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Abstract

Parametric x-ray radiation (PXR) is a type of x-ray radiation produced when an
electron beam is passed through a crystal. PXR is emitted at sharp angles with respect
to the electron beam, and it generally has a quasi-monochromatic energy spectrum.
Because of these unique and potentially useful properties, future experiments at ASTA
will examine this radiation. To facilitate these experiments, I have written a simulation
of many of the important characteristics. This paper will summarize the basic theory,
how the simulation runs, what the results of the simulation are, and how the experiment
could be conducted at ASTA.

1 Theory

1.1 Crystal Structure

The basic unit of crystal structure is the unit cell, which is the smallest repeating arrangement
of atoms. The simplest unit cell, for example, is the simple cubic cell, in which the atoms
lay at the eight vertices of a cube. This unit cell is shown in Figure 1 along with two other
cubic unit cells, the face-centered cubic (FCC) and body-centered cubic (BCC). FCC unit
cells have six more atoms, one at the center of each face of the cube, and BCC cells have
only one more atom, at the center of the cube.

The unit cells are then packed so as to fill up space in three dimensions, as shown for the
simple cubic cell in Figure 2. This arrangement of unit cells is known as the crystal lattice.
Note that when the cells are arranged in the lattice, the atoms lay in parallel repeating
planes. There are an infinite number of possible crystal planes. In order to understand and
track the crystal planes, we introduce a coordinate system for the unit cells.
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Figure 1: The basic three cubic unit cells.

Figure 2: The simple cubic unit cell lattice, the most simple crystal structure. Note that it
is easy to see that by filling space with the unit cell, the atoms are arranged into planes.
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Figure 3: Several simple crystal planes.

The origin of the coordinate system is chosen to be one of the vertices of the cube. In
Figure 1, the three coordinate axes are drawn at the origin, and the coordinate axes are
picked to be along the primary axes of the unit cell. With this coordinate system, the
position of any atom in the unit cell can be described. For example, in the FCC unit cell,
the atom in the center of the nearest face has position a

2
x̂+ a

2
ẑ. It is, however, convenient to

work in units scaled to the size of the unit cell, so we set a = 1. The position of this atom
is then just 1

2
x̂+ 1

2
ẑ.

We now label crystal planes by the normal to the plane. The first plane in Figure 3 has
a normal in the ẑ direction, so the plane is labeled by (001). The 1 indicates that the plane
intersects the z-axis a distance a above the origin. Similarly the normal to the shaded plane
in the fourth cube points in the x̂+ ẑ direction, so this plane is labeled by (101)

When a plane intersects the axes at a distance less than the length of the unit cell, as in
the last cube in Figure 3, the reciprocal of the distance along the axes is used. In this unit
cell, the normal to the plane is in the x̂ direction, but the plane intersects the point x = 1

2
.

Therefore, the plane is labeled by (200), not (100), which is shown in the second cube.
When the normal points in negative direction along the principal axes, the notation uses

a bar above the negative index. The (1̄1̄1) plane has a normal that points in the −x̂− ŷ+ ẑ
direction. Note that there is a sign ambiguity in the notation because (1̄1̄1) and (111̄)
both describe normals to the same plane pointing in opposite directions. Both forms are
acceptable.

The numbers used to describe a plane (hkl) are known as the Miller indices of the plane.
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Figure 4: The unit cell for diamond/silicon.

They are used to define the reciprocal lattice vector, ~τ , which is defined as

~τ =
2π

a
(hx̂+ kŷ + lẑ) (1)

The magnitude of ~τ is τ = 2π
a

√
h2 + k2 + l2, the unit vector in the direction of ~τ is τ̂ =

1√
h2+k2+l2

(hx̂+ kŷ + lẑ). Note that the magnitude of the reciprocal lattice vector is τ = 2π
dhkl

where dhkl is the distance between the lattice planes (hkl).

1.1.1 Unit Cell of Diamond-Like Crystals

Silicon and diamond crystals both have the same cubic unit cell that is somewhat more
difficult to visualize than the above cubic cells. The diamond unit cell is shown in Figure 4.
The underlying structure is FCC, where the blue dots indicate the vertices of the cube, and
the black dots are the center points on each of the faces. The red dots are the four additional
atoms. Each of the red atoms is a distance a/4 in the x̂+ ŷ + ẑ direction relative to points
on the underlying FCC structure. The translation necessary to get the red points from the
original FCC cell is shown by the green lines.
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Figure 5: Bragg x-ray reflection.

1.2 Bragg Reflection of X-Rays

1.2.1 X-Ray Crystallography

When x-rays are sent through a crystal, bright spots can be produced at sharp angles relative
to the incident x-ray. Bragg discovered that this phenomenon can be described by coherent
reflections of the x-rays from crystal planes. The process is shown in Figure 5. The path
length difference between x-ray reflections from adjacent crystal planes is 2dhkl sin θB where
dhkl is the spacing the between crystal planes (hkl) and θB is the Bragg angle, the angle
of the incident x-ray. When the additional path length is equal to a multiple of the x-ray
wavelength, λ, the outgoing rays constructively interfere. This is the condition for Bragg
reflection:

2dhkl sin θB = nλ (2)

We will usually be concerned with the case where n = 1. Away from the Bragg angle, the
x-rays do not constructively interfere, leading to a localized bright spot at the Bragg angle.

The Bragg model is heuristic, but more sophisticated models give essentially the same
results. This model is advantageous because of it is intuitive and simple.

1.2.2 Structure Factors and Forbidden Reflections

A more realistic model models the atoms in the crystal absorbing the x-ray and emitting it
isotropically. Where the isotropic emissions constructively interfere are the Bragg ”reflec-
tions.” Occasionally, the arrangement of the atoms in the unit cell can be such that within
one unit cell, the re-emitted radiation destructively interferes leaving no opportunity for
constructive interference from successive period unit cells.
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Figure 6: Reflection of virtual photon field from the crystal planes. The electron impacts
the crystal at angle θB with respect to the crystal planes, and the PXR is emitted at angle
Ω with respect to the initial electron velocity.

