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The proposed XMAT (eXtreme MATerials) facility at the Argonne
Advanced Photon Source (APS) promises to advance our under-
standing of and aid in the development of advanced materials for
fusion and fission reactor fuels and structural elements. An ion-
beam accelerator for this facility is being designed by the nuclear
physics accelerator group in the Argonne Physics Division. Ion ener-
gies on the order of ∼1 MeV/u were chosen to create damage at a
depth of 10 microns, far enough below the surface to affect the bulk
material. By co-locating this accelerator at the APS, the XMAT
facility will have the unique capability of in-situ 3D X-ray imaging of
the material as the damage evolves in time. This sub-project is to
design the focusing optics with the high accuracy needed to simu-
late a heavy ion micro-beam capable of delivering at least 107 ions
per second into a 10 micron diameter spot. The plan is to use a
superconducting solenoid to achieve an overall flux density increase
of 100 times that at the linac output while maintaining a sufficiently
large final working distance between the superconducting solenoid
and the sample. High accuracy transfer maps using COSY Infin-
ity and a custom-written ion tracking program have been shown to
agree at the sub-micron level.

Introduction and preliminaries

The proposed eXtreme MATerials (XMAT) beamline for
the Advanced Photon Source (APS) at Argonne aims to

help in the development of radiation tolerant materials for
nuclear environments. Damage from fission products in reac-
tor fuels and neutrons in structural materials typically occurs
over long periods of time, so an accelerator which is capable
of delivering significant damage greater than 2500 displace-
ments per atom in the solid (dpa, unit of damage) is needed
to conduct studies within shorter time frames. The strategy
is to take uranium ion or xenon beams produced from a lin-
ear accelerator at typical fission fragment energies and focus
them using superconducting solenoids to achieve high particle
densities at the sample being studied.

Apparatus. The main design of the beamline is shown in Fig.
1. The important features of the schematic are the heavy ion
linear accelerator, a 100 µm-diameter aperture, a supercon-
ducting solenoid which achieves a magnification of ∼ 1

10
, and a

second solenoid which creates a suitable working distance be-
tween the sample and the optics in order to avoid subjecting
the materials being investigated to large B fields.

Fig. 1. Schematic of the XMAT beamline.

The work we are undertaking is the design of the micro-
beam optics parameters. More specifically, the goal was to
decide the relevant drift lengths (distance between the accel-
erator and the first solenoid, between the first solenoid and
the second, etc.) and also the dimensions and strengths of the
solenoids in order to optimize the amount of damage delivered.
It is important to appreciate the fundamental principles un-
derlying solenoid optics in order to understand our approach
to solving this problem.

Soleoid optics. In introductory physics classes, students typ-
ically derive the magnetic field on axis for solenoids which
are infinitely long. In this context, it is unclear how solenoids
could be used for focusing at all. The answer lies in the details
of solenoids’ fringe fields.
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Fig. 2. Plot of the radial and axial components of the magnetic fringe field of a

solenoid along a line parallel to its axis.

Basic principles

One can determine purely from symmetry arguments, namely
that solenoids possess rotational invariance, that the radial
component of the magnetic field vanishes along the axis. An
ideal particle traveling along this axis thus will not experience
any forces since

~F ∝ ~v × ~B = |~v|ẑ × | ~B|ẑ = 0.
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However for a particle which travels at an offset from the axis,
there will be a radial fringe field near the edges of the solenoid,
as depicted in Fig. 2.

As the particle enters, the radial component of the field in-
teracts with the ẑ component of the velocity, which delivers an
angular kick to the particle so that its azimuthal velocity be-
comes nonzero. This component of the velocity is then allowed
to interact with the axial field in the center of the solenoid,
resulting in the increase of the radial component of the veloc-
ity. As the particle exits, the radial field, which is the same
in magnitude as in the entrance but opposite in sign, cancels
out the azimuthal component of the particle velocity that was
acquired, but leaves the radial one. The net effect is that the
particle will be deflected towards the axis, as observed in Fig.
3.

Fig. 3. Trajectories of particles traveling through a solenoid beginning at different

radial offsets.

