NuFact15

Final Cooling Concepts in the Muon Accelerator Program

Mark Palmer Director, US Muon Accelerator Program August 12, 2015

Outline

- Introduction
 - MAP Initial Baseline Selection Process
 - MAP Cooling Overview
- Final Cooling Concepts – Baseline
 - Alternates
- Conclusion

INTRODUCTION

3 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

4 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

Initial Baseline Selection Process

- MAP was created as a Feasibility Study for Muon Accelerator Design and Technology
- Initial Baseline Selection Process
 - Develop sub-system designs with:
 - Realistic technology performance limits (continuously updated based on the MAP technology R&D program)
 - Implementing engineering constraints in lattice design
 - Full end-to-end simulations including all known beam physics
 - Evaluate candidates, identify any potential showstoppers, and identify the most readily buildable design
 - Integrate all sub-system designs
 - Evaluate cross-system impacts
 - Iterate sub-system designs as necessary
 - Complete a full end-to-end facility performance evaluation

• Same process can apply within individual sub-systems (e.g. across different sections of the cooling system)

• Final Cooling with 25-30T solenoids (emittance exchange): $\epsilon_T = 55 \mu m$, $\epsilon_L = 75 mm$

8 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

Cooling Technology Status I

Magnets

MAP Initial Baseline Selection (IBS) process
 6D cooling baselines that do *not* require HTS magnets

HTS Solenoids
could be part
of a higher
performance
6D Cooling
Channel and
for parts of the
Final Cooling
Channel

Magnet feasibility studies (last stage)

Cooling Technology Status II

RF Cavities

- Successful test in magnetic field of the MICE RF Module shows
 - The importance of cavity surface preparation
 - The importance of designs incorporating detailed magnetic simulation

- High Pressure Gas-Filled RF Cavities provide a demonstrated route to the required gradients with high intensity beams
- Vacuum RF: recent B-field tests consistent with our physical models
 - 805 MHz "Modular" Cavity:
 A test vehicle to characterize
 breakdown effects in vacuum
 cavities

Fisica

FINAL COOLING CONCEPTS

13 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

Acknowledgments in Advance

- Following work carried out primarily by:
 - Baseline concept (high field/low energy channel):
 - H. Sayed, R. Palmer, S. Berg, D. Neuffer
 - Alternative concepts
 - D. Neuffer, D. Summers, T. Hart, J.G. Acosta
 - Through the years, many other MAP members have weighed in on the final cooling issue. Sorry that I can't name them all...
- Special thanks to H. Sayed, D. Neuffer and D. Summers who provided materials for this talk
- Any mistakes in the following slides rest with me

14 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

Final Cooling Emittance Targets

 For initial design studies, start with
 6D Cooling Target:

 $\epsilon_{T} = 300 \ \mu m$ $\epsilon_{L} = 1.5 \ mm$

- IBS effort would have followed with actual 6D system outputs for end-toend simulation of performance
- Target values for Final Cooling based on required transverse emittances to provide lumi ~10³⁴ cm⁻²s⁻¹ at 1 TeV:

 $\epsilon_{T} = 25 \ \mu m$ $\epsilon_{L} = 72 \ mm$

 MAP Preliminary Baseline Concept is emittance exchange in a high field/ low energy channel

High Field/Low Energy Cooling

 Minimum emittance achievable in a long solenoid field cooling channel

$$\epsilon_{\perp}(min) \propto rac{E}{BL_R(dE/ds)}$$

- High Field Low Energy Cooling Channel Challenges
 - Requires long absorbers (to reduce cost)
 - Large energy spread from long absorbers and running on the negative slope of dE/ds curve
 - Longitudinal and transverse matching
 - Losses due to low energy tail

High Field Cooling Channel Design

- MAP IBS baseline candidate
- Lattice
 - 16 Stages with:
 - High field solenoid magnet (25-30 T)
 - 3.5 T transport solenoid field through the channel
 - Asymmetric transverse match into and out of the high field solenoids
 - Energy phase rotation to maintain low energy spread
 - Increases bunch length
 - Reduce the RF frequencies gradually
 - Accelerating RF cavities

High Field Cooling Channel Design

- Lattice Features
 - Early Stages
 - Short bunches ↔ Relatively high frequency 325 MHz RF
 - RF located inside transport solenoids

Late Stages

- Long bunches ↔ Relatively high frequency 20 MHz RF
- Transport solenoid inside of induction linac

Beam Energy, Bunch Length & Longitudinal Phase Space

- Control of energy spread & bunch length
 - Energy spread increases inside LH2 absorbers
 - Energy phase rotation to decrease energy spread on the expense of the bunch length
 - Optimization of drift length for time-energy correlations which gives the required energy spread for the following stage

End-to-End Simulation of 25-30 T Channel

• G4BEAMLINE simulation:

- Magnetic fields computed in G4BEAMLINE with realistic coil configuration and current settings
- RF cavities modeled as cylindrical pillboxes
- Initial Gaussian beam with:

 ϵ_T = 300 µm-rad, ϵ_L = 1.5 mm, P = 135.0 MeV/c

Limit K.E 20-90 MeV & B to 30 T

First end-to-end study of high field - low energy cooling concept with realistic (engineering) design constraints

Achieves 55 µm transverse emittance 2.2x larger than target, but system can be engineered

Comments

- The preceding represents a realizable design
 - Essentially at the half-way point in the IBS process
 - However, have not yet achieved the desired performance for a high energy collider (by factor of 2.2)
 - Could be accomplished by using higher field magnets in design (a technology risk running counter to the MAP Feasibility Assessment guidelines)
- However, a set of alternative/hybrid options under consideration as well
 - Have significant potential to meet or exceed the collider requirements
 - Estimate ~1 man-year of effort required to carry out initial evaluations and design work
 - Not (yet) well-investigated due to premature termination of MAP Feasibility Study

