
Final Cooling Concepts in the Muon 
Accelerator Program 

 
 

Mark Palmer 
Director, US Muon Accelerator Program 

August 12, 2015  



Outline 
•  Introduction 

– MAP Initial Baseline Selection Process 
– MAP Cooling Overview 

• Final Cooling Concepts 
– Baseline 
– Alternates 
 

• Conclusion 

August 11, 2015 NuFact15 - Centro Brasileiro de Pesquisas Fisicas 2 



INTRODUCTION 
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Muon Accelerator Systems 
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Initial Baseline Selection Process 
• MAP was created as a Feasibility Study for Muon 

Accelerator Design and Technology 
•  Initial Baseline Selection Process 

– Develop sub-system designs with: 
•  Realistic technology performance limits (continuously updated based on 

the MAP technology R&D program) 
•  Implementing engineering constraints in lattice design 
•  Full end-to-end simulations including all known beam physics 

– Evaluate candidates, identify any potential showstoppers, and 
identify the most readily buildable design 

–  Integrate all sub-system designs  
•  Evaluate cross-system impacts 
•  Iterate sub-system designs as necessary 

– Complete a full end-to-end facility performance evaluation 

•  Same process can apply within individual sub-systems 
(e.g. across different sections of the cooling system) 
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Muon Ionization Cooling (MASS) 
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Advanced techniques !  
Improved HF Luminosity  
Simplified Final Cooling requirements 



Muon Ionization Cooling (Design) 

Initial 6D Cooling:  ε6D  60 cm3 ! ~50 mm3;  Trans = 67% 
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6D Rectilinear Vacuum Cooling Channel (replaces Guggenheim concept):   
εT = 0.28mm, εL = 1.57mm @488m 
Transmission = 55%(40%) without(with) bunch recombination 



Muon Ionization Cooling (Design) 

•  Helical Cooling Channel (Gas-filled RF Cavities):   
εT = 0.6mm, εL = 0.3mm  
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Matching 

Late Stage w/ Induction Linac 

•  Final Cooling with 25-30T solenoids (emittance exchange): 
εT = 55µm, εL = 75mm  



Muon Ionization Cooling (Design) 
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MASS identified extension of the 6D cooling concepts  
and modification of Final Cooling scheme to be one of  
most likely areas of performance improvement 

Bunch Merge 

 •  MAP Baseline Designs offer 
–  Factor >105 in emittance reduction 

•  Alternative and Advanced 
Concepts 
–  Hybrid Rectilinear Channel  
 (gas-filled structures) 

–  Parametric Ionization Cooling 
–  Alternative Final Cooling 
! Early stages of existing scheme  
! Round-to-flat Beam Transform  
! Transverse Bunch Slicing  
! Longitudinal Coalescing 
    (at ~10s of GeV) 

! Considerable promise to exceed 
our original target parameters 
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Cooling: The Emittance Path 
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Cooling Technology Status I 
• Magnets 

– MAP Initial Baseline Selection (IBS) process  
! 6D cooling baselines that do not require HTS magnets 

– HTS Solenoids  
could be part  
of a higher  
performance  
6D Cooling  
Channel and  
for parts of the  
Final Cooling  
Channel 

August 11, 2015 NuFact15 - Centro Brasileiro de Pesquisas Fisicas 11 16 

Magnet feasibility studies (last stage)  



Cooling Technology Status II 
• RF Cavities 

– Successful test in magnetic field  
of the MICE RF Module shows 
•  The importance of cavity surface preparation 
•  The importance of designs incorporating  

detailed magnetic simulation 

– High Pressure Gas-Filled RF Cavities provide a demonstrated 
route to the required gradients with high intensity beams 

– Vacuum RF:  recent B-field  
tests consistent with our  
physical models 
•  805 MHz “Modular” Cavity:   

A test vehicle to characterize  
breakdown effects in vacuum 
cavities 
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FINAL COOLING CONCEPTS 
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Acknowledgments in Advance 
• Following work carried out primarily by: 

– Baseline concept (high field/low energy channel): 
•  H. Sayed, R. Palmer, S. Berg, D. Neuffer 

– Alternative concepts 
•  D. Neuffer, D. Summers, T. Hart, J.G. Acosta 

– Through the years, many other MAP members have weighed 
in on the final cooling issue.  Sorry that I can’t name them 
all… 

• Special thanks to H. Sayed, D. Neuffer and D. 
Summers who provided materials for this talk 

• Any mistakes in the following slides rest with me  
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Final Cooling Emittance Targets 

