Long-Baseline Neutrino Experiment

9th Neutrino Beam & Instrumentation Workshop September 23-26th 2014

Outline

- Design Overview
 - Trajectory
 - Magnets
 - Optics
 - Lattice Functions
 - Beam Envelope & Magnet Apertures
 - Final Focus & Spot Size Tuning
 - MI-10 Extraction
- Summary
- Other Stuff
 - Sensitivity to Gradient Errors
 - Trajectory Control
 - Power Supply Ripple Effects
 - Known Interferences
 - Magnet Parameters

M7-10 Tunnel \rightarrow LBNE Enclosure Transfer

Transport from the existing MI tunnel enclosure into the new LBNE enclosure showing the carrier pipe connecting the MI-10 & LBNE enclosures (left), and separation of Q204 at the u/s end from the Main Injector & Recycler Rings (right).

Primary Beam & Hill Cross-section

Aerial View of LBNE Trajectory

Trajectory

- Beam is extracted vertically from MI-10 via 5 horizontal kicker modules d/s of MI quad Q100, and 3 Lambertsons plus a C-magnet straddling MI Q102.
- A rolled dipole steers the beam through the enclosure wall, while bisecting the MI & Recycler magnet elevations.
- In the LBNE tunnel the beam is bent 7.2° horizontally to align with SURF in South Dakota, and upwards by 143 mr. A second series of vertical dipoles bend the beam down through 244 mr to complete vertical alignment to SURF, with $\phi = -101$ mr.
- Target elevation is fixed at 750 ft (~10 ft above grade) & maximum BLC elevation is 770 ft (~3 stories above grade).
- Distance from MCZERO to center of LAr FD = 1286873.765 m ±

LBNE - the Ride

Magnet Complement

- All major magnets are well-understood, proven designs
 - In the main body of the line all dipoles are Main Injector-style IDA/IDB (6m) & IDC/IDD (4m) magnets
 - Quadrupoles are all of the MI-style 3Q120 (3.048 m) or the shorter 3Q60 version (1.524m)
 - New IDS trims have 3" pole tip gap & design spec of 250 μr (RMS).

Magnet	Common Name	Steel Length	Strength at 120 GeV	Count
Kickers	NOvA extraction type	1.295 m	0.0589 T	5
ILA	MI Lambertson	2.800 m	0.532 / 1.000 T	3
ICA	MI C Magnet	3.353 m	1.003 T	1
IDA/IDB	MI Dipole 6 m	6.100 m	1.003 – 1.604 T	13
IDC/IDD	MI Dipole 4 m	4.067 m	1.003 – 1.604 T	12
QQB	MI 3Q120 quadrupole	3.048 m	9.189 – 16.546 T/m	17
QQC	LBNE 3Q60 quadrupole	1.524 m	11.135 – 17.082 T/m	4
IDS	LBNE trim dipoles	0.305 m	Up to 0.365 T	23

- IDA/IDB sagitta = $11.7 \rightarrow 18.6$ mm
- IDC/IDD sagitta = $5.2 \rightarrow 8.3$ mm

c.f. 16 mm design nominal *c.f.* 7 mm design nominal

Optics

- To avoid losses the beam size in the LBNE transfer line can not exceed that of the Main Injector circulating beam.
- The ultra-clean transport requirements virtually compel the lattice to be configured from distinct optical modules.
 - Every focusing center has a dual-plane BPM & dipole corrector
 - Every half-cell has *space* reserved for a multi-wire or other diagnostics.
- Spot-size on target must be tunable over a wide range: from $\sigma \sim 1.0$ $\rightarrow \sim 4.0$ mm to accommodate a beam power upgrade to 2.4 MW.
- Physics dictates it must *also* be continuously tunable over the range 60 → 120 GeV/c for optimizing the neutrino oscillation spectrum.

Satisfying the above conditions requires that the final focus β^* be tunable over a range x32 (!).

• Subsequent discussions , unless stated otherwise, assume nominal MI beam parameters of $\varepsilon_{99}=30\pi \ \mu m$ (normalized) & $\Delta p_{99}/p = 11.e-4$, with $\sigma^* = 1.50 \ mm$.

Lattice Functions

Horizontal (solid) and vertical (dashed) lattice functions of the LBNE transfer line The final focus is tuned for $\sigma_x = \sigma_y = 1.50$ mm at 120 GeV/c with $\beta^* = 86.33$ m and nominal MI beam parameters $\epsilon_{99} = 30\pi \ \mu m \ \& \ \Delta p_{99}/p = 11 \times 10^{-4}$

Beam Envelopes & Magnet Apertures

Path Length (m)

Dipole apertures, shown in **blue**, include the effects of sagitta & rolls.

