Studies on charge selection at MOMENT

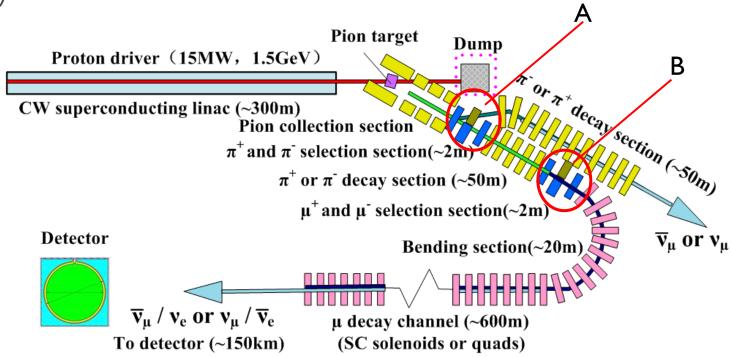
Yingpeng Song
Jingyu Tang, Hantao Jing, Zhihui Li

August 2015

Outline

- Necessity for charge selection at MOMENT
- Charge selection by dipole chicane
- Comparison between dipoles scheme and curved solenoids scheme

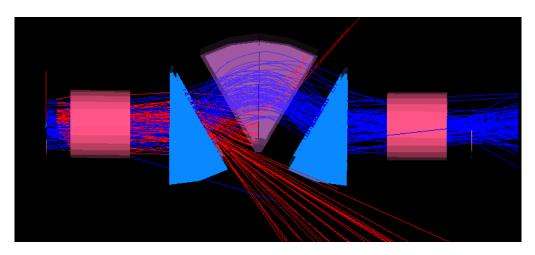
Summary



Requirement for charge selection

- At target, both π +/ π are produced, but one specie muon is used for experiment at a time [very low background of the other].
- In conventional neutrino beam lines, magnetic horns focus only one charge; in solenoids-based capture system (such as MOMENT), both charges are focused equally.
- Designing a charge selection scheme:
 - High effectiveness of selection (purity)
 - High transmission efficiency (and low emittance growth)
- Discarded pions or muons may be used for other purposes

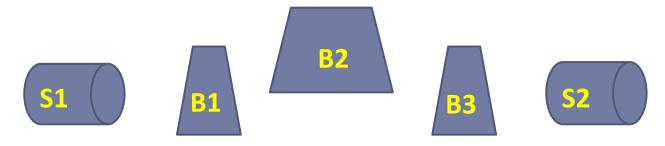
Layout of MOMENT



Two alternative charge separation locations A and B, separating either pions or muons of different charges.

Charge selection by dipoles

- The chicane is composed of three combined function dipoles (superconducting, reference particle: -20°/40°/-20°). By adjusting the edge angles and gradients to make the required focusing in both horizontal and vertical planes.
- Wrong charged particles can be stopped or separated from the selected one.

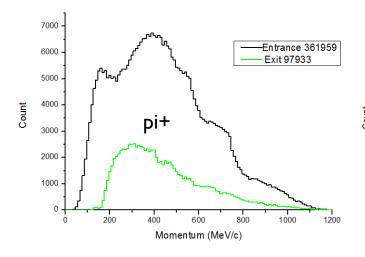

Blue: pi+ red: pi-

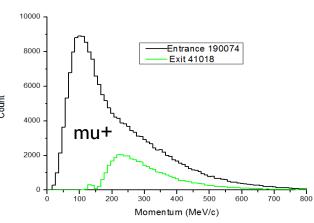
Challenges:

- Very large apertures due to extremely large emittance (field overlapping)
- Very large momentum range

Beamline and parameters

Reference momentum for mu+: 300MeV/c


Element	Length (m)	B _o (Tesla)	Gradient (m ⁻²)	$oldsymbol{eta_1/eta_2}{ ext{(mrad)}}$	Gap/aperture (m)
S1/S2	0.56	3.40	-	-	600
B1/B3	0.3	-1.75	0.55	154	600
B2	0.6	1.75	0.19	306	600

