

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Fermilab Accelerator R&D program and our recommendations to the HEPAP sub-panel

Sergei Nagaitsev Fermilab 27 August 2014

Fermilab after the Tevatron

- Fermilab operates the largest HEP accelerator complex in the U.S., 2nd largest in the world (even after termination of the Tevatron)
- Also part of operations:
 - Proton Improvement Plan (PIP)
 - Muon Campus projects
 - Test facilities (magnets, SRF cavities)
- Projects: Muon g-2, Mu2e, LBNF, MicroBooNE, LCLS-II (at SLAC), PIP-II
- Programs: MAP, LARP, ILC
- Research and Development
- Commercialization of our accelerator technologies.

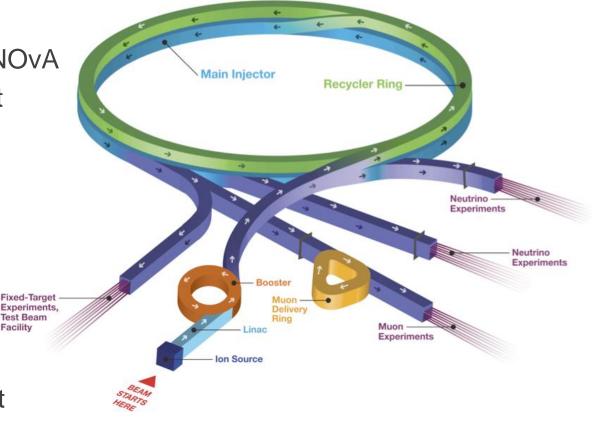
Accelerators

Fermilab operates a total of 16 km of accelerators and beamlines

- A 400-MeV proton linear accelerator (0.15 km)
- An 8-GeV Booster synchrotron (0.5 km)
- An 8-GeV accumulator ring (3.3 km)
- A 120-GeV synchrotron (3.3 km)
- A Muon Campus Delivery ring (0.5 km)
- Soon: Muon g-2 ring
- Transfer lines and fixed target beam lines (8 km)
- Two high power target stations, several low-power targets
- People: 660 (AD, APC, TD) ops, projects, programs, R&D, program support, WFO
 Fermilab

Fermilab Accelerator Complex

Linac: NTF, MTA BNB: MicroBooNE NuMI: MINOS+, MINERVA, NOVA Fixed Target: SeaQuest, Test Beam Facility, M-Center Muon: g-2, Mu2e (future)


Also, test and R&D facilities: ASTA /IOTA

PXIE

CMTF

Various cryo and magnet test stands

Fermilab Accelerator Complex

Facility

Accelerator R&D Test Facilities (Ops and Infrastructure)

- Nearly all accelerator projects and programs rely on Test Facility Operations: GARD, PIP-II, LCLS-II, LARP, Muon Campus magnets, Mu2e solenoids.
 - The Common Test Facilities: covers the Operations and Maintenance of the cryogenic and multi-purpose systems (like the CHL).
 - The Magnet Test Facilities: covers the operation and maintenance of all the technical facilities managed by the Fermilab Technical Division, both cold and warm magnets.
 - The SRF Infrastructure and Operations: CMTS construction, operations of VTS, HTS, clean rooms, ASTA, cryomodule assembly areas, etc
 - FY15 guidance: 41 FTEs, \$13.2M total
 - FY14: \$22.2M , FY13 (actual): \$25.6M