Abberations

Much of the work in designing optical components is evaluat-
ing and minimizing higher order abberations which dominate
the situation at hand. We identified two abberations whose
contributions to particle trajectories were non-negligible and
focused on reducing their combined effect. These abberations
were due to contributions from (~x|a3) and (~x|aδ) terms (we
will make the notation more precise for readers who are less
familiar with it below). The limits on divergence and energy
spread acceptance due to these abberations were able to be
determined independently.

Divergence abberation. There are three natural choices we
will consider when it comes to positioning the sample: the
image point, the position of maximum central areal density,
and the circle of least confusion. It is entirely possible that
the latter two coincide– this was not determined in our work,
but will be investigated in the near future.

To define the first position, consider that, to first order, par-
ticles beginning on axis with small divergences will all intersect
the axis at the same point. We will refer to this position as the
image point. If we consider the density of particles very close
to the z-axis, then the point at which this density is maximum
is referred to as the position of maximum central areal density.

The circle of least confusion requires a bit more effort to
define. If we factor in 3rd order abberations, particles with
large initial divergences will hit the axis at an earlier point
on the axis than particles with small initial divergences, and
thus will be displaced from the axis by the time they reach
the image point. The circle of least confusion can loosely be

interpretted as the point at which the diameter of the beam
spot is smallest (which will not be at the image point due to
these abberations).

To describe this quantitatively, let us adopt a convenient
notation– In general, the final spatial coordinates, divergences,
and deviations will be a function of the initial spatial coordi-
nates, divergences, and deviations. We will write the coeffi-
cient in the Taylor expansion of the final particle parameter
pf which is associated with the product of initial parameters
q1 · · · qn (note we may have qk = qj) as (pf |q1 · · · qn). For-
mally then,

pf =
∑

n∈Z,q1···qn
(pf |q1 · · · qn)q1i · · · qni

For more information regarding this formalism, see [2]. Also,
as a convenient shorthand, we adopt the notation

(~x|q1 · · · qn) :=
(
(x|q1 · · · qn), (y|q1 · · · qn)

)
and similarly for ~a = (a, b). We can then model the displace-
ment in a monochromatic beam at the image point to third
order like

rf ≈ |(~x|a3)a3i |
where we have neglected to include second order contributions
because of symmetry arguments. More generally, within a
neighborhood around the image point, the radial displacement
from the axis as a function of z can be modeled approximately
by

rf (z) ≈
∣∣(~x|a)zai + (~x|a3)za

3
i

∣∣
where we can then take as a definition of the image point the
value of z for which (~x|a)z = 0. The abberation coefficient at
the image point, (~x|a3)image, is affected by various solenoid
parameters (for instance, it is typically reduced by taking the
solenoid radius to be larger). Part of our objective was to
minimize this abberation coefficient without driving up costs
too much.

For a particular maximum divergence acceptance, amax, the
point at which image diameter is minimum turns out not to
be the image point. In fact, it occurs slightly before the image
point, and can be determined by finding the value of z which
minimizes the expression

sup
|ai|≤amax

∣∣(~x|a)zai + (~x|a3)za
3
i

∣∣ .
Moving the sample from the image point to the circle of least
confusion can lead to better amplification, as visualized in Fig.
4.

Circle of least confusion

Image point

Fig. 4. Motion in the x̂-ẑ plane of particles of various divergences reaching the

end of the focusing stage. The circle of least confusion and image point are separated

by ∼1mm.
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Chromatic abberation. The chromatic abberation arises
from a combination of initial divergence and energy spread
of the accelerator. If we work to second order, then the dis-
placement of a particle with initial divergence ai and energy
deviation δi := (Ei − E0)/E0, where E0 is the initial energy
of the reference particle, is

rf (z) ≈ |(~x|a)zai + (~x|aδ)zaiδi| .

We used the contribution of the chromatic abberation on im-
age size to determine the maximum allowed energy spread in
the uranium ion accelerator.