Such a cancellation is governed by the crystal structure factor. The structure factor
depends on the Miller indices of a given plane, and when the structure factor is zero, that
reflection is forbidden. Computing the structure factor for various crystals gives selection
rules on the Miller indices for allowable x-ray reflections, depending on the geometry of the
unit cell.

For Diamond-like unit cells, reflections are allowed if the Miller indices hkl are all odd, or
if they are all even, the sum h+ k + l must be a multiple of four. Reflections are forbidden
if the Miller indices are mixed even and odd, or if they are all even and the sum is not a
multiple of four.

1.3 PXR as Reflected Virtual Photons

Parametric x-ray radiation is a kind of Bragg reflection. The electric field of a charged
particle is a field of virtual photons of many frequencies. When the charged particle passes
through a crystal, those virtual photons that have wavelengths satisfying the Bragg condition
can be transformed into real photons and reflected.

In Figure 6, a diagram of PXR is shown. The length of the blue segment must be equal
to an integer number of wavelengths for the reflected photons to constructively interfere.
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Figure 7: A schematic of the PXR reflection in three dimensions. We pick coordinates such
that the center of the PXR distribution is in the xz plane. The red spots correspond to a
greater intensity of PXR and teh blue spots correspond to less intensity.

The length of the blue path is

dhkl
sin θB

+
dhkl cos(π − Ω)

sin θB
=

dhkl
sin θB

(1− cos Ω) = nλ (3)

Because E = hc/λ, the energy of the PXR can be written

E = ~cτ
sin θB

1− cos Ω
(4)

Therefore, only those photons with energy that satisfies these conditions will be produced.
Note that it is possible to measure photons slightly away from the Bragg angle, hence the
use of Ω. At exactly the Bragg angle, Ω = 2θB so that

E =
~cτ

2 sin θB
(5)

1.4 Shape of PXR Emission

While this reflection treatment accurately calculated the PXR energy, a more sophisticated
analysis allows one to calculate the distribution of PXR around the Bragg angle. Ignoring for
the moment the magnitude of the PXR at a given angle, the shape of the angular distribution
is described by

N(θx, θy) =
θ2
x cos2 2θB + θ2

y

(θ2
x + θ2

y + θ2
ph)2

(6)

where θx is the angle in the diffraction plane and θy is the angle perpendicular to θx out
of the diffraction plane [11]. These coordinates are shown in Figure 7. The characteristic
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angle, θph, is given by

θph =

√
1

γ2
+
ω2
p

ω2
(7)

where γ is the relativistic Lorentz factor of the electron beam, ωp is the plasma frequency of
the crystal, and ω is the frequency of the PXR. Typically, θph ≈ 1/γ.

The shape of this distribution is also shown in Figure 7 as the color plot. Notice there
are two intensity peaks above and below the Bragg angle. These peaks are positioned at
θx = 0, θy = ±θph. Also notice that at exactly the Bragg angle, (θx, θy) = (0, 0), there is no
PXR. This is a destructive interference effect.

1.5 Magnitude of PXR Emission

The full expression for the magnitude of PXR at a given angle is given by

d2N

dθxdθy
=

α

4π

ωB
c sin2 θB

[
La

∣∣∣∣∣ n̂ · Ω̂n̂ · v̂

∣∣∣∣∣ (1− e−t/(La|n̂·Ω̂|)
)]

χ2
ge
−2WN(θx, θy)

= N0N(θx, θy)

(8)

where α is the fine-structure constant, ωB is the frequency of PXR at the Bragg angle, the
term in square brackets is the “geometric factor”, χ2

g is the square of the Fourier transform of
the electric susceptibility, e−2W is the Debye-Waller factor, and N(θx, θy) is given by equation
6 [11].

1.5.1 The Geometric Factor

The geometric factor in equation 8 is given by

fgeo = La

∣∣∣∣∣ n̂ · Ω̂n̂ · v̂

∣∣∣∣∣ (1− e−t/(La|n̂·Ω̂|)
)

(9)

where La is the attenuation length of x-rays of a given energy in the material, n̂ is the normal
to the crystal surface through which the electron beam passes, Ω̂ is the emission direction of
the PXR, v̂ is the direction of the velocity of the electron beam, and t is the crystal thickness
[10]. The attenuation lengths La can be found from online databases [4].

This term represents two pieces of physics. First the amount of PXR produced per unit
length as the electron traverses the crystal is constant; therefore, the greater the length of
crystal the electron traverses, the more PXR there will be. On the other hand, the x-rays are
attenuated as they leave the crystal. PXR that must traverse through the entire crystal will
contribute significantly less than PXR produced at the surface of the crystal. The geometric
factor fgeo is derived by integrating the attenuation factor over the path of the electron in
the crystal.

The dot products in fgeo depend on the Bragg angle and the cut of the crystal with
respect to the reflecting planes. If the reflecting planes are parallel to the crystal surface,
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Figure 8: The different ways a crystal can be cut with respect to the reflecting crystal plane.
Ω̂ is the direction of the reflected PXR, n̂ is the unit normal to the surface of the crystal, τ̂ is
the normalized reciprocal lattice vector, and v̂ is the direction of the velocity of the electron
beam.

then the crystal is said to have a Bragg cut. If they are perpendicular, they crystal is cut
in the Laue geometry. Of course, it is possible to cut the crystal planes at some other angle
with respect the surface. In this case, ζ is the angle between the normal to the crystal surface
and the normal to the crystal planes and is defined to be in the range 0 ≤ ζ ≤ π/2.

In the Bragg geometry, the PXR is always reflected through the entry surface, and in
the Laue geometry, PXR is always reflected through the exit surface. In other geometries,
the PXR can be reflected in either direction depending on the Bragg angle. When PXR is
reflected perpendicular to n̂, fgeo = 0, since the crystal is infinite in that direction and all
the PXR is absorbed in the crystal.