🛟 Fermilab

HEP General Accelerator R&D Program at Fermilab

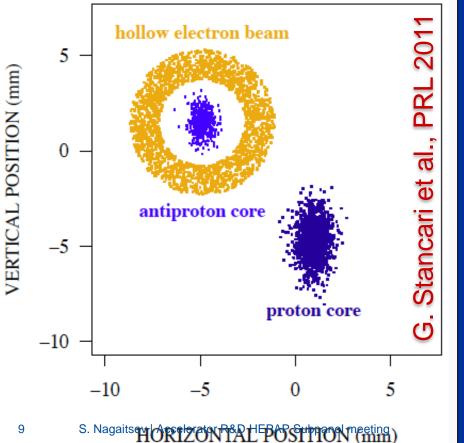
- Fermilab is the only single purpose US HEP laboratory:
 - (OHEP 02/22/2013) : "..recognizing the centrality of Fermilab while maintaining a healthy US research ecosystem..."
- Fermilab either leads or has a major stake in everything of critical importance for the field including accelerator R&D :
 - LARP, ILC, PIP-II, MAP, General Accelerator R&D
 - Fermilab is the US (and world's) leader in accelerator and beam physics in high-power beams;
- Fermilab Accelerator R&D program is embedded in, and leverages resources and infrastructure from operations, projects and programs.
 - GARD is the only source of mid- and long-term accelerator R&D funding;

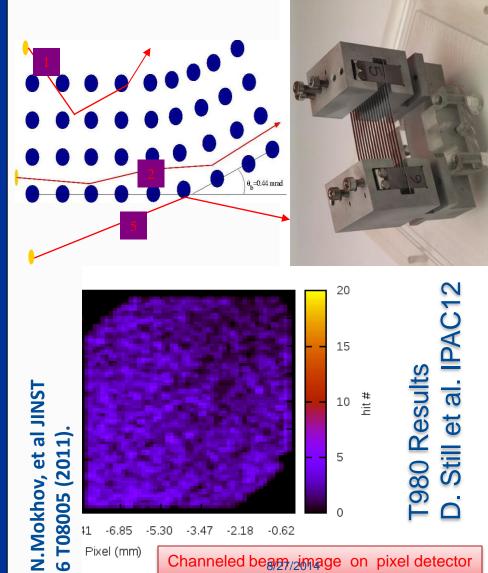
Highlights of Fermilab's Accelerator R&D Program

2009-2014

S. Nagaitsev | Accelerator R&D HEPAP Subpanel meeting 8

Tevatron End-of-Run Beam Studies Campaign (2011)


- Two 2-week periods of experimental studies
 - for the benefit of accelerator science and future machines
 - collaborated with CERN, BNL and LBNL
- Key experiments:
 - Collimation with bent crystals (T980)
 - Collimation with hollow electron beam lens (HEBC)
 - Studies of beam-beam effects:
 - AC dipole with colliding beams
 - Effect of Beam-Beam interaction on coherent stability
 - Beam-Beam resonances vs. transverse separation
 - Effect of bunch length to β -function ratio (betatron phase averaging)


Novel Halo Collimation Methods

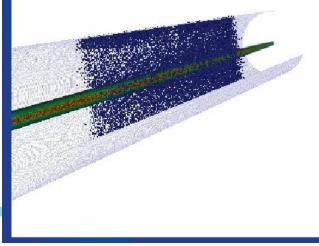
Hollow Electron Beam

A hollow el beam (Tevatron electron Lens) No E-field inside Strong E-field ouside drives resonances Fast diffusion = "soft collimator" effect Works near beam as well (no material)

Bent Crystal Collimation

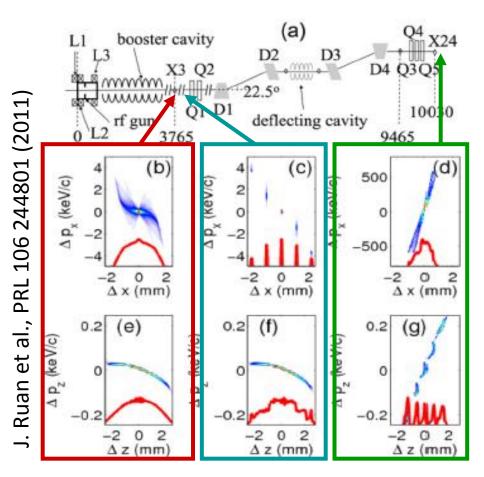
Main Injector: e- Cloud Experimental Station

Station in Main Injector since 2009 :


