LBNE 2.4MW Absorber

NBI 2014 Presented by Brian Hartsell

Contributions by: Kris Anderson, Yury Eidelman, Jim Hylen, Nikolai Mokhov, Igor Rakhno, Salman Tariq, Vladimir Sidorov

LBNE Absorber - Introduction

- Purpose of absorber (a.k.a. beam dump) is to stop leftover beam particles, and provide radiation protection to people and ground-water.
- Needs to absorb ~800kW of beam power when running at 2.4MW proton beam with water cooling.

Absorber Requirements

- Ability to handle full range of 2.4MW beam
 - -60 to 120 GeV
 - 1.5e14 ppp
 - -0.7 sec cycle time (60GeV) to 1.2 sec (120 GeV)
- Configured for the worst case decay pipe
 - 204m in length, helium filled
- Lifetime of 30 years, minimal maintenance
- Tolerant of any beam accident conditions

Absorber Hall

Absorber layout

- Poured concrete volume: 24000 ft³
- Steel shielding: 5,000,000 lb
- Aluminum: 77000 lb

Desirable material properties for core

- Good resistance to thermal impulse (combination of heat capacity, thermal expansion coefficient, modulus of elasticity and yield strength, ductility)
- Low density (to spread out shower, decrease energy deposition density)
- High thermal conductivity (to conduct heat to water cooling lines)
- High radiation damage resistance
- High corrosion resistance
- Tolerant of high temperatures
- Low toxicity (avoid mixed waste if possible)
- Good creep and fatigue resistance
- Reasonable expectation that it would last the life of the facility
- Conducive to modular design, to facilitate replacement of failed section if necessary
- Low cost

Material selection – look at low density materials

- Beryllium would be the ideal selection, except for cost and toxicity
- Graphite is a good material, but would probably have to be encapsulated and covered in an inert atmosphere since it oxidizes to a gas
- Aluminum
 - Forms a protective solid oxide layer as it oxidizes, preventing further oxidation
 - Allows for simple modular construction and the possibility for replacement
 no need for encapsulation
 - Gun-drilled water lines provide simple connection of cooling water to core
 - Has excellent thermal conductivity
 - Is significantly more radiation resistant than graphite
 - Is not toxic
 - Is reasonably inexpensive
 - Has worked well for NuMI (we have experience)
- Issues for Aluminum
 - Need to keep temperature lower than other materials (avoid creep and fatigue)
 - Less resistance to thermal impulse

Slide from: Jim Hylen

Core Analysis – Previous Work

- Previously configured and analyzed (N. Mokhov, I. Novitski, I. Rakhno, I. Tropin) using a solid Al core
- Good start, room for further optimization and simulation updates

What do we want to achieve?

- Improvements to model
 - Convection at the water lines instead of fixed temperature
 - Cylindrical, gun drilled water line array

- Keep Al under 100C for creep and to preserve the temper
 - Probably on the conservative side, but that's good for a 30 year life absorber..

Addition of a 'spoiler'

 Start the shower and allow it space to spread out, reducing peak energy deposition in the downstream blocks.

Addition of a 'spoiler'

 Addition of an Al spoiler shows a reduction in peak energy deposition to 75% of the previous nospoiler case.

ANSYS Thermal Results - Single Spoiler

 Using realistic model conditions (convection coefficient on water lines, temperature dependent properties for AI, cylindrical water line geometry), peak temperature of 167C. Too high!

Iterations – multiple spoilers

Iterations – Sculpting with Single Spoiler

Iterations - Sculpting
Normal operation

Spoiler details & number of sculpted Al blocks	In spoiler	In sculpted Al	In solid Al, downstream of sculpted Al	In 1 st Fe block
Al 12" & 4	1.1	1.2	2.1	0.8
Al 12" & 5	1.1	1.1	1.9	1.1
Al 12" & 7	1.1	1.2	1.6	2.2
Al 12" & 9	1.1	1.2	1.0	5.3

Water line and sculpting optimization

Description	Max Water Line VM Stress
4-1" WLs In-Line at 30cm (Original config presented 7/7)	112
Down-Up-Up-Down (30cm/35cm spacing)	94
Down-Up-Up-Down (30cm/40cm spacing)	74
V configuration	
Base (1.5" Dia WL, 30cm Large WL, 40cm Small WLs)	73
Base w/ 1.25" Dia Large WL	90
Base w/ 1.0" Dia Large WL	80
Invert V - Small WLs at 30cm, Large at 35cm	92
STEP=1 SUB =1	FIXT NO. 1

Final Configuration

- 9 sculpted blocks
- 4 full Al blocks

 Lengthened by 5' from the CD1 baseline configuration

Final Configuration - Analysis

 Thermal and structural analysis for maximum energy deposition areas: sculpted block, core block, and steel block.

Final Configuration - Analysis

 Thermal and structural analysis for maximum energy deposition areas: sculpted block, core block, and steel block.

Accident conditions

Two cases:

 On-axis: Target is 'missing' and beam travels through the sculpted area of the core. (Results not yet available)

Off-axis: Beam is missteered around the target but misses the baffle. Worst case for the absorber is hitting the water line.

Mechanical design

Each block is removable and replaceable

Images from: Vladimir Sidorov

Gun drilled water cooling loops

Mechanical design

- 8-1" diameter water lines (4 in/4 out) leading to each block.
- Flow rate of 20gpm to each line

Mechanical design

 Stackup of core blocks, outer steel shielding, and concrete shown on image at the right.

 Morgue areas shown on the left side.

Images from: Vladimir Sidorov

Radiological - Geometry

Radiological – Prompt Dose

Radiological – Muon Monitor

Muon Spectra (160M Incident Particles)

Safety Systems

Three independent systems provide redundancy to pull beam permit quickly in non-normal condition

- Muon monitor after absorber combined with Toroid proton monitor before target
 - Can pull beam permit after 1 beam spill, if muon response is not proportional to number of protons in spill

Slide from: Jim Hylen

Conclusions and To-Do

- A viable Al core configuration has been rapidly developed through multiple iterations in only 9 months.
- Now that the core configuration has been finalized, work on the radiological and mechanical design portions can continue more quickly and with greater certainty.
- Additional analysis needs to be done for the 60 GeV case.
- Upcoming core review in November.