Long-EBaseline Neutrino Experinent

$\angle g M E$ Lattice \& Line Design

 John A. Johnstone North Dakota JJolhnstone@fnal.gov Sanford
Sndergro
Research
Facility

Nebraska
*Fermilab

9th Neutrino Beam \& Instrumentation Workshop September 23-26 ${ }^{\text {th }} 2014$

Outline

- Design Overview
- Trajectory
- Magnets
- Optics
- Lattice Functions
- Beam Envelope \& Magnet Apertures
- Final Focus \& Spot Size Tuning
- MI-10 Extraction
- Summary
- Other Stuff
- Sensitivity to Gradient Errors
- Trajectory Control
- Power Supply Ripple Effects
- Known Interferences
- Magnet Parameters

2MI-10 7unnel \rightarrow LBNE Enclasure Transfer

Transport from the existing MI tunnel enclosure into the new LBNE enclosure showing the carrier pipe connecting the MI-10 \& LBNE enclosures (left), and separation of Q204 at the u / s end from the Main Injector \& Recycler Rings (right).

Primary Beam \& Hill Crass-section

THE PRIMARY BEAMLINE EXTRACTS PROTONS FROM MI-10 \& TRANSPORTS TO THE TARGET ABOVE GRADE

BLC apex elev. @ 30 ft above grade (Target eleV. O 10 ft above grade

Aerial Viem of LBNE Trajectory

Trajectory

- Beam is extracted vertically from $\mathrm{MI}-10$ via 5 horizontal kicker modules d / s of MI quad Q100, and 3 Lambertsons plus a C-magnet straddling MI Q102.
- A rolled dipole steers the beam through the enclosure wall, while bisecting the MI \& Recycler magnet elevations.
- In the LBNE tunnel the beam is bent 7.2° horizontally to align with SURF in South Dakota, and upwards by 143 mr . A second series of vertical dipoles bend the beam down through 244 mr to complete vertical alignment to SURF, with $\phi=-101 \mathrm{mr}$.
- Target elevation is fixed at 750 ft ($\sim 10 \mathrm{ft}$ above grade) \& maximum BLC elevation is 770 ft (~ 3 stories above grade).
- Distance from MCZERO to center of LAr FD $=1286873.765 \mathrm{~m} \pm$

LBnE - the Ride

Magnet Camplement

- All major magnets are well-understood, proven designs
- In the main body of the line all dipoles are Main Injector-style IDA/IDB (6m) \& IDC/IDD (4m) magnets
- Quadrupoles are all of the MI-style 3Q120 (3.048 m) or the shorter 3Q60 version (1.524m)
- New IDS trims have 3" pole tip gap \& design spec of $250 \mu r$ (RMS).

Magnet	Common Name	Steel Length	Strength at 120 GeV	Count
Kickers	NOvA extraction type	1.295 m	0.0589 T	5
ILA	MI Lambertson	2.800 m	$0.532 / 1.000 \mathrm{~T}$	3
ICA	MI C Magnet	3.353 m	1.003 T	1
IDA/IDB	MI Dipole 6 m	6.100 m	$1.003-1.604 \mathrm{~T}$	13
IDC/IDD	MI Dipole 4 m	4.067 m	$1.003-1.604 \mathrm{~T}$	12
QQB	MI 3Q120 quadrupole	3.048 m	$9.189-16.546 \mathrm{~T} / \mathrm{m}$	17
QQC	LBNE 3Q60 quadrupole	1.524 m	$11.135-17.082 \mathrm{~T} / \mathrm{m}$	4
IDS	LBNE trim dipoles	0.305 m	Up to 0.365 T	23

- IDA/IDB sagitta $=11.7 \rightarrow 18.6 \mathrm{~mm}$
- IDC/IDD sagitta $=5.2 \rightarrow 8.3 \mathrm{~mm} \quad$ c.f. 7 mm design nominal