The general expression for fgeo in terms of ζ and θB is

fgeo = La

∣∣∣∣sin(ζ − θB)

sin(ζ + θB)

∣∣∣∣ [1− exp

(
−t

La| sin(ζ − θB)|

)]
(10)

Note that when ζ = θB, fgeo = 0. This corresponds to the condition that the PXR is reflected
entirely entirely along the longer dimensions of the crystal. Note also that fgeo ≤ La with
equality only when t =∞ and ζ = 0, π/2 (Bragg/Laue geometry).

1.5.2 Fourier Transform of the Electric Susceptibility (χg)

The factor χ2
g accounts for the efficiency with which photons are diffracted in the crystal. It

can be computed from

χ2
g =

λ4r2
e

π2V 2
c

S2
hkl[(f0 + f1 − Z)2 + f 2

2 ] (11)

where λ is the x-ray wavelength, re is the classical electron wavelength, Vc is the volume of
the crystal unit cell, Shkl is the structure factor, Z is the atomic number, and f0, f1, and f2

are the atomic form factors [11]. The factors f1 and f2 are relatively small correction terms
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that can be found in online databases [4], and f1 can be computed from the Cromer-Mann
coefficients by

f0 = c+
4∑
i=1

aie
−bis2 (12)

where s = sin θB
λ

and ai, bi, and c are the Cromer-Mann coefficients which can be found in
online tables [9].

For diamond-like crystals, the structure factor S2
hkl = 32 if the Miller indices are odd, or

S2
hkl = 64 if the Miller indices are even (and sum to a multiple of four).

Since λ ∝ 1/E, the χ2
g factor has a roughly 1/E4 dependence on energy. Additionally, f0

contains terms of the form e−E
2
. Both of these dependencies limit the production of PXR

at high energies. The energy dependence of these and other parameters can be found in the
Appendix.

1.5.3 Debye-Waller Factor

The Debye-Waller factor accounts for disruptive effects of thermal lattice vibrations. At
room temperature, this factor will usually be close to one. For example, in diamond at room
temperature, it amounts to a factor of 0.9825. The term is given by

e−2W = e−τ
2u2(T ) (13)

where τ is the reciprocal lattice vector. u2(T ) is given by

u2(T ) =
3~

4AkBTD

(
1 + 4

T 2

T 2
D

∫ TD/T

0

ydy

ey − 1

)
(14)

where A is the atomic mass number, kB is Boltzmann’s constant, TD is the crystal’s Debye
temperature, and y is simply and integration variable.

2 Simulated Angular Distribution

Equation 8 is the distribution of PXR assuming ideal conditions. That is, every electron in
the beam hits the crystal at the same point at the same angle, the electrons continue on
exactly this course through the crystal, all PXR is assumed to come from the same point,
and the crystal planes are all perfectly parallel. In order for the simulation to accurately
predict how many photons a detector would measure, it is necessary to understand these
effects.

2.1 Multiple Scattering

Among the largest of these effects for electron beams with energies in the tens of MeV
is electron multiple scattering in the crystal. the electrons are slightly scattered off their
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initial trajectory by colliding with atoms in the material. The scatters cause the electron
to undergo a kind of random walk, and after traveling a distance x into the material, the
electron will be traveling at an angle θms relative to its initial linear trajectory. The angle
θms is approximately Gaussian distributed with a standard deviation given by

σθms =
13.6MeV

βcp

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
(15)

where βc is the electron velocity, p is its momentum, x is the distance into the material, and
X0 is the radiation length of the material [5]. The radiation length is the length scale of
energy loss of particles traveling through matter. It is given by

1

X0

= 4αr2
e

NA

A

{
Z2 [Lrad − f(Z)]− ZL′rad

}
(16)

where α is the fine-structure constant, re is the classical electron radius, NA is Avogadro’s
number, A is the atomic weight of the material, Z is the atomic number of the material, and
for Z > 4, Lrad = ln(184.15Z−1/3) and L′rad = ln(1194Z−2/3). For Z ≤ 4, Lrad and L′rad are
given by a table [5]. Additionally,

f(Z) = a2
[
(1 + a2)−1 + 0.20206− 0.0369a2 + 0.0083a4 − 0.002a6

]
where a = αZ.

2.1.1 Convolution

The multiple scattering of the electron changes the angle the electron impacts the crystal
planes and therefore on each scatter, the angular distribution is centered on a different
location. A first order method to understand this effect is to convolve the multiple scattering
Gaussian with the already known angular distribution. The new angular distribution would
then be given by

Λ(θx, θy) = Anorm

∫∫ 2σθ

−2σθ

d2N

dθxdθy
(θx − qx, θy − qy)× e

−q2x−q
2
y

2σ2
θ dqxdqy

= Anorm ×N0

∫∫ 2σθ

−2σθ

(θx − qx)2 cos2 2θB + (θy + qy)
2[

(θx − qx)2 + (θy − qy)2 + θ2
ph

]2 × e−q2x−q
2
y

2σ2
θ dqxdqy

(17)

The σθ used is that for multiple scattering through the entire thickness of the crystal. The
normalization factor Anorm is chosen to preserve the total area under the curve after the
convolution: ∫∫ 2σθ

−2σθ

Λ(θx, θy)dθxdθy =

∫∫ 2σθ

−2σθ

d2N

dθxdθy
(θx, θy)dθxdθy (18)

The limits in these integrals should be ±∞; however, beyond 2σθ, the integrand is approxi-
mately zero. The shorter range is more convenient when computing this integral numerically.
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Figure 9: The effect of multiple scattering on the angular distribution along θy, with θx = 0.

Note that in equation 17, N0 is pulled out of the integral even though it has a dependence
on the angle through its dependence on E. The value for the energy used in computing N0 is
the PXR energy at the Bragg angle. This removes a slight asymmetry that would otherwise
develop.