•  For initial design studies, 
start with 
6D Cooling Target: 

εT = 300 µm 
εL = 1.5 mm 

•  IBS effort would have 
followed with actual 6D 
system outputs for end-to-
end simulation of 
performance 

•  Target values for Final 
Cooling based on required 
transverse emittances to 
provide lumi ~1034 cm-2s-1 
at  
1 TeV: 
 
εT = 25 µm 
εL = 72 mm 
 

•  MAP Preliminary Baseline 
Concept is emittance 
exchange in a high field/
low energy channel 
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High Field/Low Energy Cooling 

•  Minimum emittance achievable in a 
long solenoid field cooling channel 

•  High Field – Low Energy Cooling 
Channel Challenges 
–  Requires long absorbers (to reduce cost) 
–  Large energy spread from long absorbers 

and running on the negative slope of dE/ds 
curve 
•  Longitudinal and transverse matching 
•  Losses due to low energy tail 
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High Field Cooling Channel Design 
• MAP IBS baseline candidate 
• Lattice 

– 16 Stages with: 
•  High field solenoid magnet  

(25-30 T) 
•  3.5 T transport solenoid  

field through the channel 
•  Asymmetric transverse  

match into and out of the  
high field solenoids 

•  Energy phase rotation to  
maintain low energy spread  
–  Increases bunch length 
– Reduce the RF frequencies gradually 

•  Accelerating RF cavities 
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High Field Cooling Channel Design 
• Lattice Features 

– Early Stages 
•  Short bunches " Relatively  

high frequency 325 MHz RF 
•  RF located inside transport 

solenoids 

– Late Stages 
•  Long bunches " Relatively  

high frequency 20 MHz RF 
•  Transport solenoid inside of  

induction linac 
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High Field Cooling 

•  Long absorbers:  
65 ! 59 cm 

•  Limit field integral 
to limit transverse- 
longitudinal coupling 

!  Increase in σt 

 

•  Medium absorbers: 
35  ! 20 cm 

•  Increased energy  
spread  
 

! unwanted  
    chromatic effects 

•  Long absorbers: 
57 ! 40 cm 

•  Lower transverse 
amplitudes 

•  Lengthened  
bunch 

 
•  Short absorbers: 

20 ! 10 cm 
•  Very small  

transverse 
amplitudes 
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•  Control of energy spread & bunch length 
–  Energy spread increases inside LH2 absorbers 
–  Energy phase rotation to decrease energy 

spread on the expense of the bunch length 
–  Optimization of drift length for time-energy 

correlations which gives the required energy 
spread for the following stage  
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End-to-End Simulation of  
25-30 T Channel 

•  G4BEAMLINE simulation: 
–  Magnetic fields computed in G4BEAMLINE with 

realistic coil configuration and current settings   
–  RF cavities modeled as cylindrical pillboxes 
–  Initial Gaussian beam with: 
εT = 300 µm-rad,  εL = 1.5 mm,  
P  = 135.0 MeV/c 
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Comments 
•  The preceding represents a realizable design 

– Essentially at the half-way point in the IBS process 
– However, have not yet achieved the desired performance for a 

high energy collider (by factor of 2.2) 
•  Could be accomplished by using higher field magnets in design (a 

technology risk running counter to the MAP Feasibility Assessment 
guidelines) 

• However, a set of alternative/hybrid options under 
consideration as well 
– Have significant potential to meet or exceed the collider 

requirements 
– Estimate ~1 man-year of effort required to carry out initial 

evaluations and design work 
– Not (yet) well-investigated due to premature termination of MAP 

Feasibility Study 
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Alternate (including Hybrid) Options 
• Key issue: 

– The dominant effect in the final cooling channel is simple 
emittance exchange 

• What other ways are there to provide that? 
– Transverse slicing of bunches with longitudinal recombination 

•  Possibly utilizing a round-to-flat beam transform 

– Thick wedge absorbers 

• Design choices may feed back into how the 6D 
cooling chain is structured 
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Alternate Approach I 
• Summers/Hart 

1.  6D Cooling without spin flips (to increase beam angular 
momentum) 

•  εx,y (εt) à~10-4 m, εL à ~0.004 m  

2.  Round to flat beam transformation (demonstrated for e- 
sources) 

•  εt à εx =0.0004; εy =0.000025m  
3.  Transverse bunch slicing (in x as  

shown) with extraction septum 
•  εx =0.000025; εy =0.000025 

4.  High energy bunch recombination 
(snap coalescence based on  
FNAL pbar coalescence scheme) 

•  εx =0.000025; εy =0.000025, εL=0.07m 
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Alternate Approach II 
• Neuffer – “Skip the round to flat transform…” 
1.  Cool bunch to εT~10-4 m (solenoid or quads or Li 

lens) with εL~3×10-3 m 
2.  Transverse slice to 10 bunches:  