Optics

- To avoid losses the beam size in the LBNE transfer line can not exceed that of the Main Injector circulating beam.
- The ultra-clean transport requirements virtually compel the lattice to be configured from distinct optical modules.
- Every focusing center has a dual-plane BPM \& dipole corrector
- Every half-cell has space reserved for a multi-wire or other diagnostics.
- Spot-size on target must be tunable over a wide range: from σ ~ 1.0 $\rightarrow \sim 4.0 \mathrm{~mm}$ to accommodate a beam power upgrade to 2.4 MW .
- Physics dictates it must also be continuously tunable over the range $60 \rightarrow 120 \mathrm{GeV} / \mathrm{c}$ for optimizing the neutrino oscillation spectrum.

Satisfying the above conditions requires that the final focus β^{*} be tunable over a range x32 (!).

- Subsequent discussions, unless stated otherwise, assume nominal MI beam parameters of $\varepsilon_{99}=30 \pi \mu \mathrm{~m}$ (normalized) \& $\Delta p_{g 9} / p=11 . e-4$, with $\sigma^{*}=1.50 \mathrm{~mm}$.

Lattice Functions

Horizontal (solid) and vertical (dashed) lattice functions of the LBNE transfer line The final focus is tuned for $\sigma_{x}=\sigma_{y}=1.50 \mathrm{~mm}$ at $120 \mathrm{GeV} / \mathrm{c}$ with $\beta^{*}=86.33 \mathrm{~m}$ and nominal MI beam parameters $\varepsilon_{99}=30 \pi \mu \mathrm{~m} \& \Delta p_{99} / p=11 \times 10^{-4}$

Beam Enuelopes \& Magnet Apertures

$120 \mathrm{GeV} / \mathrm{c}$ Beam Envelope \& Magnet Apertures
Dipole apertures, shown in blue, include the effects of sagitta \& rolls.
Quadrupole apertures are red.

- The 99\% envelopes (dashed) represent nominal MI beam parameters

$$
\left[\varepsilon_{99}=30 \pi \mu \mathrm{~m} \& \Delta \mathrm{p}_{99} / \mathrm{p}=11 . \mathrm{e}-4\right] ;
$$

- The 100% envelopes (solid) correspond to the Ml admittance at transition. $\left[\varepsilon_{100}=360 \pi \mu \mathrm{~m} \& \Delta \mathrm{p}_{100} / \mathrm{p}=28 . \mathrm{e}-4\left(\gamma_{\mathrm{t}}=21.600\right)\right]$

The beamline can transport, without losses, the worst quality beam that the MI could conceivably transfer.

Final Facus \& Spot-Size Tuning

The extremes shown correspond to: $60 \mathrm{GeV} / \mathrm{c}$ with $\sigma^{*}=1.0 \mathrm{~mm} ; \beta^{*}=19.184 \mathrm{~m}$ and $\beta \mathrm{max}=104 \mathrm{~m}$ (lower), and; at $120 \mathrm{GeV} / \mathrm{c}$ with $\sigma^{*}=3.20 \mathrm{~mm} ; \beta^{*}=393 \mathrm{~m}$ and β max $=483 \mathrm{~m}$ (upper). Horizontal values are displayed as solid curves \& vertical values are dashed.

In principle the spot-size can be tuned to $\sigma^{*}=4.00 \mathrm{~mm}$, but the 3.20 mm limit arises from the 360π $\mathrm{mm}-\mathrm{mr}$ horizontal acceptance of the final down bend.

2M9-10 Extraction

MI Q104 looking upstream

Extraction Element Configuration

LBNE extraction Lambertsons and C-magnet straddling MI quad Q102

- LBNE extraction elements and their configuration are clones of those found at other MI extraction points.

Clased Orbit \& Extraction Frajectory through MI-10

Beam-Beam Separation in Quad 102

Large Aperture Quad $55 / 8 \times 5 / 8$ Star Chamber

Circulating \& extracted beams through Lam1 \& Q102

- Closed orbit bump is created by transverse offsets of focusing quads.
- Kickers create 36.2 mm separation at the $1^{\text {st }}$ Lambertson entrance between circulating \& extracted beams.