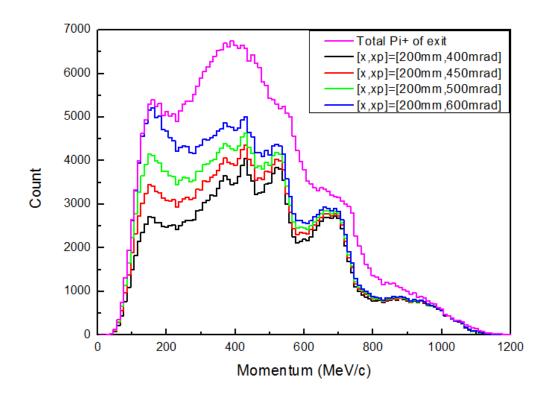


Simulation results

By using G4Beamline

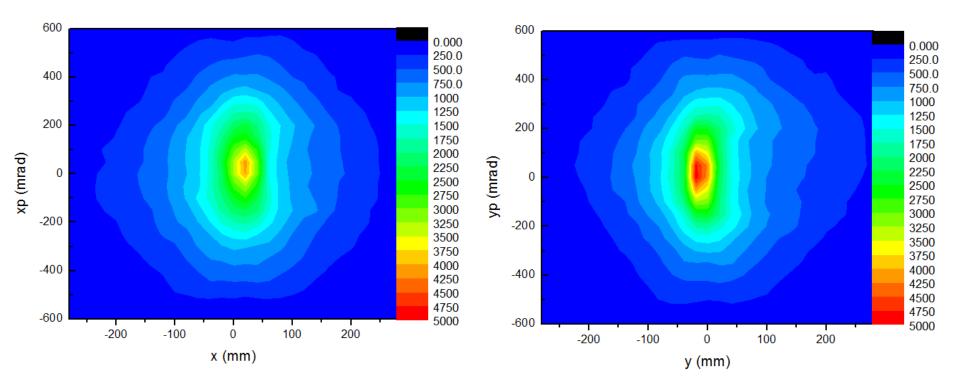
	Entrance	Exit	Transport efficiency
π+	361962	98043	27.1%
π-	146706	21	
μ+	190077	61828	32.5%
μ-	98892	1	

Analysis of the distribution of pi+ at the end of capture


From the target simulations

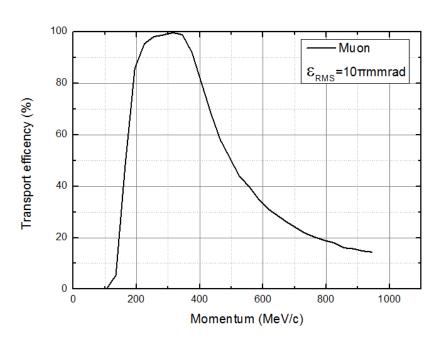
Limit (x*xp)	All energy	ε _{RMS} (πmm.rad)	150-500 (MeV/c)	ε _{RMS} (πmm.rad)	150-700 (MeV/c)	ε _{RMS} (πmmrad)
Total emittance	361959	25.0 25.0	205967	27.7 27.7	287079	26.3 26.3
200*600	284322	17.9 17.6	159204	19.1 18.9	221796	18.1 17.9
200*500	255311	16.0 15.7	138706	16.7 16.6	198655	16.0 15.8
200*450	234018	14.7 14.4	124349	15.1 15.0	182013	14.7 14.5
200*400	209452	13.2 12.9	108183	13.4 13.3	162864	13.0 13.0

