system must be fail safe; i.e., the (RSS) must be disabled if:
 - TLM chassis loses power
 - Motherboard voltages go out of tolerance
 - TLM detector is disconnected from its electrometer
 - TLM heartbeat is lost (provided by 83 pA leakage current)
 - TLM bias voltage falls outside tolerance
 - The TLM gas flow is lost, (nominally 25 cc/min)

Setting TLM trip levels:

- Determine the worst case beam loss condition by:
 - Evaluation of the possibilities, then
 - MARS simulation(s), and/or
 - Measurement
- The worst case condition includes consideration of:
 - Beam enclosure geometry
 - Maximum beam intensity lost (MBL)
 - Beam energy
 - Amount of shielding present

Setting TLM trip levels:

- Posting and controls for region determined allowable beam intensity lost (ABL)
- The TLM response to the worst case condition (TLM_{max}) is determined by:
 - Measurement, or
 - By MARS simulation
- TLM trip level is set by scaling:
 - Trip Level = TLM_{max} x ABL / MBL

TLM trip level philosophy:

- The trip level has to be safe AND it has to allow normal losses with reasonable margin for variances in operation
 - Avoid spurious/unnecessary system trips
- TLM cannot distinguish between single point, localized losses and losses distributed over its entire length
 - This implies the trip levels are conservative
- Trip levels are to be determined by the laboratory's welldeveloped, shielding assessment process

Possible applications:

- Limit effective dose rate outside of radiation shields
 - Implicitly includes control of radiation skyshine
- Limit beam loss to 1 W/m
- Limit surface water, ground water, and/or air activation

Normalized 178.5' TLM Response 400 MeV protons 2 detector gases at 2 Intensities

Example application: NuMI groundwater protection

Scarecrow in NuMI tunnel (existing GW protection)

800' TLM response

NuMI beam power

A seven day operating period August 20 -> September 4, 2014

A. Leveling

Example application: Booster shielding

A thirty-eight day operating period July 14 -> August 21, 2014

A. Leveling

Timeline:

- Development began in May 2011
- Extensive detector response testing October 2011 to present
- Preliminary approval granted by Fermilab ESH&Q in May 2014
- Full demonstration application begins October 2014
 - Entire Booster Ring covered by 8 systems
 - In parallel with the existing system of 48 chipmunks
 - One redundant detector cable
- Accelerator Division will seek final approval of the system in CY2015

Extra slides

Detector Cable

- HJ5-50, HELIAX® Standard Air Dielectric
 Coaxial Cable, corrugated copper, 7/8 in,
- black PE jacket

Penetration	Color	Total Number	Description of	R	d	400MeV Exit Dose Rate	8GeV Exit Dose Rate	Notes on
Type	Code	of Each Type	Penetration	(ft)	(ft)	(mrem/pulse)	(mrem/pulse)	Exit Dose Rates
1		151	19' long single-leg 6.5" by 6.5" penetration	3.30	1.38	3.17E-03	3.48E-02	with 12' of poly beads (MARS attenuation for single pen. used)
2		4	16.6' long single-leg 6.5" by 6.5" penetration in ceiling of Period 23	4.60	1.33	1.84E-03	2.02E-02	with 12' of poly beads (MARS attenuation for single pen. used)
3		8	Four-leg, 6" diameter circular penetration in Period 2	3.30	1.38	4.42E-12	4.85E-11	for an empty penetration
4		17	16.25' long single-leg 6.5" by 6.5" penetration high on wall of Period 13	2.50	6.27	3.58E-04	3.93E-03	with 12' of poly beads (MARS attenuation for single pen. used)
5		12	Three-leg, 5" diameter circular penetrations from Periods 4 & 5 to West Booster Tower	3.30	1.38	4.15E-14	4.55E-13	for an empty penetration
None		N/A	No penetrations in this region	N/A	N/A	N/A	N/A	N/A
Labyrinth		N/A	Some kind of labyrinth	N/A	N/A	N/A	N/A	labyrinth calculations are not included here
Paging of Pagetay Lasses pay Pagent Color								

TLM response to 8
GeV proton
beam loss at
A2B7 magnet at
Accumulator

Argon detector gas

A. Leveling

Booster 178.5' TLM Plateau 400 MeV Protons 2 detector gases at 2 Intensities

Critical shielding thickness

- A layer of shielding which must be present to limit the delivered dose over an interval at which the TLM system can respond
- The resulting dose that could be delivered must fall below limits established by the Fermilab Radiological Controls Manual for the desired posting and occupancy condition