The effect of this convolution is shown in Figure 9, a plot of the intensity distribution vs
θy where θx = 0. When σθ is low, the two peaks are visible and at θy = 0, there is no light,
as expected. When σθ increases, the minimum becomes filled in as the magnitude of the
peaks decreases, preserving the area under the curve. At large σ, the double peak structure
disappears completely, leaving a single peak in the center.

2.1.2 Monte Carlo

A more accurate method to compute the angular distribution is to use a Monte Carlo of
electron multiple scattering in the crystal, though the results are quite close to that of the
convolution. The Monte Carlo uses a specified number of steps through the crystal, and
at each step it updates the total multiple scattering angle, α. The amount by which α is
changed is sampled from the multiple scattering Gaussian through a thickness of crystal
equal to the step size. I then compute the new d2N

dθxdθy
based on on the the updated α. This

distribution is added to those from the previous steps, but shifted from center by an angle
α. This is what causes the smearing effect.

One complication arises in the geometric factor fgeo because it is obtained from integrating
the attenuation through the entire length of the crystal. Instead, I use a “local” geometric
factor that accounts for attenuation at a particular depth z into the crystal. This geometric
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(a) σθ = 2 mrad.

(b) σθ = 12.3 mrad.

Figure 10: A comparison of the multiple scattering analysis with Monte Carlo (black) and
convolution (red) for different σθ. The σθ reported is that for multiple scattering through
the entire thickness of the crystal.
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factor is given by
fgeo = ∆ze−l(z)/La (19)

where ∆z is the step size and l(z) is the escape length of the PXR from location z. For
general crystal geometries, the escape length is given by

l(z) =


t− z sin(θB + ζ)

sin(ζ − θB)
θB < ζ

z
sin(θB + ζ)

sin(θB − ζ)
θB ≥ ζ

(20)

where ζ is the angle between the reciprocal lattice vector and the normal to the crystal
surface, as before, and t is the crystal thickness. When θB < ζ, the PXR is reflected out
the surface through which the electron entered, and when θB > ζ, the PXR is reflected out
the surface through which the electron exits. When θ = ζ, the PXR is reflected along the
infinite direction of the crystal and l(z) =∞ =⇒ fgeo = 0.

As shown in Figure 10, the agreement between the Monte Carlo and the convolution
is rather good for different values of σθ. Notice that an asymmetry does develop in the
Monte Carlo when the multiple scattering is large. This is because in the Monte Carlo, the
dependence of N0 on the scattering angle is included. The value of N0 used for each step is
the value at the Bragg angle for that step.

2.2 Other Anomalous Contributions

While multiple scattering causes the largest change in the shape of the angular distribution,
other approximations are made. Several of them have been considered and determined to be
negligible. In particular, beam divergence at the crystal on the order of a few milliradians
has been included in the Monte Carlo and found to have essentially no effect. The multiple
scattering, on the order of tens of milliradians through typical crystals dominates over beam
divergence, unless the beam divergence is very large.

The fact that PXR is emitted from different depths in the crystal also has little effect.
If a detector is distance d away, the angular size of the crystal projected onto the detector
at angle θB is θt = tan−1

(
t
d

sin θB
)
. This geometry is shown in Figure 11a. If we set the

parameters to typical values, θB = π
4
, t = 1 mm, and d = 1 m, then θt = 0.041◦. On the

other hand, the cone of PXR has a characteristic size 1/γ, which for a 50 MeV beam is 0.57◦,
an order of magnitude larger than θt. Thus the PXR emitted from the front of the crystal
can be assumed to center on the same point as PXR emitted from the back of the crystal.
If the beam energy were higher by about an order of magnitude, then this effect would be
important.

Finite beam spot size on the crystal has a similar geometry to affects from crystal thick-
ness. If the diameter of the beam is s, this corresponds to an angular spread on the detector
of θs = tan−1

(
s
d

cos θB
)
. This geometry is shown in Figure 11b. If s/d � 1/γ, the effect of

beam spot size is minimal.
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Figure 11: The geometry of crystal thickness and beam spot size.

Lastly, crystal mosaicity, the fact that the atoms of the crystal are not all perfectly
aligned, has not been considered. We could assume that crystal mosaicity causes some
random Gaussian deviation of the reciprocal lattice vectors around the central direction. In
this case, the effect of crystal mosaicity will be similar to that of multiple scattering. However,
if the standard deviation of the angle of the reciprocal lattice vectors is significantly less than
the standard deviation in angles for multiple scattering, then crystal mosaicity would not be
a significant effect in comparison.

2.3 Computing Yield into a Detector

Once the angular distribution of the PXR yield is understood, it can be used to compute the
number of photons observed in a detector. To do this, I integrate the angular distribution,
convolved with the multiple scattering Gaussians, over the area of the detector, which I
assume to be rectangular. If the detector has sides of length ∆x and ∆y and is placed a
distance R from the crystal, then the number of photons per electron seen by the detector is

N =

∫ ∆y/2R

−∆y/2R

∫ ∆x/2R

−∆x/2R

Λ(θx, θy)dθxdθy (21)

Since the multiple scattering Monte Carlo is rather close to the convolved distribution,
using the convolution is sufficiently accurate. Multiplying N by the electron flux (number of
electrons per second) of the beam will give the prediction for the number of photons observed
per second. Combined with the average energy per photon computed from the geometry
of the experiment, the power on the detector can be computed, a critical experimental
parameter.

15



Figure 12: The dependence of the measured number of photons per electron on the thickness
of the crystal.

2.3.1 Yield vs Crystal Thickness

An interesting dependency to examine is how the yield into a detector varies with the thick-
ness of the crystal. An example of this calculation is plotted in Figure 12. The detector is
assumed to always be centered on the maximum of the angular distribution. The plot shows
initial rise, a plateau, then a slow decline. The initial rise is due entirely to the geometric
factor. Since a constant amount of PXR is produced per unit length, the thicker crystal
causes a greater production of PXR. When the crystal thickness reaches the order of the
attenuation length of the x-rays, then the growth of the geometric factor slows down, as PXR
produced deep in the crystal is attenuated before it can escape. As the crystal thickness goes
to infinity, the geometric factor asymptotes to its maximum value and effectively becomes
constant.