- 2 experimental Chambers (coated and SS)
 - Test various coatings for ECloud suppression
 - Measure spatial extinction of ECloud
- 3 Fermilab and 1 Argonne RFA
 - Retarding Field Analyzers
 - Directly measure electron flux
- 3 microwave antennas and 2 absorbers
 - Measure ECloud density by phase delay of microwaves
- So far, three materials tested:
 - TiN (2009-10) suppressed vs. Stainless (5-1000x)
 - α -C (2010-12, from CERN) similar suppression as TiN
 - DLC (2013-, from KEK) Awaiting the return of beam

Augmented by comprehensive simulations

- Utilization of ComPASS tools :
 - ComPASS VORPAL e-cloud simulation of MI experiments
- Model microwave experiment (only possible with ComPASS tools), RFA response
- Code comparisons with "standard" tools such as POSINST


P.Lebrun, J.Amundson, P.Spentzouris, et al

Transverse-to-longitudinal phase space exchange

- Demonstrated transverse to longitudinal emittance exchanges
- Simulated Measured In Out Out In ε_{x}^{n} ε_{y}^{n} ε_{z}^{n} 13.22.9 2.9 ± 0.1 11.3 ± 1.1 2.42.4 2.9 ± 0.5 2.4 ± 0.1 3.2 13.1 ± 1.3 13.1 3.1 ± 0.3 (a) slits in (μ)/L(0) (1)/L(0) its out 0 2 3 -3 -2 0 τ (mm) 30 30 (C) (b) (m m m −10 × −10 (mm) 10 ×−10 XS4, X3 slits out (S4, X3 slits in -30 -30-5 5 10 10 -10-10-5 5 x (mm)

Demonstrated bunch current profile shaping

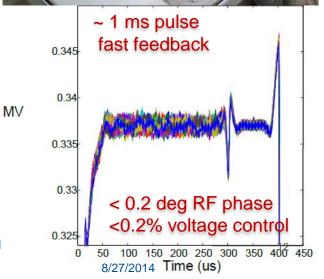
x (mm)

(2010)022801 (2011 234801 P. Piot et al., PRSTAB 14, Y.-E. Sun et al., PRL 105,

8/27/2014

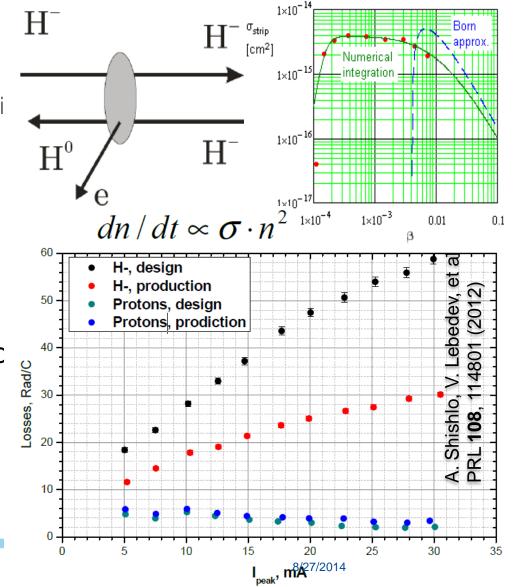
🛠 Fermilab

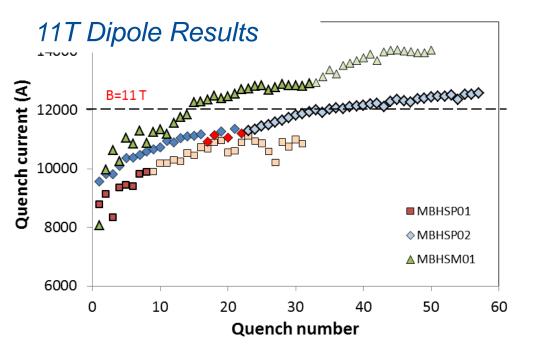
S. Nagaitsev | Accelerator R&D HEPAP Subpanel meeting 11


The Six-Cavity Test

- "Six-Cavity Test' has demonstrated the use of high power *RF vector modulators* to control 6 RF cavities + RFQ driven by a *single high power klystron*
- demonstrated the energy stability with a 7-mA proton beam accelerated through the six cavities from 2.5 MeV to 3.4 MeV.