Methods
We opted to use COSY Infinity as our main computing tool be-
cause it provided exceptionally fast and extensive libraries for
computation of accelerator transfer matrices and because the
differential algebraic techniques on which it is based allowed
us to quantitatively investigate the effect of various abbera-
tions. However, since the goal beam size at the sample was
∼10 µm, it was unclear that COSY 1) possessed particle inte-
gration of fine enough temporal resolution to achieve micron
level precision, 2) faithfully reproduced a solenoid’s magnetic
induction with its differential algebraic methods, or 3) ap-
propriately coped with the sample being placed in a location
with nonvanishing magnetic field. For verification purposes,
we created a custom program written in MATLAB for com-
puting particle trajectories through the solenoid which gave
us complete control over the integration step size and B-field
computation accuracy.

Computing particle trajectories in MATLAB. Our custom
program adopted a very simple, yet powerful strategy. The
computation of solenoidal magnetic fields was based on the
elliptical integral formulation discussed in [1] and the parti-
cle trajectories were computed using a temporal integration
scheme.

Solenoidal field computation

Built in functions in MATLAB allowed us to compute ellipti-
cal integrals to arbitrary accuracy. In terms of these integrals,
the field of a finite, thin solenoid at any point in space, (r, θ, z)
is

Br =
µni

π

√
a

r

[
2− k2

2k
K(k)− E(k)

k

]ξ+
ξ−

Bz =
µni

4

[
ξk

π
√
ar
K(k) +

(a− r)ξ
|(a− r)ξ|λ0(φ, k)

]ξ+
ξ−

where a is the coil radius, K and E are elliptic integrals
of the first and second kind, k =

√
4ar/ [ξ2 + (a+ r)2], L

is the coil length, n is the number of turns per unit coil
length, λ0 is the Heuman lambda function, ξ± = z ± L

2
, and

φ = tan−1 |ξ/(a− r)|. Thick solenoids were approximated by
superposing several thin solenoids of various coil radii. B fields
computed using MATLAB were found to match with those
computed using COSY to the Gauss level– since the scale of
the problem is around ∼5T, the correspondence was ∼1/50%.

Particle integration

Once we were able to determine the magnetic field due to
an arbitrary assortment of solenoids, we were able to write a
program to compute particle trajectories. Given some initial

coordinates and velocity, ~xi and ~vi, of a particle at time ti
with mass m and charge q, we computed ~xf and ~vf in the
next time stamp, tf = ti + ∆t:

~xf = ~xi + ∆t~vi, ~vf = ~vi + ∆t
q

m
~vi × ~B(~xi)

where non-relativistic equations were used because particle en-
ergies were small enough that speeds were always < .05c. It-
erating this procedure, we were able to capture full particle
trajectories, which were found to correspond to those com-
puted in COSY to order ∼2 microns if the integration step
size was chosen sufficiently small in MATLAB and the order
of the maps sufficiently large in COSY.

Goals and design considerations. In designing the optics of
the accelerator, there were several specifications we hoped to
achieve.

Size. It was a major objective that the XMAT ion accelera-
tor system should not occupy too much space. This consider-
ation factored in to our decision of whether to use one or two
solenoids for focusing.

Sample distance from solenoid. We strove for a design in
which the circle of least confusion was far enough from the
edge of the optics that the B field produced there would be
negligible, ensuring that the damage to the sample material
would not be altered by the presence of strong magnetic fields.

Beam degredation. We sought to maximize our energy de-
viation, divergence, and displacement acceptances as much as
possible in order to keep as much of the original beam from
the linac output as possible.

Magnification. The primary goal was that the optics focus
the beam from the linac output down to 1/10 its initial size.

Cost. Another factor that contributed to our design was
that two solenoids would inevitably cost more than one. We
additionally sought to choose the strength and dimensions of
the solenoid so that its price was minimized.

We used the FIT procedure in COSY extensively on various
parameters of the system in order to achieve these goals. We
optimized with respect to solenoid radius, length, and current
as well as all the relevant drift lengths in the problem so that

|(~x|x)| = |(~x|y)| ≈ 1

10
, and

sup
|ai|≤amax

∣∣(~x|a)zai + (~x|a3)za
3
i

∣∣ is small for amax = 3 mrad

or, in words, that the magnification be approximately 1
10

, and
the circle of least confusion be minimized.