The gradual decrease is when the crystal is thick enough that multiple scattering becomes
an important issue. After the geometric factor maximizes, the number of photons produced
into all angles is essentially constant as the thickness increases. However, the multiple
scattering smears out the distribution, lowering the number of photons into the angle spanned
by the detector.

The plateau is after the geometric factor reaches its maximum and before multiple scat-
tering becomes significant. When designing the experiment, it is best to have a crystal with
a thickness near this plateau.

2.3.2 Yield vs PXR Energy

Another interesting dependency is how the yield depends on photon energy. In this case, a
thin crystal is used and multiple scattering is ignored, for computational efficiency. As before,
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(a) Bragg geometry

(b) Laue geometry

Figure 13: The dependence of the number of photons per second on the PXR energy. The
parameters of this simulation were: a diamond crystal, PXR from the (111) plane, crystal
thickness of 168 µm, electron beam energy of 50 MeV, detector placed 1 m from crystal, and
a detector size of 1 cm × 1 cm.

the detector is assumed to always be centered on a maximum of the angular distribution.
A plot of the result is shown in Figure 13. Interestingly, the shape of the plot depends
strongly on the cut of the crystal. In both plots, there is a sharp initial rise. This is due to
two effects in Equation 8, the angular yield equation. First, there is a factor of ωB/ sin2 θB.
Since ωB ∝ E and 1/ sin θB ∝ E, this factor is proportional to E3. Additionally, though less
significantly, low energy x-rays suffer greater attenuation than higher energy x-rays.

After the initial rise, in the Bragg geometry the yield gradually decreases out to large
energies. The decrease is due to the χ2

g which decreases sharply at high energies, see Figure
20 in the Appendix. The decrease is not more steep because at large energies, the Bragg
angle is small, and when the Bragg angle is small in the Bragg geometry, the electron impacts
the crystal at shallow angles and is in the crystal for large distances. At 200 keV PXR and a
crystal thickness of 100 µm, the electron travels through 6.6 mm of crystal. Additionally, the
x-rays have a large attenuation length at large energies, making fgeo large, and the E3 factor
also grows rapidly. Lastly, at large energies χ2

g is very small but relatively slowly decreasing
compared to how rapidly it decreases at low energies. All these factors combine to keep the
yield only slowly decreasing.

Note that multiple scattering, which is ignored in this calcuation, does become significant
when the electron is traversing millimeters of crystal. This effect would cause the decrease
to be steeper than in the plot. Also, it would be experimentally impractical to use this high
energy PXR because at 200 keV, the Bragg angle is 0.86◦, which implies the PXR is nearly
in the same direction as the beam.

In Laue geometry, on the other hand, the electron traverses the minimum amount of
crystal when at small Bragg angles. This causes the geometric factor to be unable to counter
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Figure 14: The geometry of electron multiple scattering in the crystal.

the rapid decrease of χ2
g, and the yield much more rapidly falls off.

3 Linewidth

The theory of PXR states that the natural linewidth is on the order of millielectronvolts
[3]. Such a natural linewidth, however, is difficult to observe because several factors increase
it significantly. In particular multiple scattering and a finite detector size will increase the
measured linewidth.

3.1 Multiple Scattering

When an electron with velocity v̂ passes through a crystal with reciprocal lattice vector in
direction τ̂ and the PXR is observed in direction Ω̂, the energy of the PXR is

E = ~cτ
|v̂ · τ̂ |

1− v̂ · Ω̂
(22)

where equation 4 has been rewritten using dot products. We will consider multiple scattering
in a plane with a fixed observation location in direction Ω̂. When the electron undergoes
multiple scattering, the velocity vector shifts v̂ = ẑ −→ v̂′ = ẑ cosα + x̂ sinα. Additionally,
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(a) 2D Monte Carlo, σE = 16.9 eV. (b) 3D Monte Carlo, σE = 26.1 eV.

Figure 15: The Monte Carlo energy spectra in two and three dimensions accounting for only
multiple scattering. Both simulations used the same input parameters. The crystal was a
168 µm thick diamond crystal in the Bragg geometry with PXR from the (111) plane and a
beam energy of 20 MeV.

we know τ̂ = −ẑ sin θB0 + x̂ cos θB0 and Ω̂ = ẑ cos 2θB0 + ẑ sin 2θB0. Using equation 22, the
energy for PXR from the scattered electron is

E = ~cτ
sin(θB0 + α)

sin2(θB0 + α/2)
(23)

This expression for energy has the interesting feature that it is maximal when α = 0, which
implies that any multiple scattering will reduce the observed energy.

Using equation 23, it is simple to write a Monte Carlo to find the distribution of energies.
The electron is stepped through the crystal using a fixed step size, and after each step, a
change in angle is picked from a Gaussian with standard deviation given by equation 15.
Then the energy is computed with this new angle. The energies are not simply histogrammed,
however, because not all energies are produced from the crystal equally. To account for this,
for each energy, I calculated a weight given by the energy dependent terms in equation 8.
The weight is the product of E3, equation 19, and χ2

g. This weight is then added to whichever
bin is determined by the energy.

The result is shown in Figure 15(a). Since the average value of α is zero, the peak of the
energy spectrum is at 9 keV, which is the energy of the PXR without multiple scattering.

3.1.1 Three Dimensions

A more sophisticated approach uses multiple scattering in three dimensions. To do the three
dimensional Monte Carlo, at each step I rotate the unit velocity vector v̂ about an arbitrarily
determined line perpendicular to v̂ to get the vector v̂′. As before, the angle of rotation is
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determined by sampling from the multiple scattering Gaussian. However, because the angle
for multiple scattering in a plane is the projection of this 3D scattering, the angle used in
the 3D Monte Carlo is greater than that for the 2D case by a factor of

√
2 [5]. After this first

rotation, I then rotate v̂′ around v̂ by an angle sampled from a uniform distribution between
0 and 2π to get v̂′′. Using v̂′′, I then compute the PXR energy for this step using equation
22. Each energy is weighted as before. The result is shown in Figure 15(b). The spectrum
has the same qualitative shape as the 2D Monte Carlo, but it is somewhat wider.