Diagnostics development and tests:

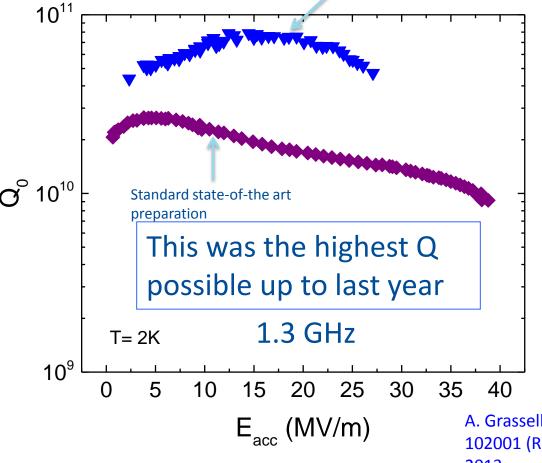

– together with RAL and Argonne
Finished operation Jan'2013
Will move to ASTA (*p*'s for IOTA)



New Effect: Intrabeam Stripping of H- in linacs

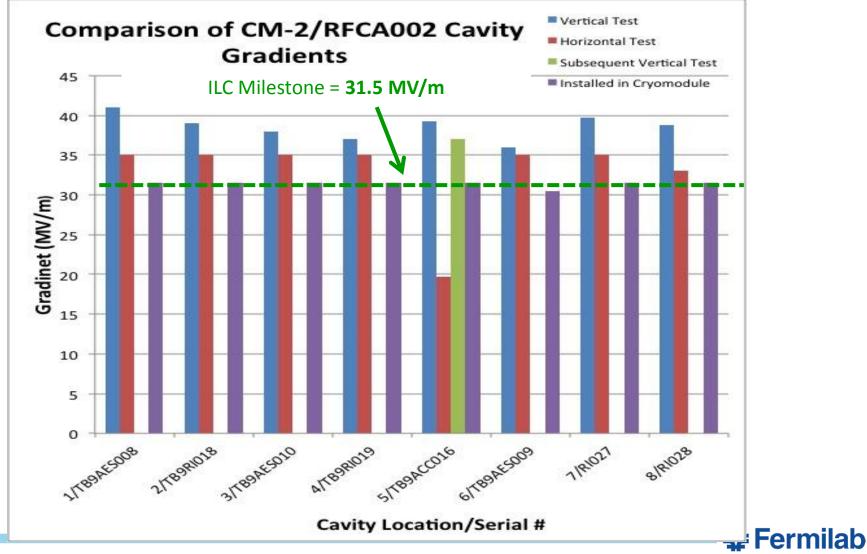
- Predicted by V.Lebedev:
 H⁻ + H⁻ -> H⁻ + H⁰ + e (intrabeam stripping) leads to losses and can explain higher than expected losses i in the SNS linac
- Theory was developed together with SNS colleagues
- Experimental beam studies:
 - comparison of beam loss in the superconducting part (SCL) of the SNS for H⁻ anc protons
 - observed significant reduction in the beam loss for protons

High-Field Magnets



• 11 T Dipole Development in 2010-2014

Nitrogen doping: a breakthrough in BCS resistance (Q)



- Injection of small nitrogen partial pressure at the end of 800C degassing, followed by EP-> drastic increase in Q
- Demonstrated on many 1-cell and 9-cell
 1.3 GHz cavities

A. Grassellino et al, 2013 Supercond. Sci. Technol. **26** 102001 (Rapid Communication) – selected for highlights of 2013

Fermilab CM2 – Cavities Tested One-by-One => Highest Gradient CM in the World

Now, 7 are being tested together. Still highest gradient.

