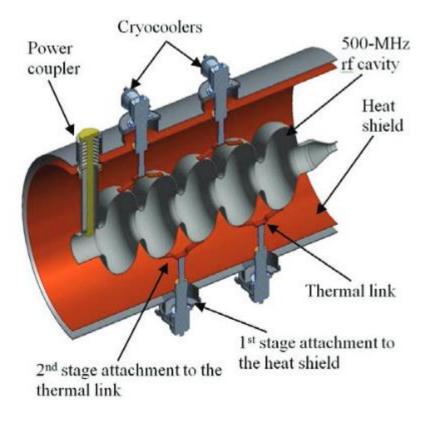


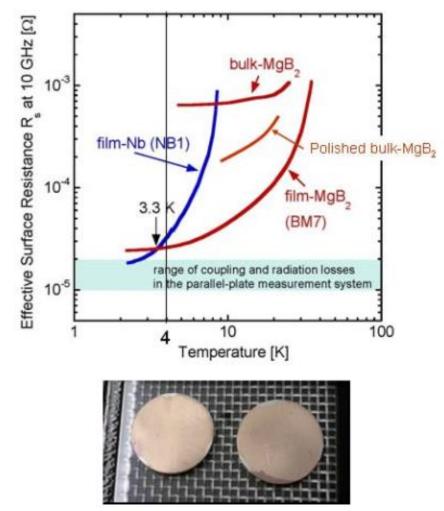
Study of High T_c Superconducting MgB₂ Thin-Film Coated RF Cavities

Ashley Ernst

Lee Teng Undergraduate Fellowship in Accelerator Science and Engineering


Supervisors: Dr. Ali Nassiri and Dr. Bob Kustom

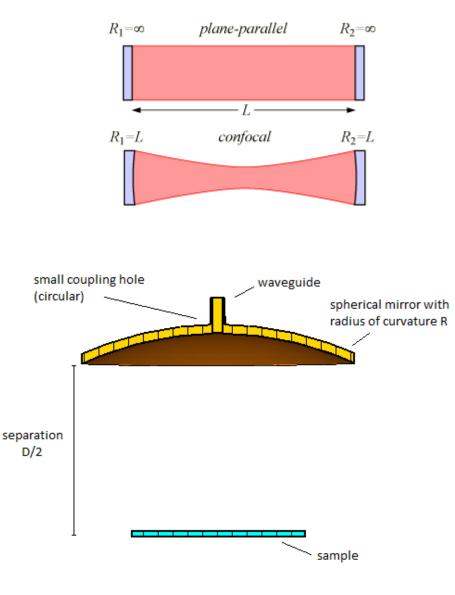
Argonne National Laboratory Advance Photon Source Accelerator Systems Division, RF Group


Introduction

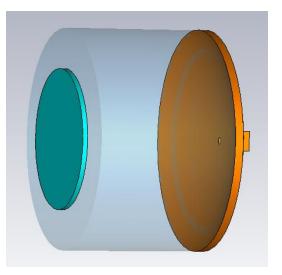
- Magnesium diboride shows promise for use in cryogen-free RF systems
- Simplifies cavity
- Performance of the cavity is limited by impurities in coating
- Need to develop a cost effective way for testing quality

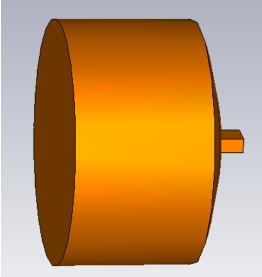
Superconducting Material: Magnesium Diboride

- Magnesium diboride versus niobium
 - Higher critical temperature (39 K vs. 9
 K)
 - Little increase in surface resistance with higher surface magnetic fields
 - Lower surface resistance at 4 K
 - Same surface resistance at 8 12 K as
 Nb at 4 K
 - Increase in accelerating gradient past the limit imposed by the quench field of Nb