The rotations are accomplished using the Rodrigues rotation matrix, which rotates a
vector through angle ψ about the unit vector ω̂ = (ωx, ωy, ωz). The matrix is given by

Rω̂(ψ) =

 cosψ + ω2
xξ −ωz sinψ + ωxωyξ ωy sinψ + ωxωzξ

ωz sinψ + ωxωyξ cosψ + ω2
yξ −ωx sinψ + ωyωzξ

−ωy sinψ + ωxωzξ ωx sinψ + ωyωzξ cosψ + ω2
zξ

 (24)

with ξ = 1− cosψ [2].

3.2 Detector Size

Another important factor for the measured linewidth is the size of the detector being used
to measure the linewidth. Since any finite-sized detector spans a range of angles, it also
spans a range of energies, increase the measured energy spread. This effect can be added
to the planar multiple scattering Monte Carlo. At each step, the energy is computed for a
range of angles corresponding to the angles spanned by the detector. Let φ be the angular
parameter that sweeps over the detector each step through the crystal. The range of φ
is −1

2
∆θD ≤ φ ≤ 1

2
∆θD where ∆θD is the angular size of the detector. Then, similar to

equation 23,

E = ~cτ
sin(θB0 + α)

sin2(θB0 + φ/2 + α/2)
(25)

Like before, the energy is weighted, but the weighting is now more complex. The detector
spans a relatively large range of angles, so the angular distribution of the PXR can become
important. If the detector happens to encompass a peak of the angular distribution, then
the energies corresponding to that peak will be more intense. The weight factor w used for
energy E is now

w = E3e−l(z)/La(E)χ2
g(E)

(φ+ α)2 cos2(2θB0 + 2α)

[(φ+ α)2 + θ2
ph]2

(26)

where l(z) is given by equation 20. The dependence of the parameters on energy has been
explicitly written. Since the Monte Carlo assumes scattering in the xz-plane, I set θy = 0
in the angular distribution. The angular distribution was not needed in the weight factor
before because φ = 0 and α ≈ const, so the factor was relatively constant.

The result of this computation is shown in figure 16. The narrow, sharp peak of Figure
15 is now significantly wider.
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(a) Centered at φ = 0, σE = 76.2 eV. (b) Centered at φ = 1/γ, σE = 83.2 eV.

Figure 16: The energy spectrum observed by a detector with finite angular size. The detector
was 1 cm across, 1 meter from the crystal. In figure (a), the detector is centered on the Bragg
angle and the range of φ is −1

2
∆θD ≤ φ ≤ 1

2
∆θD. In figure (b), the detector is centered by an

angle 1/γ away from the Bragg angle, and the range of φ is −1
2
∆θD+1/γ ≤ φ ≤ 1

2
∆θD+1/γ.

The parameters of the simulation were the same as in Figure 15. The detector was 1 cm ×
1 cm, placed 1 m from the crystal.

4 PXR while Channeling

Electron channeling in crystal is the phenomenon by which electrons traveling through the
crystal are confined between two parallel crystal planes. Because of the periodicity of the
atoms in the crystal, the electron oscillates when channeling. This oscillation produces
channeling radiation in the direction of motion of the electron. This channeling radiation
could be another useful source of x-rays. When studying channeling radiaiton, it may be
desirable to study PXR at the same time, with the same crystal.

At the channeling experiments at the Advanced Superconducting Test Accelerator (ASTA),
channeling will be along the (110) plane of diamond. While channeling parallel to this plane,
what plane is best to simultaneously produce PXR? We must have the PXR reflected through
available windows in the apparatus, which are at 90 degrees transverse to the beam on either
side of the beam. We also would like to maximize the energy and the intensity of the PXR.

4.1 (11̄1) Plane

First, I will calculate the characteristics of the PXR when the crystal is perpendicular to the
beam and the electron is channeling along the (110) plane. We will use crystal coordinates
so that the reciprocal lattice vector can read off from the Miller indices of the plane (note
this is a change of coordinate systems from earlier). See figure 17 for how the coordinates
are related to the experimental setup.
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Figure 17: A diagram of the experimental geometry. The channeling planes (110) are parallel
to the face of the crystal shown in the diagram. That is, the normal to the channeling planes
points out of the page. Since this vector points in the (1, 1, 0) direction, it also defines the
x and y axes. They each point 45◦ upwards above the plane of the page.

In this setup, the unit normal to the channeling crystal planes (the normalized reciprocal
lattice vector) is 1√

2
(1, 1, 0). The unit normal to the surface of this crystal is n̂ = 1√

2
(−1, 1, 0).

The velocity of the electrons is parallel to the unit normal to the surface of the crystal, so
the unit vector in the direction of the velocity of the electrons is v̂ = n̂ = 1√

2
(−1, 1, 0).

Given these coordinates, the direction of the reciprocal lattice vector of the reflecting
PXR plane can be immediately determined from the Miller indices. For the (11̄1) plane, the
unit reciprocal lattice vector is τ̂ = 1√

3
(1,−1, 1).

4.1.1 Bragg Angle

The Bragg angle can be determined from the dot product of τ̂ and v̂ from

|τ̂ · v̂| = sin θB (27)

The absolute value indicates that θB is defined to always be positive. Taking the dot product

of the above vectors gives sin θB =
√

2
3

=⇒ θB = 0.9553 rad = 54.74◦. This means the

PXR will be observed at 2θB = 109.48◦ with respect to the velocity of the beam. It is
reflected somewhat backwards, and from the geometry it can be seen that it will also reflect
toward +ẑ in the current crystal orientation.