ASTA : Fermilab's Main Accelerator R&D Beam Facility

Unique R&D facility close to completion: IOTA ring, high-brightness photo-injector, ILC cryomodule, proton RQF ~90M\$ investment by OHEP since 2006

- Science goal: Experimentally demonstrate novel techniques of integrable beam optics and space charge compensation, SRF research
- **Technical challenge:** fabrication high-precision nonlinear magnets; injector for delivery of pencil electron beam and high-current low energy proton beam, beam thru SRF CM
- **FY14 highlights:** Half of IOTA ring elements built and received as in-kind; electron injector and SRF cryomodule commissioned

IOTA operations start: 2018 (with protons)

Partnerships

- Nat. labs: 7
- U.S. universities: 6
- International: 4

8/27/2014

🛠 Fermilab

Beam Theory and Simulations

- A number of outstanding advances in beam theory:
 - A series of works (2009-2012) by Burov, Balbekov, and Lebedev on beam dynamics of longitudinal and transverse instabilities with space-charge
 - Theory of nonlinear but integrable (stable) beam optics
 - "Outstanding" PRSTAB Article of 2010: V. Danilov, S. N., PRSTAB, 13, 084002 (2010)
 - "Outstanding" PRSTAB Article of 2011: P. Piot, Y.-E Sun, J. G.
 Power, and M. Rihaoui, PRSTAB 14, 022801 (2011).
 - A suite of modeling tools, developed at Fermilab:
 - MARS 300 users, 40 institutions
 - Synergia 30 8
 - OPTIM 20 5
 - Lifetrac 10 5

PhD Degrees based on research at Fermilab : 9 over 2009-2014

Denise Ford	2013 Northwestern		
Timothy Maxwell	2012 Northern Illinois University		
Alexey Petrenko	2012 Budker Institute of Nuclear Physics		
Arun Saini	2012 University of Delhi		
WM. Tam	2010 Indiana University		
Dan McCarron	2010 Illinois Institute of Technology		
Igor Tropin	2010 Tomsk University		
Uros Mavric	2009 University of Ljubljana		
Timothy Koeth	2009 Rutgers University		

- Currently 8 students in Joint University-Fermilab Accelerator PhD program, also students supported by NIU, Uchicago, UMD, IIT, CSU
- 4 Joint Faculty Appointments: NIU: P.Piot, Y.M.Shin, S.Chattopadhyay; IIT: P.Snopok

Other Education / Undergrad Outreach programs in Accelerator Physics

- Lee Teng Internship (with ANL):
 - Engage highly promising post-junior undergrads to study accelerator S&T
 - 61 participants in 2009-2014
 - Interns study "Fundamentals" at USPAS, undertake research project at the labs for ~2 mos in the summer
 - Committee chaired by E.Prebys
- Int'l Summer Internship :
 - ~60 participants in 2009-2014
 - 2 students earned PhD in accelerator physics/technology
 - 11 students are currently enrolled in a MS/PhD programs in accelerators

LEE TENG UNDERGRADUATE INTERNSHIP IN ACCELERATOR SCIENCE & ENGINEERING

The Lee Teng Internship is a highly competitive education and research opportunity, open to students from US universities who have just completed their junior year in physics or engineering. Teng scholars will receive a full scholarship to attend the US Particle Accelerator School Summer Session followed by an eight-week research internship at Fermilab or Argonne National Laboratory. Research projects will be of sufficient depth for a senior thesis. The internship offers full travel support and a generous stipend.

For further information and to apply see www.leetengscholar.org

US PAS Office & Fermilab

US-PAS Office (part of APC)