Alternate (including Hybrid) Options

• Key issue:

- The dominant effect in the final cooling channel is simple emittance exchange
- What other ways are there to provide that?
 - Transverse slicing of bunches with longitudinal recombination
 - Possibly utilizing a round-to-flat beam transform
 - Thick wedge absorbers
- Design choices may feed back into how the 6D cooling chain is structured

Alternate Approach I

Summers/Hart

- 6D Cooling without spin flips (to increase beam angular momentum)
 - $\epsilon_{x,y}(\epsilon_t) \rightarrow \sim 10^{-4} \text{ m}, \epsilon_L \rightarrow \sim 0.004 \text{ m}$

2. Round to flat beam transformation (demonstrated for esources)

- $\epsilon_t \rightarrow \epsilon_x$ =0.0004; ϵ_y =0.00025m
- 3. Transverse bunch slicing (in x as shown) with extraction septum
 - ε_x =0.000025; ε_y =0.000025
- 4. High energy bunch recombination (snap coalescence based on FNAL pbar coalescence scheme)
 - ε_x =0.000025; ε_y =0.000025, ε_L=0.07m

Slice the bunch into 17 parts with septa (2 parts in cartoon).
Form 3.7 m long bunch train with CLIC RF deflector cavities.
Span bunch coolesce muons into 1 bunch with BE in a ring.

• Snap bunch coalesce muons into 1 bunch with RF in a ring. Packing fraction approaches 87%. See arXiv:1505.01832

Alternate Approach II

- Neuffer "Skip the round to flat transform..."
- 1. Cool bunch to $\varepsilon_T \sim 10^{-4}$ m (solenoid or quads or Li lens) with $\varepsilon_L \sim 3 \times 10^{-3}$ m
- 2. Transverse slice to 10 bunches:
 - 10⁻⁴ m (ε_x) × 10⁻⁵ m (ε_y)
 - Separated longitudinally

- $10^{-4} \text{ m} (\epsilon_x) \times 10^{-5} \text{ m} (\epsilon_y)$
- ε_L~3×10⁻² m
- Collide as flat beams;
 - luminosity ~ same as $\epsilon_t = ~3 \times 10^{-5} \text{ m}$

Septum foil

\Deflected beam

Alternate Approach III

Variant: "thick" wedge transform

- Use wedge to increase $\delta p/p$
 - increase ε_L , decrease ε_x
- If δp/p introduced by wedge >> δp/p_{beam};
 - can get large emittance exchange
 - exchanges x with δp (Mucool 003)
 - also in CERN 99-13, p.30
- Example:
 - 100 MeV/c; δp=0.5MeV/c
 - $\epsilon_{\perp} = 10^{-4} \text{m}, \beta_0 = 1.2 \text{cm}$
 - Be wedge 0.6cm, 140° wedge
 - obtain factor of ~5 exchange
 - ε_x →0.2 ×10⁻⁴m; δp=2.5 MeV/c
- Much simpler than equivalent final cooling section

y - z view

D. Neuffer **Fermilab** August 11, 2015 **Fermilab**

0.075

-0.002

-0.001

Pz – x plot

0.001

0.002

August 11, 2015 **Fermilab**

- reduces ε_x by factor of 4.3, ε_L increases by factor of 7.0

3.22

1.65

• first half of wedge more efficient than second half ...

96.5 8.94

• Second wedge ?

92.4

8.0

- − if matched to same optics ($P_z \rightarrow 100$ MeV/c, $\sigma_E \rightarrow 0.46$ MeV)
 - ϵ_x : 23 \rightarrow 27 μ ; ϵ_v :97 \rightarrow 23 μ

22.7

Example Hybrid Scenario

- 1. Employ first ~5-6 segments of baseline final cooling system
 - $\varepsilon_x = 0.13 \text{ mm } \varepsilon_y = 0.13 \text{ mm} \varepsilon_L = 3 \text{ mm}$
 - stretch beam to $\sigma_{ct} \rightarrow 0.6m$, $\delta E=0.5 MeV$
- 2. Wedge Exchange 1
 - $\varepsilon_x \rightarrow 0.03 \text{ mm } \varepsilon_y = 0.13 \text{ mm}$ $\varepsilon_L = 15 \text{ mm}$
 - stretch beam to $\sigma_{ct} \rightarrow 3m$, $\delta E=0.5 MeV$
- 3. Wedge Exchange 2
 - $\epsilon_x \rightarrow 0.03 \text{ mm} \epsilon_y \rightarrow 0.03 \text{ mm} \epsilon_L = 75 \text{ mm}$
- 4. Reaccelerate and combine bunches at high energy (~10 GeV)

Alternates Summary

- All of the alternative options need detailed design and simulation
 - Validate parameters
 - Ensure designs can meet basic engineering parameter to be realizable
- Significant potential exists to meet (or exceed) target cooling parameters required for a high energy collider

Conclusion

- First detailed study of the Final Cooling Channel satisfying the MAP IBS specifications now complete
 - Even with the inclusion of technology constraints (feasibility assessment criteria), the baseline is within a factor of 2.2. of the target parameters
- Other options exist, which would have been targeted for full exploration as part of the MAP IBS process
 - MAP funding ramp-down may slow progress on these concepts, but the basic issues are defined so that work can be continued when funding is available
- Overall, the probability that a final design is able to reach the target cooling parameters appears very high

30 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

BACKUP SLIDES

31 NuFact15 - Centro Brasileiro de Pesquisas Fisicas