Results
Our methods above produced a working first order design for
the first stage of the optics system. A second stage will ulti-
mately be needed in order to focus the particles farther away
from the edge of the solenoid because the first stage provides
a working distance of only 30 cm between the sample and the
optics, which subjects the material being investigated to large
B fields, on the order of 1

10
T. However, many properties of

the first solenoid can be studied in their own right, and even
inform future direction.

Our original goal was to design a system capable of deliver-
ing a 100× flux density increase between the linac output and
the sample. In the ideal case that the linac outputs particles
of zero energy deviation, we were able to achieve an increase
of ∼90×. Accounting for the energy spread at the accelera-
tor reduces this number, but in the last section, we propose a
method for improving the design.
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Accelerator output. To begin our analysis, we needed to de-
termine the distribution of particle positions and divergences
at the beginning of the optical system. Our data consisted
of information about 1906 particles at the linac output. The
distribution of energy deviations was approximately uncorre-
lated with the distributions of positions and divergences (a
maximum correlation of .04), so we were able to consider ef-
fects from energy spread separately when needed.

We fit a multivariate normal distribution to this (x, a, y, b)
data, whose mean and covariance we will refer to as (µi,Σi).
From here, we were able to numerically compute the fraction
of particles produced at the linac output that would make it
through the 100 µm-diameter aperture, which was 2.3× 10−4.
We set our goal of a 100× increase in flux density because
we originally estimated that the fraction of particles traveling
through the aperture would be ∼10−4. Since we have roughly
2.3× as many particles as we guessed we would have, we can
settle for a more modest flux density increase of ∼45× between
the aperture and the sample.
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Fig. 5. The first plot depicts the spatial coordinates of a sample of particles

entering the optical system. Note how the distribution is nearly uniform as a result of

the aperture selecting only particles well within the portion of the distribution where

the pdf is nearly constant.

The second plot depicts the coordinates of particles in phase space. The

distribution in divergence is approximately Gaussian.

For the remainder of our simulation, we generated the par-
ticles which would be fed into the optical system by using a
random number generator which sampled from the distribu-
tion N (µi,Σi), and tossed out all those particles which had

r =
√
x2 + y2 > 50 µm, i.e. tossed out all particles which

did not make it through the aperture. When we wished to
simulate the effects of energy spread, we assumed the energy
deviations, δ, followed a normal distribution N (0, σ2

δ ). These
results are summarized in Fig. 5.

Optics output. After obtaining the distributions of particles
entering the optics system, we were able to compose them with
the transfer map of the optimized system computed in COSY

to obtain the particle coordinates at the sample, displayed in
Fig. 6.
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Fig. 6. A plot of the spatial coordinates of particles that have reached the sample.

Approximately 1
4

of the particles that make it through the aperture arrive within a 5

µm circle. In these simulations energy spread is assumed to be negligible.

The most important measure of how well the optics are
working is how densely packed the particles are in the very
center of the sample material, especially since the photons
from the APS will only be imaging a very small area. Defin-
ing the magnification M(r) as the density of particles in a
circle of radius r at the sample divided by the density of par-
ticles at the 100 µm-diameter aperture, the maximum value of
the magnification is the appropriate measure of performance.

From Fig. 7, we see that the maximum magnification
achieved is about 40, which multiplied by the 2.3× extra num-
ber of particles we have gives us a flux density increase of
∼92×, which is close to our desired goal.
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Fig. 7. A plot of the magnification of our system as a function of the circle size we

are considering. Again, energy spread is assumed to be negligible in these simulations.
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Discussion and future direction
Although we came close to achieving our goal in the case of
negligible energy spread, we can do much better as a whole.
The location of the circle of least confusion is heavily depen-
dent on the distribution of energy, spatial coordinates, and
divergences at the linac output. Our original optimization
conditions, discussed in the section ”Goals and design consid-
erations,” did not take energy spread into account, or even the
Gaussian nature of the distribution of divergences at the linac
output. With more care, better optimization conditions can
be chosen to cater to the specifics of the accelerator properties.

Work will also be done on designing the second stage op-
tics. Additional focusing in the second stage could be used to
increase performance substantially.
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