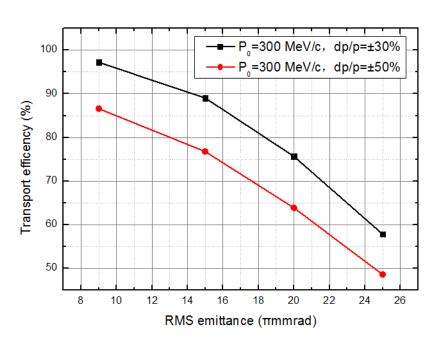
Distribution of pi+ at entrance of selection section


Momentum spectrum of different transverse emittance

The distribution of pi+ at entrance of selection section

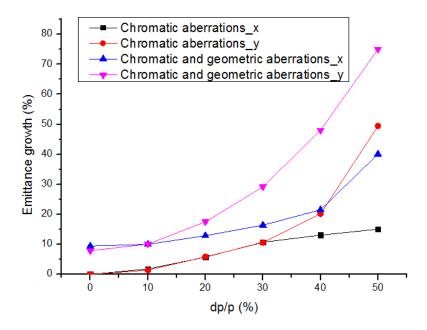
▶ The density of x and y phase plane




Considering the acceptance of the downstream beamline, we choose an emittance of 200mm*450 mrad to transport, it will not cut the core of the beam

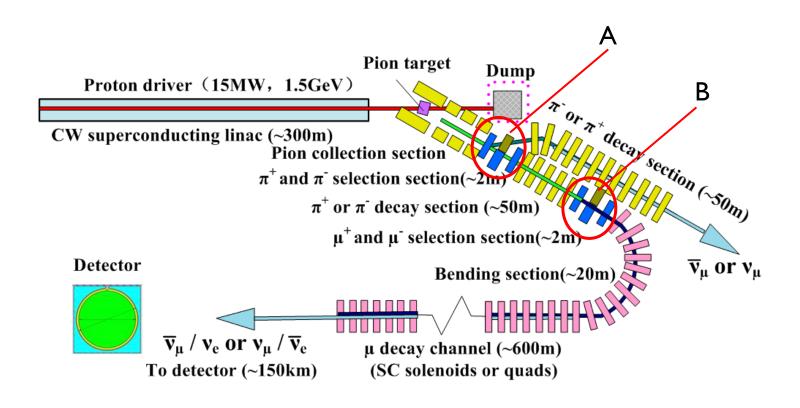
Analysis of particle loss

▶ Mu+ transport efficiency VS momentum and emittance

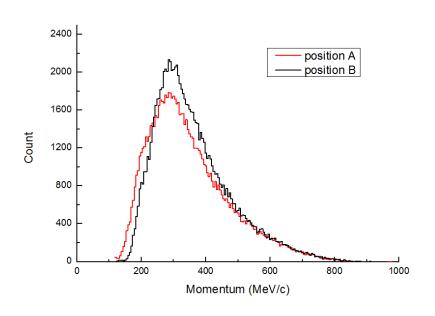


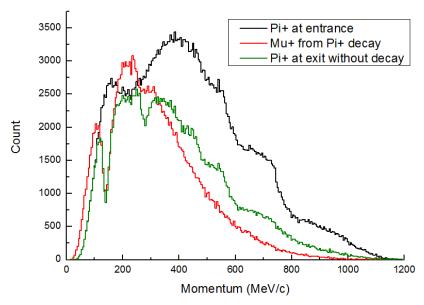
The curve is obtained from linear lattice, the efficiency is ideal at momentum spread 200-400 MeV/c, but we need to accept wider momentum, nonlinear lattice will be a good choice.

Analysis of particle loss


Emittance growth due to higher order effects

The curve is produced with $ε_{RMS}$ =10 πmm-rad,




Charge separation at different locations

Charge selection at different locations

Muon spectrum at the entrance of muon decay section

The red line is from the decay of green line

There is no large difference between two locations, because many high energy pions are lost in the pion decay section.