William Barletta (Director) Susan Winchester Irina Novitskaya

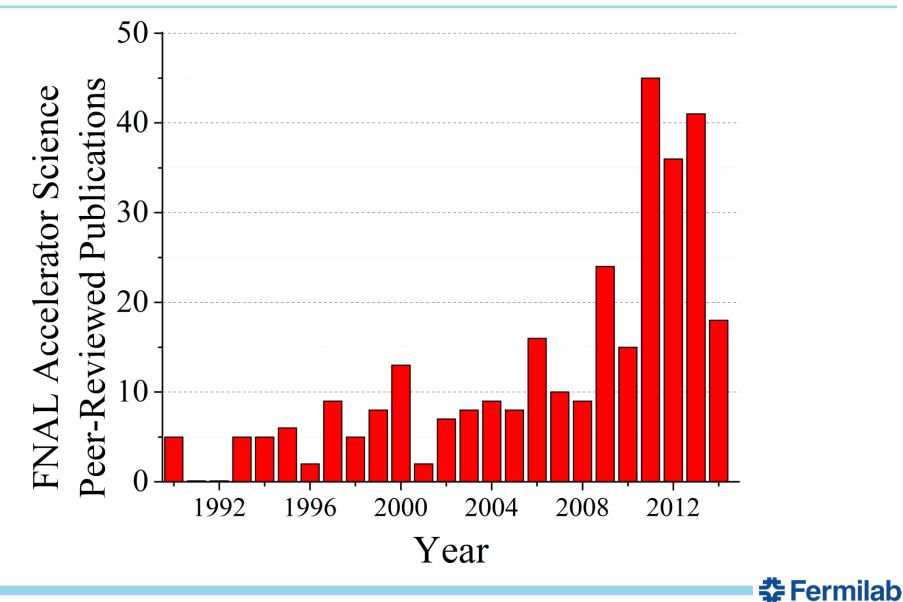
Attendance numbers **140-150** per session show that there is a steady interest in accelerator science

Lecturers (2014):

William Barletta Don Cossairt Dan Green Amber Johnson Mauricio Lopes Michael McGee **Eric Prebys** Matt Quinn Warren Schappert Total over 2009-2014:

40 instructors and assistants from Fermilab

21

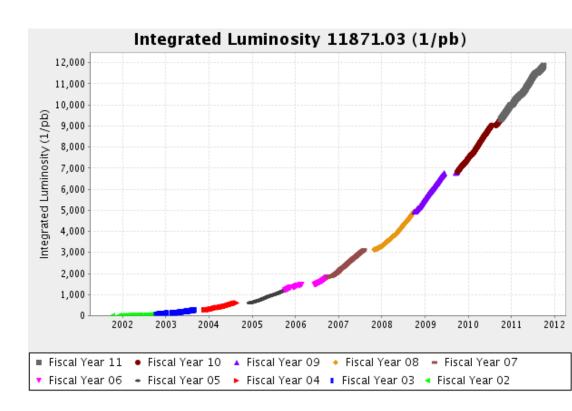

- IEEE PAST 2009 K.Seyia
- APS Thesis 2010 R.Miyamoto
- DOE Early Career 2012 P.Snopok, T.M.Shen, A.Romanenko
- DOE Early Career 2013 A. Grassellino
- Editors and Editorial Boards
 - W.Chou ICFA Beam Dynamics Newsletter
 - L.Cooley Superconductor Science and Technology
 - V.Shiltsev Phys. Rev. ST-AB, JINST
- Referees for Peer-Review Journals
 - Phys. Rev. Letters, Phys. Rev. ST-AB, JINST, NIM-A, IEEE Trans. Nucl. Sci., Review of Scientific Instruments, European Physical Journal, Physics Procedia, NIM-B, NIM-B Proc, Prog. Nucl.Sci.Tech.
 - APS Outstanding Referee T.Sen 2013
- Membership in Program and Organizing Committees of all major accelerator conferences and workshops:

IPACs, NA-PACs, AAC, HB, BIW, LINAC, RESMM, SRF, MTetermilab

15 APS Fellows are involved in Fermilab's Accelerator R&D E.Barzi V.Lebedev A.Bross N.Mokhov S.Geer S.Nagaitsev E. Prebys D.Neuffer H.Edwards V.Shiltsev H. Padamsee A.Tollestrup S.Holmes V. Yarba S. Mishra 🛟 Fermilab

8/27/2014

Peer-reviewed accelerator science publications


8/27/2014

Our story about the Tevatron Run II

Particle Acceleration and Detection

Valery Lebedev Vladimir Shiltsev *Editors*

Accelerator Physics at the Tevatron Collider

🖄 Springer

Available on Amazon.com

Quality and Impact

- Quality and Impact
 - We are carrying out world leading research and development in many areas of central importance to the future of acceleratorbased HEP, ranging from
 - SCRF science and technology, to
 - high field magnets for future accelerators, to
 - MW-power beams and targets, to
 - advanced theoretical and experimental beam physics
 - Fermilab GARD focuses on "outcomes and capabilities" to make HEP machines viable and cost-effective.
 - We pay attention to training and university lab partnerships
 - We have a highly-competent world-renowned team to carry-out research and to support the operations, programs, projects.
- FY15 (plan): \$11.5M, FY14: \$17.8M, FY13(actual): \$23.6M

