Dielectric sample testing for high-pressured RF cavity

Huy Phan McDaniel Collge Fermilab

Mentor: Katsuya Yonehara

Much less synchrotron radiation

Small energy spread at interaction region

Potential Higgs Factory

Ionization cooling channel

Necessity in reducing RF cavity's radial size to fit inside solenoids

Dielectric insert ring

f: resonant frequency(Hz)
R: radius of cavity (m)
ε: relative dielectric constant
μ: permeability (H.m⁻¹)

By loading the cavity with dielectric structure, smaller radius is enough to attain same resonant frequency

Important parameters of dielectrics

Dielectric constant (permittivity): material properties that determines how electric field affects, or is affected by some medium.

 $\varepsilon = \varepsilon' - j\varepsilon''$

Loss tangent: ratio between the lossy reaction to electric field and lossless reaction to electric field

$$\tan \delta = \frac{\varepsilon"}{\varepsilon'}$$

- Loss tangent quantifies how much electric field energy will be dissipated into heating the dielectric
- Dielectric material reduces quality factor of cavity => choose material that gives small loss but can still achieve desired cavity radius

Dielectric sample test

Goal:

- Determine dielectric constant and loss tangent of various materials
- Analyze experimental results to find optimal material for the insert ring
- Sample tested:
 - ► Alumina (Al₂O₃) with various purity
 - Magnesium Calcium Titanate (MCT)
 - Corderite ((Mg,Fe)₂Al₄Si₅O₁₈)
 - Aluminum Nitride (AlN)

Experimental setup

Method

- Measure quality factor and resonant frequency of cavity with dielectric sample inside
- Compare with quality factor vs loss tangent plot and resonant frequency vs dielectric constant plot obtained from POISSON/SUPERFISH simulation to determine sample's properties

Calibration

- SUPERFISH assumes ideal resistivity for copper wall => need to find actual wall resistivity
- Simulate empty cavity and compare with actual empty cavity with no sample

Relationship between wall resistivity and quality factor:

$$\rho_{wall} = \left(\frac{Q_{simulation}}{Q_{experimental}}\right)^2 \rho_{ideal}$$

Results

Sample data of MCT

Dielectric constant and loss tangent => intersection between simulated relationship and measured values

Comparison with industry value for dielectric constant

- Dielectric constant error all falls within 6%
- Closely match industry-given value for dielectric constant

1/ MCT
2/ Corderite
3/ Alumina 94%
4/ Alumina 94%
5/ Alumina 96%
6/ Alumina 96%
7/ Alumina 97.6%
8/ Alumina 97.6%
9/ Alumina 99.5%
10/ Alumina 99.5%

1/ Alumina 94%
 2/ Alumina 94%
 3/ Alumina 96%
 4/ Alumina 96%
 5/ Alumina 97.6%
 6/ Alumina 97.6%
 7/ Alumina 99.5%
 8/ Alumina 99.5

Experimental A Industry

- Comparison used only alumina samples since there is no given loss tangent for others.
- Calculated loss tangent experiences increasing discrepancy with decreasing alumina purity.
- Either the vendors calculate it wrong or there is systematic error in the simulation
- Possible source of systematic error: resistivity at connected joint between cavity's components

Conclusion

- Calculated dielectric constants follow consistently with vendor-provided values
- Discrepancy between calculated loss tangent and vendor-provided values might be because of connection's resistivity.
- Overall, alumina 99.5% gives the most desirable values for dielectric constant (~9.5) and loss tangent (0.00013)

Future step

Proposed new model to describe better wall resistivity of test cavity:

Apply same test for the actual ring in high-powered beam test.

Acknowledgement

- Katsuya Yonehara
- Ben Freemire
- Al Moretti
- Eric Prebys & Tanja Waltrip
- Alvin Tollestrup
- Fellow Interns