

Characterization of growth rate and interfacial roughness of Multilayer Optical X-ray Coatings

GOAL OF PROJECT:

- CHARACTERIZING THE NEW PROFILE COATING SYSTEM
- DEPOSIT MONO AND MULTILAYERED THIN-FILMS
- USING XRR AND IMD SIMULATIONS FOR D-SPACING ANALYSIS

Yumeng Melody Cao

Undergraduate Student at Smith College and Argonne National Lab Lee Teng Fellow

Supervisors: Lahsen Assoufid, Ray Conley and Bing Shi

BRAGG'S LAW Incident light **2d** $sin\theta = n \lambda$ θ A

Crystal

Thin film

MAGNETRON SPUTTERING

Parameters

- INVESTIGATE SPUTTERING PARAMETERS
 - INDEPENDENT VARIABLES
 - Power
 - Gas-mixture percentages (N₂)
 - Substrate target distances
 - DEPENDENT VARIABLES
 - Growth Rate
 - Interfacial Roughness

• DEPOSITION SYSTEM

- Uses Magnetron Sputtering
- Tungsten and Boron Carbide bilayers
- Gaseous (Ar + N₂) plasma
- 1 mT vacuum conditions
- High performance servo drive

• XRR

- E = 8.048Kev or 1.54Å
- Bragg's Law
- -0.1 to 5 degrees grazing angle
- X-Ray Reflectivity inversely proportional to interfacial roughness

- SIMULATIONS
 - XOP IMD Program
 - Adjust d-spacing, gamma ratio and surface roughness to create simulations
 - Find growth rate during rate test to create monolayers of $\gamma=0.5$
 - Finding relationship between the independent and dependent variables

Results

Results

Reflectivity of New Deposition System

0.7, 0.6 0.5 0.4 Reflectivity 0.2 0.1 0. 350 300 250 200 150 100 40 35 30 25 20 15 50 10 Power(W) 5 'n

Nitrogen Ratio (%)

Conclusions & Outlook

- 5% N seems to be the best performance
- Power level indeed also has an impact on performance
- Different target-substrate distances