Present national GARD thrusts

- Advanced Accelerator Concepts
- NC/High-gradient structures and RF sources
- Accelerator, Beam and Computational Physics
- Particle Sources
- Beam Instrumentation and Control
- Superconducting RF
- Superconducting Magnets and Material
- Other (Training)

V – where Fermilab plays substantial role

V

V

V

V

V

V

Advanced Accelerator Concepts

- Fermilab is NOT part of this thrust
- Presently geared toward e+e- colliders
- How can we help?

NC/High-gradient structures and RF sources

- NC/High-Gradient structures:
 - In 2004 we manufactured a record-setting NLC structure.
 - In 2005 we turned our attention to ILC.
 - Now, CLIC (CERN) is the world leader in this area.

- CERN is planning to commercialize the CLIC technology.
- This thrust is NOT a priority for the US HEP!
- RF sources Fermilab would like to be part of this R&D
 - patent pending on a new magnetron-based technology;
 - Focus on cost- effective rf sources for srf linacs

Superconductive RF

- Fermilab is becoming a national leader in the SRF science and technology
 - extensive infrastructure and experienced staff;
 - everything we see in the national program has SRF;
- The P5 report told us:

"It is appropriate for the PIP-II effort to be supported partially by temporary redirection of GARD funding of SCRF R&D and facilities at Fermilab."

This has been already implemented in the FY15 budget

- However, the SRF research should **be strengthened** instead
 - See talks by Padamsee/Romanenko

National General Accelerator R&D Recommendations

for the Fermilab GARD Priorities Working Group

Fermilab GARD Priorities Working Group

Sergei Nagaitsev (co-chair), Joe Lykken (co-chair) Hasan Padamsee Dmitri Denisov Steve Holmes Gina Rameika Michael Lindgren Vladimir Shiltsev Estia Eichten Robert Zwaska Alex Romanenko Pushpa Bhat Alexander Zlobin Robert Bernstein Mark Palmer Chris Polly Teng-ming Shen Pat Hurh Panagiotis Spentzouris Robert Roser Helen Edwards Byron Lundberg Swapan Chattopadhyay Steve Geer Valeri Lebedev Greg Bock

8/27/2014

🛟 Fermilab

Present GARD thrusts are out-of-date

 We examined the present national GARD thrusts and determined that they are NOT aligned with P5 priorities!

Our basis – the P5 Report

- The P5 report presented a vision and a strategy for maintaining our position as a global leader in elementary particle physics in the next decade and beyond;
- It is a well-balanced document and all Fermilab scientists are strongly behind it;
- Our recommendations for GARD priorities are well aligned with the report;
- We recognize that funding is not available to do everything;
- There has to be a balance between domestic and world priorities, between mid- and long-term, between theory, modeling, experiment and training, and between science and technology.

Strategic Considerations (from P5 report)

- "A very high-energy proton-proton collider is the most powerful future tool..."
- Neutrinos: aim at ~600 kTon*MW*yr
- "Power upgrades beyond PIP-II will require R&D for high average power proton linacs and target systems."
- For e+e- colliders: "...Primary goals are improving the accelerating gradient and lowering the power consumption."
- "Support the discipline of accelerator science through advanced accelerator facilities and through funding for university programs."
- "Focus on outcomes and capabilities that will dramatically improve cost effectiveness for mid-term and far-term future."
- "Strengthen University National lab partnerships."
- Incorporate the balance of mid-term vs far-term R&D as well as impacts.