Quadrupole apertures are red.

The 99% envelopes (dashed) represent nominal MI beam parameters [$\epsilon_{qq} = 30\pi \ \mu m \& \Delta p_{qq}/p = 11.e-4$];

 The 100% envelopes (solid) correspond to the MI admittance at transition .

[$\epsilon_{100} = 360\pi \ \mu m \& \Delta p_{100}/p = 28.e-4 \ (\gamma_t = 21.600)$]

The beamline can transport, without losses, the worst quality beam that the MI could conceivably transfer.

Final Focus & Spot-Size Tuning

The extremes shown correspond to: 60 GeV/c with $\sigma^* = 1.0mm$; $\beta^* = 19.184m$ and $\beta max = 104m$ (lower), and; at 120 GeV/c with $\sigma^* = 3.20mm$; $\beta^* = 393 m$ and $\beta max = 483 m$ (upper). Horizontal values are displayed as solid curves & vertical values are dashed.

In principle the spot –size can be tuned to $\sigma^* = 4.00$ mm, but the 3.20mm limit arises from the 360 π mm-mr horizontal acceptance of the final down bend.

M7-10 Extraction

MI Q104 looking upstream

Extraction Element Configuration

LBNE extraction Lambertsons and C-magnet straddling MI quad Q102

• LBNE extraction elements and their configuration are clones of those found at other MI extraction points.

Closed Orbit & Extraction Trajectory through M7-10

Circulating & extracted beam trajectories through MI-10

Closed Orbit Bump Qu	ad Offsets	Extracted Beam Elements			
(mm)		Q100	2.064 mm		
Q100 2.0)64	Kickers	5 x -190.0 μr (0.693 kG/module)		
Q102 2.3	358	Q102	2.358 mm		
Q104 2.1	71	LAM1	0.523 T		
Q106 2.1	64	LAM2&3	0.998 T		
		C-MAG	0 998 T		

Beam-Beam Separation in Quad 102

Circulating & extracted beams through Lam1 & Q102

- Closed orbit bump is created by transverse offsets of focusing quads.
- Kickers create 36.2 mm separation at the 1st Lambertson entrance between circulating & extracted beams.

MARS Extraction Tracking

- Normalized 100% beam emittance is $\varepsilon_{100} = 360\pi$ mm-mr
- 10,000 points are selected on a surface in 4-dimensional (x,x';y,y') phase space
- Extraction tracking is from the u/s end of Q100 to the end of the 3rd Lambertson

Beam-Beam Separations from MARS

Summary

- Beam is extracted at MI-10 & transported to a target above grade.
- The lattice design is comprised entirely of proven MI-style magnets.
- MI-10 extraction configuration & the beamline provide for loss-free transmission of a 10.6σ beam.
- The final focus is continuously tunable from $\sigma^* = 1.00 \rightarrow 4.00$ mm over the entire momentum range $60 \rightarrow 120$ GeV/c

Ω

Other Stuff

- Sensitivity to Gradient Errors
- Trajectory Control
- Power Supply Ripple Effects
- Known Interferences
- Magnet Parameters

Sensitivity to Gradient Errors

- Not An Issue!
- Experience has shown the MI-style 3Q120 quadrupoles to be of very high accelerator quality[†]
 - $\sigma(\Delta G/G) \sim 0.08\%$ or less, which can be reduced even further for the FODO section with only rudimentary sorting.
 - A simple thin-lens calculation predicts that even the largest error-wave generated in the 99% beam envelope [±3.74mm at β = 59.6m] would be < 70 microns.

† Magnet Test Facility measurement data base.

Trajectory Control

Uncorrected/corrected trajectories with random misalignments and dipole field errors

The plot begins at the u/s end of the 1st Lambertson.

Misalignments (including BPM's)

- $\sigma(\Delta x, \Delta y) = 0.25 \text{ mm}$
- $\sigma(\psi_{\text{roll}}) = 0.50 \text{ mr}$

Dipole Field Errors • $\sigma(\Delta B/B) = 10e-4$

	ORBIT (mm)		CORRECTORS (µr)		ORBIT (mm)		CORRECTORS (µr)	
	x _{max}	x _{RMS}	X _{RMS} θ _{max} θ _{RM}		Y _{max} Y _{RMS}		φ _{max}	ΨRMS
UNCORRECTED	6.200	1.614	-	-	14.732	3.414	-	-
CORRECTED	0.996	0.285	110.670	26.653	1.101	0.281	114.430	37.901
	BEAM JITTER ON TARGET							
	Χ (μm)		Χ΄ (μr)		Υ (μm)		Υ' (μr)	
	x _{max}	X _{RMS}	X' _{max}	X' _{RMS}	Y _{max}	YRMS	Y' _{max}	Y'RMS
CORRECTED	1.079	0.400	0.694	0.230	0.437	0.139	0.330	0.110

New IDS design spec is 250 μ r (RMS).