Separation by curved solenoids

Scheme sketch (R. Palmer)

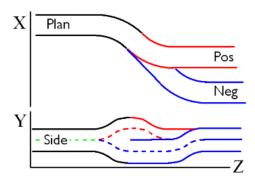
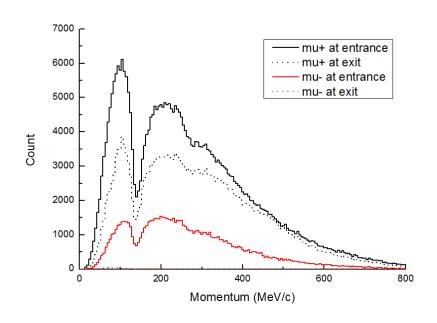


Figure 1: Schematic of charge separation method.

▶ To match the curved solenoid with the straight parts at both ends, the length of curved solenoid L should be multiple of λ

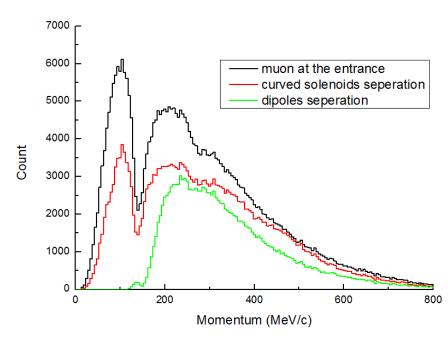
$$L = n * \lambda \qquad \qquad \lambda = \frac{2\pi P_Z}{B_{\phi}c}$$


The beam should be bent back to cancel the dispersion effect.

Simulation result by G4Beamline

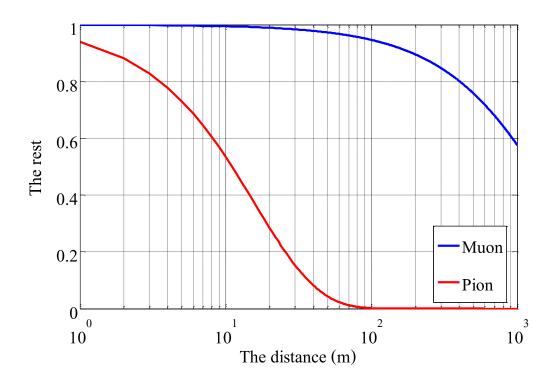
Parameters and result

Charge selection comprised by 16 unit elements Unit element: 100mm Drift + 500mm Solenoid (Φ =700, Bz=3.7T, By=0.25T)



	Muon+	Muon-
Entrance	348821	91399
Exit	251018	630
Transport efficiency	72%	0.69%

Comparison between curved solenoids and dipoles


	Curved solenoids	Dipoles
Transport efficiency	72.0%	42%
Emittance growth in x plane	60.0%	47.1%
Emittance growth in y plane	60.0%	24.8%

Decay within the selection section

The decay curves of pion and muon

The reference momenta of muon and pion used in the curve are 291MeV/c and 285MeV/c respectively, corresponding to 300 MeV neutrino.

(Lifetimes of rest pion and muon: 26 ns and 22 μs)

It looks acceptable to have in-course decays.

Problems/limitation

- How to reduce the effects by Second-Order Chromatic Aberrations and Second-Order Geometric Aberrations? Then we can reduce the emittance growth.
- The realistic transport situation is even worse than the present study, due to the overlapping of the fringe field between adjoining dipoles (very large aperture).
- To enhance the acceptance on momentum range, nonlinear field should be introduced, which is still under study.

Summary

- Charge separation methods based on both dipole chicane and curved solenoids have been studied, with more details on the former.
- > Selection for both pions and muons are possible.
- For relatively narrow momentum range $(300 \pm 30\%)$ MeV/c, the results are not so bad, but we hope to increase it to about $\pm 50\%$ by introducing nonlinear fields (more complicated, study just started).
- Very large transverse emittance has important impact to the selection, some pre-collimation or low transmission efficiency has to be accepted.

Thank you for attention!