•  10-4 m (εx) × 10-5 m (εy)   

•  Separated longitudinally 

3.  Accelerate as bunch train; recombine longitudinally 
•  10-4 m (εx) × 10-5 m (εy)   

•  εL~3×10-2 m 

• Collide as flat beams; 
•  luminosity ~ same as εt= ~3×10-5 m 
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Alternate Approach III 
Variant: “thick” wedge transform
•  Use wedge to increase δp/p  

–  increase εL, decrease εx 

•  If δp/p introduced by wedge >> 
δp/pbeam;  
–  can get large emittance exchange 

•  exchanges x with δp (Mucool 003) 
–  also in CERN 99-13, p.30

•  Example: 
–  100 MeV/c; δp=0.5MeV/c 

•  ε⊥= 10-4m, β0=1.2cm 
•  Be wedge 0.6cm, 140° wedge  

–   obtain factor of ~5 exchange 
–  εx !0.2 ×10-4m; δp=2.5 MeV/c 

•  Much simpler than equivalent 
final cooling section  

D. Neuffer27
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Example Wedge Parameters 
Numerical examples 

•  Wedge parameters 
–  Diamond, w=1.75mm, θ = 100°(4.17mm thick at center) 

–  reduces εx by factor of 4.3, εL increases by factor of 7.0 
•  first half of wedge more efficient than second half … 

•  Second wedge ? 
–  if matched to same optics (Pz ! 100 MeV/c, σE!0.46 MeV) 

•  εx : 23 !27µ; εy :97 ! 23 µ 

D. Neuffer31

z(cm) Pz εx(µ) εy εL(mm 
 

σE 
MeV 

6-D ε 
increase  

0 100 97 95.5 1.27 0.46 1.0 
0.4 96.4 33.4 96.3 4.55 1.64 1.24 
0.8 92.4 22.7 96.5 8.94 3.22 1.65 Pz#–#x#plot#
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Example Hybrid Scenario 
1.  Employ first ~5-6 segments of baseline final cooling system 

•  εx = 0.13 mm εy = 0.13 mm   εL =3 mm 
•  stretch beam to σctà 0.6m, δE=0.5MeV 

2.  Wedge Exchange 1 
•  εx à 0.03 mm εy = 0.13 mm   εL =15 mm 
•  stretch beam to σctà 3m, δE=0.5MeV 

3.  Wedge Exchange 2 
•  εx à 0.03 mm εy à 0.03 mm   εL =75 mm 

4.  Reaccelerate and combine bunches at high energy (~10 GeV) 
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Alternates Summary 
• All of the alternative options need detailed design and 

simulation 
– Validate parameters 
– Ensure designs can meet basic engineering parameter to be 

realizable 
• Significant potential exists to meet (or exceed) target 

cooling parameters required for a high energy collider 
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Conclusion 
•  First detailed study of the Final Cooling Channel satisfying 

the MAP IBS specifications now complete 
– Even with the inclusion of technology constraints (feasibility 

assessment criteria), the baseline is within a factor of 2.2. of the 
target parameters 

• Other options exist, which would have been targeted for 
full exploration as part of the MAP IBS process 
– MAP funding ramp-down may slow progress on these concepts, 

but the basic issues are defined so that work can be continued 
when funding is available 

• Overall, the probability that a final design is able to reach 
the target cooling parameters appears very high 
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BACKUP SLIDES 
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Successful Operation of 
805 MHz “All Seasons” 
Cavity in 5T Magnetic 
Field under Vacuum  
MuCool Test Area/Muons Inc 

World Record HTS-
only Coil 

15T on-axis field (16T on coil) 
R. Gupta 
PBL/BNL 

Demonstration of High 
Pressure RF Cavity in 3T 
Magnetic Field with Beam 

Extrapolates to required   
µ-Collider Parameters 

MuCool Test Area 

Breakthrough in HTS 
Cable Performance with 
Cables Matching Strand 

Performance 
FNAL-Tech Div 

T. Shen-Early Career Award 
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Cooling Technology R&D 
>20MV/m operation  
in up to 5 T B-field 

MICE 201 MHz RF Module –  
MTA Acceptance Test in B-field Complete 
11MV/m in Fringe of 5T Lab-G Solenoid 

<4×10-7 Spark Rate (0 observed) 