The energy of this PXR can be obtained from equation 22. Substituting the parameters
for diamond,

E = (1.738 keV)

√
h2 + k2 + l2

sin θB
(28)

At the Bragg angle of 54.74◦, the energy of the PXR is E = 3.687 keV.
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4.1.2 Intensity

As a measure of the intensity, I calculate

N0 =
α

4π

E

~c sin2 θB
fgeoχ

2
g (29)

which is the factor that gives the amplitude of the intensity distribution, equation 8. fgeo is

given by equation 9, which requires knowing Ω̂, the direction of the emitted PXR. Since Ω̂
is the reflection of v̂ about τ̂ , it can be shown that

Ω̂ = 2(v̂ · τ̂)τ̂ − v̂ (30)

which implies
|n̂ · Ω̂| = |n̂ · v̂ − 2(v̂ · τ̂)(n̂ · τ̂)| (31)

When the beam is perpendicular to the crystal, n̂ = v̂, so equation 31 simplifies to |n̂ · Ω̂| =
|1− 2 sin2 θB|.

Using thi fact to compute fgeo allows us to find that N0 = 5.15× 10−7 for PXR reflecting
from the (11̄1) in the given geometry. I have assumed the crystal has a thickness of 168 µm.

4.1.3 Rotating the Crystal

Since a detector cannot easily be placed at 109◦ degrees from the beam axis, it is necessary to
rotate the crystal to reflect at 90◦ with respect to the beam, where the goniometer windows
are located. There are two degrees of freedom with which to accomplish this while preserving
channeling. First, the crystal can be rotated about the beam axis. This does not change
the characteristics of the PXR but only the azimuthal angle of the PXR around the beam.
Rotating the crystal 360◦ degrees about the beam axis, the PXR would sweep out a cone
with the tip at the beam-crystal intersection. For the above discussed plane, the cone would
point backwards and have a total opening angle of 2× (180◦ − 109.48◦) = 141◦.

The other rotational degree of freedom is to rotate the crystal about the normal to the
channeling crystal plane, i.e., to rotate about 1√

2
(1, 1, 0). This rotation does change the Bragg

angle and therefore the characteristics of the PXR, and adjusting this angle can adjust the
PXR to be reflected at 90◦ from the beam.

As can be seen from Figure 17, the necessary rotation for the (11̄1) is particularly simple.
The angle of the PXR needs to be changed by 109.48◦ − 90◦ = 19.48◦, which implies that
the crystal must be rotated in the plane by 19.48◦/2 = 9.736◦.

Since not all rotations of every reflecting plane can be predicted geometrically so easily,
a matrix transformation representing a more general rotation is given by the Rodrigues
rotation matrix, equation 24. For rotations about ω̂ = 1√

2
(1, 1, 0), this formula reduces to

Rω̂(ψ) =

cos2(ψ/2) sin2(ψ/2) 1√
2

sinψ

sin2(ψ/2) cos2(ψ/2) − 1√
2

sinψ

− 1√
2

sinψ 1√
2

sinψ cosψ

 (32)
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The rotated vector normal to the surface of the crystal is then

n̂ = Rv̂ =

(
−1√

2
cosψ,

1√
2

cosψ, sinψ

)
(33)

Similarly, rotating the unit normal to the reflecting (11̄1) plane, 1√
3
(1,−1, 1), gives

τ̂ =
1√
3

(
cosψ +

1√
2

sinψ,− cosψ − 1√
2

sinψ, cosψ −
√

2 sinψ

)
(34)

Therefore,

n̂ · τ̂ =
−1√

6

(
2 cosψ +

√
2 sinψ

)
= − sin

(
ψ + tan−1

√
2
)

(35)

Setting |n̂ · τ̂ | = sin θB gives
ψ = θB − tan−1

√
2 (36)

If we want reflection at 90◦, then θB = π
4
, so ψ = π

4
− tan−1

√
2 = −0.1699 rad = −9.736◦.

This magnitude of rotation agrees with the result from before, and the negative sign indicates
that the rotation is clockwise. Additionally, from equation 28, the PXR energy at this angle
is E = 4.257 keV, slightly larger than when the beam was perpendicular to the crystal.

Next, it is necessary to compute N0 after the rotation, which requires computing again
fgeo. From equations 9 and 31,

fgeo = La

(
1

3
+

2
√

2

3
tanψ

)[
1− exp

(
−3t

La(cosψ + 2
√

2 sinψ)

)]
(37)

which gives fgeo = 16.69 µm for 4.257 keV x-rays and t = 168 µm. Using this to compute N0

gives N0 = 3.524× 10−7, which is a slight reduction in intensity from the unrotated crystal.

4.2 (202) Plane

The (202) plane is more difficult to visualize geometrically, but the same formalism developed
in the last section can be used to understand the PXR properties. Now, rotating 1√

2
(1, 0, 1)

(the unit normal to the (202) plane) through an angle ψ gives

τ̂ =
1√
2

(
cos2(ψ/2) +

1√
2

sinψ, sin2(ψ/2)− 1√
2

sinψ, cosψ − 1√
2

sinψ

)
(38)

so that

|τ̂ · v̂| =
√

3

2
sin
(
ψ + cot−1

√
2
)

= sin θB (39)

which for θB = π
4

implies that ψ = cot−1(2
√

2) = 0.3398 rad = 19.47◦. Using equation 28
then implies that E = 6.952 keV. Note that for ψ = 0, sin θB = 1

2
=⇒ θB = 30◦ so that the

PXR would be reflected 60◦ from the beam axis. This is not an experimentally convenient
observation angle.
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Unlike the (11̄1) plane, this reflection, though at 90◦ to the beam, still does not pass
through the windows, which are in the ±ẑ directions. This can be seen by computing Ω̂,
the unit vector in the direction of the reflection, at ψ = cot−1(2

√
2). Using equation 30,

Ω̂ = 1
2
(1, 1,

√
2). To compute what rotation around the beam axis is necessary to rotate

Ω̂ into (0, 0, 1), use the Rodrigues rotation matrix for rotations through angle ϕ about
v̂ = 1√