We recommend the following GARD thrusts

- 1. High-field magnets and materials
- 2. Multi-MW beams and targets
- 3. Cost-Effective SRF Technology
- 4. Advanced Accelerator Concepts
- 5. Accelerator Science, Modeling & Design
- 6. Core Accelerator Competencies

GARD Thrusts: Rationale and Goals

1. High-field magnets and materials

- Long-term; maintain US leadership in SC magnets; Nb₃Sn, HTS
- Significant T*m cost reduction, modest support of global design

2. Novel techniques for multi-MW beams and targets PIP-II Beyond PIP-II (mid-term)

	1st 10 years	2nd 10 years		
To Achieve :	100 kT-MW-year	500 kT-MW-year		
We combine :		Option 1	Option 2	Option 3
Mass	10 kT	50 kT	20 kT	10 kT
Power	1 MW	1 MW	2.5 MW	5 MW

- Mid-term strategy after PIP-II depends on the technical feasibility of each option and the analysis of costs/kiloton versus costs/MW
- R&D on effective control of beam losses in proton machines with significantly higher currents (Q_{sc}) and on multi-MW targets

🛟 Fermilab

GARD Thrusts: Rationale and Goals (2)

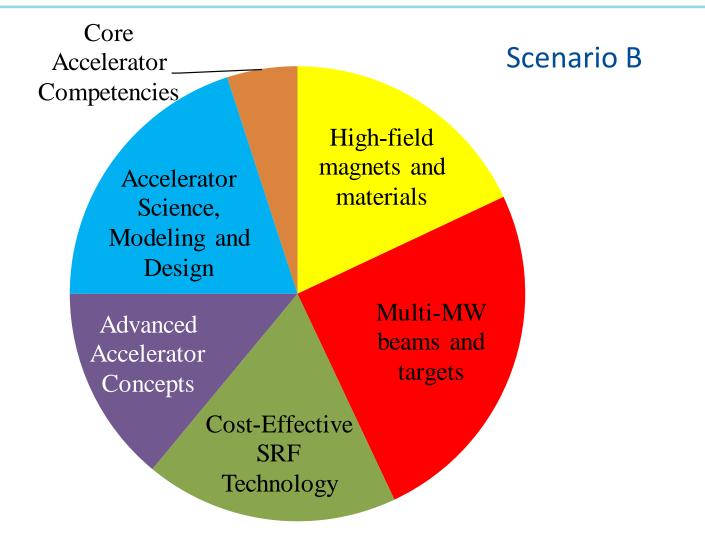
3. Cost-Effective SRF Technology

- Crucial enabling technology for accelerators
- Aim at a substantial reduction in construction and operation costs
- Improve gradients, increase Q-factor, study new materials;
- Affects both far- and mid-term accelerators

4. Advanced Accelerator Concepts

- Conceptual and technical feasibility of advanced collider concepts; aim at HEP applications and significant total cost reduction
- Intense secondary beams for next-generation precisions experiments (such as "beyond mu2e", "beyond g-2" and a NF)
- Both long- and mid-term

GARD Thrusts: Rationale and Goals (3)


5. Accelerator Science, Modeling and Design

- Conceptual design and modeling of new machines
- Cross-cutting accelerator theory and experiments
- Excellence in high-performance high-fidelity computer modeling
- Combination of both mid-term and long-term efforts

6. Core Accelerator Competencies

- Accelerator training and education for HEP and beyond
 - Jointly Universities and National Labs
- Novel particle sources; Advanced beam instrumentation
- NC rf and cost-effective rf sources
- Both mid-term and long-term efforts

National GARD resource allocations (our recommendation)

Scenario C

- In Scenario C we recommend to:
 - Strengthen the high-field magnet program, maintain US leadership in this area;
 - Strengthen the high-gradient, high-Q SRF research for TeVscale e+e- colliders and other applications;

Summary

- Fermilab is a world leader in Accelerator Science and Technology
- Fermilab strongly supports the P5 report
 - P5 calls for realignment of the national Accel R&D program;
- We are realigning Fermilab and we recommend how to realign the national program
- We are asking the Accel. R&D sub-panel to recommend for the SRF research to be funded at a healthy level.
- We are asking the Accel. R&D sub-panel to recognize the importance of the "MW beams and targets" thrust in the national R&D program
- We believe that the R&D toward a 100-TeV pp collider has the highest priority (in the long-term) and that the US leadership in this area should be maintained.