MIARS Extraction Tracking

- Normalized 100\% beam emittance is $\varepsilon_{100}=360 \pi \mathrm{~mm}-\mathrm{mr}$
- 10,000 points are selected on a surface in 4-dimensional ($x, x^{\prime} ; y, y^{\prime}$) phase space
- Extraction tracking is from the u/s end of Q100 to the end of the $3^{\text {rd }}$ Lambertson

Beam-Beam Separations from MARS

Position of beams at the entrance (left) and exit of qudrupole Horizontal shifts for all quadrupoles are defined in optics.

cm Exit of Lambertson 3

Summary

- Beam is extracted at MI-10 \& transported to a target above grade.
- The lattice design is comprised entirely of proven MI-style magnets.
- MI-10 extraction configuration \& the beamline provide for loss-free transmission of a 10.6б beam.
- The final focus is continuously tunable from $\sigma^{*}=1.00 \rightarrow 4.00 \mathrm{~mm}$ over the entire momentum range $60 \rightarrow 120 \mathrm{GeV} / \mathrm{c}$
Ω

Other Stuff

- Sensitivity to Gradient Errors
- Trajectory Control
- Power Supply Ripple Effects
- Known Interferences
- Magnet Parameters

Sensiticity to Gradient Errors

- Not An Issue!
- Experience has shown the MI-style 3 Q 120 quadrupoles to be of very high accelerator quality ${ }^{\dagger}$
- $\sigma(\Delta \mathrm{G} / \mathrm{G}) \sim 0.08 \%$ or less, which can be reduced even further for the FODO section with only rudimentary sorting.
- A simple thin-lens calculation predicts that even the largest error-wave generated in the 99% beam envelope $[\pm 3.74 \mathrm{~mm}$ at $\beta=59.6 \mathrm{~m}$] would be <70 microns.

Trajectory Cantrol

Uncorrected/corrected trajectories with random misalignments and dipole field errors
The plot begins at the u / s end of the $1^{\text {st }}$ Lambertson.

Misalignments (including BPM's)

- $\sigma(\Delta x, \Delta y)=0.25 \mathrm{~mm}$
- $\sigma\left(\psi_{\text {roll }}\right)=0.50 \mathrm{mr}$

Dipole Field Errors

- $\sigma(\Delta \mathrm{B} / \mathrm{B})=10 \mathrm{e}-4$

	$\begin{aligned} & \text { ORBIT } \\ & (\mathrm{mm}) \end{aligned}$		CORRECTORS ($\mu \mathrm{r}$)		$\begin{aligned} & \text { ORBIT } \\ & (\mathrm{mm}) \end{aligned}$		CORRECTORS ($\mu \mathrm{r}$)	
	$\mathrm{X}_{\text {max }}$	$\mathrm{X}_{\text {RMS }}$	$\theta_{\text {max }}$	$\theta_{\text {RMS }}$	$\mathbf{Y}_{\text {max }}$	$\mathrm{Y}_{\text {RMS }}$	$\varphi_{\text {max }}$	$\varphi_{\text {RMS }}$
UNCORRECTED	6.200	1.614	-	-	14.732	3.414	-	-
CORRECTED	0.996	0.285	110.670	26.653	1.101	0.281	114.430	37.901
	BEAM JITTER ON TARGET							
	$\begin{gathered} X \\ (\mu \mathrm{~m}) \end{gathered}$		$\begin{gathered} X^{\prime} \\ (\mu \mathrm{r}) \end{gathered}$		$\begin{gathered} Y \\ (\mu \mathrm{~m}) \end{gathered}$		$\begin{gathered} Y^{\prime} \\ (\mu \mathrm{r}) \end{gathered}$	
	$\mathrm{X}_{\text {max }}$	XRMS	X^{\prime} max	$\mathrm{X}^{\prime} \mathrm{RMS}$	$\mathrm{Y}_{\text {max }}$	YRMS	Y^{\prime} max	Y'RMS
CORRECTED	1.079	0.400	0.694	0.230	0.437	0.139	0.330	0.110

New IDS design spec is $250 \mu r$ (RMS).