Known Interferences

- C-magnet MI Beamtube
- Q201A/B MI Q103
- HT201A MI Beamtube
- VT203 MI Tunnel Wall
- Q204 LBNE Enclosure Wall
- V217A/B Overlap
- LBNE Recycler Co-existence

Magnet Parameters

			TU T			7)/05		
DIPULE TYPE	L (m)	В (T)	(dog)		QUAD NAIVIE	TYPE	L (m)	G (T/m)
\#/	()	(1)	(ucg)	TRACTION	10015		(111)	(1711)
	2,0000	0.53242	MI-10 EX	TRACTION	→ LBNE		_	
LAIVII	2.8000	0.53242	-90.000		0402	2004	2 4 2 4	
14442 (2)	2 0000	4 00000	00.000		Q102	3Q84	2.134	+16.16016
LAIVIIZ (Z)	2.8000	1.00000	-90.000					
V100	3.3528	1.00284	-90.000					
	1	MATC	H FROM MI → LBM	IE FODO LA	TICE & 143 mr UP BEND	2000	4.524	44 43500
	6 00081	1 22225	162 844		Q201→202	5000	1.524	-11.15509
IDA/ D	0.09981	1.22555	+02.644		0000	20120	2.040	.42 40756
					Q203	3Q120	3.048	+12.48756
					Q204	3Q120	3.048	-9.18907
IDC	4.06654	1 20247	44 126		Q205	50120	5.046	+15.06221
	6.00091	1.36347	-44.120					
IDD	0.05581	1.36347	-44.120		0206	20120	2 049	12 52/12
IDA	6 00081	1 20247	44 126		Q200	30120	3.048	-13.32413
IDA	0.09981	1.36347	-44.126					
עטו	4.00054	1.56547	-44.120		0207	20120	2.049	116 16021
IDC	4.06654	1 10912	49 170		Q207	50120	5.046	+10.10951
IDC	4.00034	1.10813	-48.179					
IDB	6.09981	1.10815	-46.179					
					0208	20120	2.049	15 92240
IDA	6.00091	1 10912	49 170		Q208	30120	3.048	-13.83240
	4 06654	1.10813	48.179					
100	4.00054	1.10813	-40.175		0200	20120	2 049	+15 92240
IDC	4 06654	1 00207	E6 100		Q209	30120	3.048	+13.83240
IDC	6.09981	1.00297	-56 109					
155	0.05501	1.00257	50.105		0210	30120	3 048	-15 83240
IDA	6 09981	1 00297	-56 109		qui	JQILU	5.010	15.05210
ממו	4 06654	1.00297	-56 109					
155	1.00031	1.00257	50.105		0211→213 (3)	30120	3 048	+15.83240
		244 mr	ACHROMATIC DOV	NN BEND &	FINAL FOCUS ON TARGET			
IDC	4.06654	1.60431	+90.000					
IDB	6.09981	1.60431	+90.000					
					Q214	30120	3.048	-13.96520
IDA	6.09981	1.60431	+90.000					
IDD	4.06654	1.60431	+90.000					
					Q215	3Q120	3.048	+16.54570
IDC	4.06654	1.60431	+90.000					
IDB	6.09981	1.60431	+90.000					
					Q216	3Q120	3.048	-15.26976
IDA	6.09981	1.60431	+90.000					
IDD	4.06654	1.60431	+90.000					
					Q217	3Q120	3.048	+13.81046
IDC/D	4.06654	1.60431	+90.000					
					Q218	3Q60	1.524	-17.08214
IDA/B	6.09981	1.60431	+90.000					
IDA/B	6.09981	1.60431	+90.000					
IDC/D	4.06654	1.60431	+90.000					
					Q219	3Q120	3.048	-10.53138
					Q220	3Q120	3.048	+15.80329
					Q221	3Q60	1.524	-13.39482

LBNE Lattice : J.A. Johnstone

Backoff Interference Pictures

C-magnet – MI Beamtube

Q201,4|B – MI Q103 & 47201,4 – MI Beamtube

V7203 – MI Tunnel Wall

Q204 – LENE Enclosure Wall

V217A/B Overlap