Magnesium diboride coated coupons

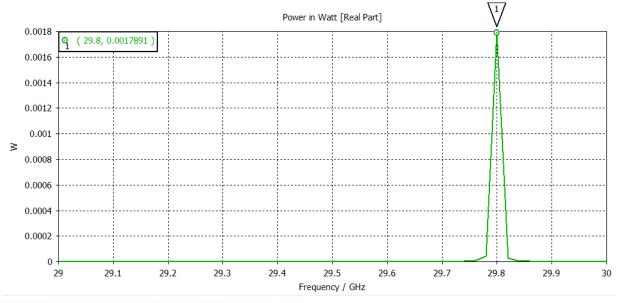

Fabry-Perot Open Resonator


- Simple structure, insensitivity of experimental design to frequency, high quality factors are obtainable
- Optical cavity with parallel mirrors
- Half confocal: no second mirror, magnetic field is maximum at sample
- The TEM_{0,0,q} modes induce magnetic fields onto the sample. Results in measurable heat loads on the sample which can be used to test the quality of the coating.

$$f_{0,0,q} = \frac{c}{2D} \left[q + 1 + \frac{1}{\pi} \cos^{-1} \left(1 - \frac{D}{R} \right) \right]$$

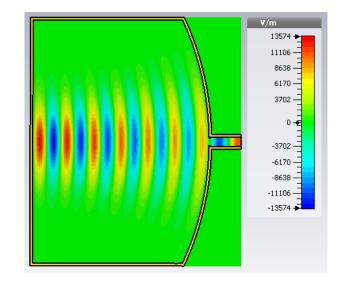
Simulations

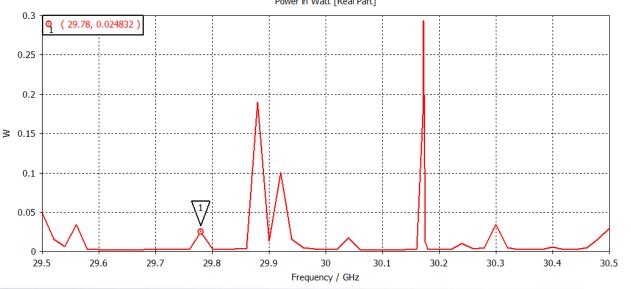

- Scaled from a paper by Martens¹
- Previously tried 8 GHz but sample size was too small
- Frequency: 30 GHz because of commercially available amplifiers
- CST Microwave Studio used to optimize resonator
- Closed resonator used to show how much power was escaping confinement in the open resonator


Description	Scaled Value	Ideal Value
Frequency	30.11 GHz	29.80/29.78 GHz
Radius of mirror	$110 \mathrm{mm}$	$110 \mathrm{~mm}$
Height of curvature	$45.72 \mathrm{~mm}$	$45.72 \mathrm{~mm}$
Coupler Radius	$1.50 \mathrm{~mm}$	$1.77 \mathrm{~mm}$
Separation	66.00 mm	66.00 mm
Radius of sample	$25.40~\mathrm{mm}$	$29.05 \mathrm{~mm}$

¹Martens, J.S., et al. 1991. "Confocal Resonators for Measuring the Surface Resistance of High Temperature Superconducting Films." Appl Phys Lett 58 (22): 2543-2545.

Simulation Results - Open Resonator


- Dimensions didn't change from scaled values
- Changing dimensions didn't greatly affect the system
 - Most of the power was dissipated out of the system
- Very small power dissipation onto the sample 0.0017891 watts (0.35% of total power)
- 99.2% of power lost from system or did not propagate according to S-parameters
- Conclusion: desired mode (TEM_{0,0,26}) not trapped



Simulation Results - Closed Resonator

- Attempt to force the mode
- Very small power dissipation onto the walls 0.024832 watts (4.97% of total power)
- 46.2% of power did not propagate according to S-parameters
- Expect the power dissipation onto the walls to approach 100%
- Unexplained shift in frequency from open resonator

Power in Watt [Real Part]

Summary and Future Work

- MgB₂ would allow for simplification of RF systems
 - Operate at higher temperature and eliminate need for cryogens
- Need to develop a method to test quality of magnesium diboride coating of various deposition techniques
- Future work:
 - Design a resonator with adequate power dissipation onto sample
 - Study the closed resonator with the walls and sample separated
 - Find the reason for the differences between the open and closed resonators