Known Interferences

- C-magnet - MI Beamtube
- Q201A/B - MI Q103
- HT201A - MI Beamtube
- VT203 - MI Tunnel Wall
- Q204 - LBNE Enclosure Wall
- V217A/B Overlap
- LBNE - Recycler Co-existence

LBNE-Recyder Ca-existence

Magnet Parameters

DIPOLE TYPE (\#)	$\begin{gathered} \mathrm{L} \\ (\mathrm{~m}) \end{gathered}$	B (T)	$\begin{gathered} \text { TILT } \\ \text { (deg) } \end{gathered}$	QUAD NAME (*)	TYPE	$\begin{gathered} \mathrm{L} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { G } \\ (\mathrm{T} / \mathrm{m}) \end{gathered}$
MI-10 ExTRACTION \rightarrow LBNE							
LAM1	2.8000	0.53242	-90.000				
				Q102	3084	2.134	+16.16016
LAM12 (2)	2.8000	1.00000	-90.000				
V100	3.3528	1.00284	-90.000				
MATCH FROM MI \rightarrow LBNE FODO LATTICE \& 143 mr UP BEND							
				Q201 $\rightarrow 202$	3060	1.524	-11.13509
IDA/B	6.09981	1.22335	+62.844				
				Q203	30.120	3.048	+12.48756
				Q204	30.120	3.048	-9.18907
				Q205	30120	3.048	+13.06221
IDC	4.06654	1.38347	-44.126				
IDB	6.09981	1.38347	-44.126				
				Q206	30120	3.048	-13.52413
IDA	6.09981	1.38347	-44.126				
IDD	4.06654	1.38347	-44.126				
				Q207	30.120	3.048	+16.16931
IDC	4.06654	1.10813	-48.179				
IDB	6.09981	1.10813	-48.179				
Fodo CELLS							
				Q208	3 Q120	3.048	-15.83240
IDA	6.09981	1.10813	-48.179				
IDD	4.06654	1.10813	-48.179				
				Q209	30120	3.048	+15.83240
IDC	4.06654	1.00297	-56.109				
IDB	6.09981	1.00297	-56.109				
				Q210	30120	3.048	-15.83240
IDA	6.09981	1.00297	-56.109				
IDD	4.06654	1.00297	-56.109				
				Q211 $\rightarrow 213$ (3)	30120	3.048	± 15.83240
244 mr ACHROMATIC DOWN BEND \& FINAL FOCUS ON TARGET							
IDC	4.06654	1.60431	+90.000				
IDB	6.09981	1.60431	+90.000				
				Q214	30120	3.048	-13.96520
IDA	6.09981	1.60431	+90.000				
IDD	4.06654	1.60431	+90.000				
				Q215	3 Q120	3.048	+16.54570
IDC	4.06654	1.60431	+90.000				
IDB	6.09981	1.60431	+90.000				
				Q216	30120	3.048	-15.26976
IDA	6.09981	1.60431	+90.000				
IDD	4.06654	1.60431	+90.000				
				Q217	30.120	3.048	+13.81046
IDC/D	4.06654	1.60431	+90.000				
				Q218	3060	1.524	-17.08214
IDA/B	6.09981	1.60431	+90.000				
IDA/B	6.09981	1.60431	+90.000				
IDC/D	4.06654	1.60431	+90.000				
				Q219	30.120	3.048	-10.53138
				Q220	30120	3.048	+15.80329
				Q221	3060	1.524	-13.39482

Backoff Interference Pictures

C-maqnet - WI Beamtube

SECTION J-J
SCALE 1:4

Q201,A|B - M1 Q103 \& \#7201,A - W9 Beamtube

V7203 - TM9 Tunnel Wall

2204-LBNE Enclosure Wall

V217,A|B Owerlak

${ }_{\text {SEATALL }}^{\text {SCR }}$