2
(−1, 1, 0),

Rv̂(ϕ) =

 cos2(ϕ/2) − sin2(ϕ/2) 1√
2

sinϕ

− sin2(ϕ/2) cos2(ϕ/2) 1√
2

sinϕ

− 1√
2

sinϕ − 1√
2

sinϕ cosϕ

 (40)

Defining Ω̂′ = Rv̂(ϕ)Ω̂,

Ω̂′ =
1

2

(
cosϕ+ sinϕ, cosϕ+ sinϕ,−

√
2 sinϕ+

√
2 cosϕ

)
(41)

From this, it is easy to see that Ω̂′ = (0, 0, 1) when ϕ = −45◦, which indicates that a 45◦

rotation around the beam axis is necessary in addition to the 19.47◦ rotation about the
normal to the channeling plane.

Computing fgeo gives

fgeo =

∣∣∣∣12 − 1√
2

tanψ

∣∣∣∣
[

1− exp

(
−t

La(cosψ −
√

3
2

sin(ψ + cot−1
√

2))

)]
(42)

which at ψ = cot−1(2
√

2), E = 6.952 keV, and t = 168 µm gives fgeo = 87.13 µm. Therefore,
I find N0 = 6.529× 10−7. The (202) plane has a larger energy and intensity than the (11̄1)
plane, but at the cost of having a more difficult rotation to have it appropriately aligned.

4.3 (22̄0) Plane

This plane is directly perpendicular to the beam. This implies that when the crystal is
unrotated, the PXR will be reflected directly backwards along the beam. Simply rotating
the crystal 45◦ toward the detector will reflect the PXR in that direction.

When rotated, this plane will reflect PXR with the same energy as the rotated (202)
plane, 6.952 keV. However, the geometric factor and therefore the intensity is changed. The
new geometric factor at the 45◦ rotation is

fgeo = La

(
1− exp

−t
√

2

La

)
(43)

which gives fgeo = 182.6 µm. Therefore, N0 = 1.368 × 10−6, which is a significant increase
in intensity compared to the (202) plane. This suggests that if the setup is free to rotate the
crystal, the best plane to use us the (22̄0) plane, because it has the brightest and highest
energy x-rays of all the considered planes. A summary of all these calculations are shown in
Table 1. There are other, higher order planes, and though they may have higher energies,
they will have N0 perhaps too low to be of interest.
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E (keV) N0 ψ ϕ

(11̄1) 4.257 3.524 ×10−7 9.736◦ 0◦

(22̄0) 6.952 1.368 ×10−6 45◦ 0◦

(202) 6.952 6.529 ×10−7 19.47◦ 45◦

Table 1: Summary of calculations for PXR while channeling, assuming that the PXR will
be reflected through a port at 90◦ to the beam. ψ is a rotation about the normal to the
channeling plane, and ϕ is a rotation about the beam axis. The rotations assume the
channeling plane is initially horizontal. Note that PXR while channeling also suffers a
≈ 10% decrease in intensity due to the channeling compared to the same PXR when not
channeling [8].

Figure 18: A photograph of the equipment that will be modified to make a new goniometer.

5 Future Goniometer

In the future at ASTA, a new goniometer is going to be constructed using spare photocathode
chamber. A photograph of this chamber is shown in Figure 18. This chamber is excellently
suited to PXR studies because it has many different ports through which it would be possible
to observe PXR at different angles. Additionally, the crystal support could be constructed
to be well suited to allow the free escape of PXR, which is a potential problem with the
current goniometer. With this goniometer, it could be designed for the PXR experiment
without having to simultaneously be convenient for channeling.

Therefore, we could be given free choice in crystal parameters for the PXR, optimizing as
much as possible to obtain bright, high energy PXR through any of the available windows.
A summary of the calculations for several different planes through several different windows
is shown in Table 2.
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(111) (220)

E (keV) N0 E (keV) N0

Port 1 4.257 1.842 ×10−6 6.951 7.295 ×10−7

Port 2 3.316 1.210 ×10−6 5.415 6.283 ×10−7

Port 3 3.258 1.172 ×10−6 5.320 6.200 ×10−7

Port 4 7.176 3.259 ×10−6 11.720 8.458 ×10−7

Port 5 7.866 3.457 ×10−6 12.845 8.563 ×10−7

(311) (400)

E (keV) N0 E (keV) N0

Port 1 8.152 1.972 ×10−7 9.831 1.889 ×10−7

Port 2 6.350 1.800 ×10−7 7.658 1.797 ×10−7

Port 3 6.239 1.785 ×10−7 7.524 1.788 ×10−7

Port 4 13.742 2.152 ×10−7 16.575 1.973 ×10−7

Port 5 15.062 2.167 ×10−7 18.166 1.978 ×10−7

Table 2: Properties calculated if the crystal is cut in the Bragg geometry (reflecting planes
parallel to incident surface), which is the optimal cut. The crystal thickness 168 µm so that
the N0 can be directly compared to those of PXR while channeling.

Based on the table, optimal intensity would be obtained with PXR reflected form the
(111) plane out Port 5 (see Figure 18). Optimal energy, however, can be obtained with the
(400) plane at 18 keV, but it suffers an order of magnitude reduction in intensity.
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A Plots of Various Crystal Parameters

Figure 19: A plot of how the attenuation length of x-rays in diamond depends on the x-ray
energy.

Figure 20: A plot of how the magnitude of the Fourier transform of the electric susceptibility
(χ2

g) depends on the x-ray energy. Notice the sharp drop then tends to disfavor the production
of PXR at higher energies.
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Figure 21: The dependence of the geometric factor on the thickness of the crystal.

Figure 22: The f0 parameter which is used in equation 11 and defined in equation 12.
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Figure 23: The f1 paremeter which is used in equation 11.

Figure 24: The f2 paremeter which is used in equation 11.
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