

Bright Muon Sources

Pavel Snopok *Illinois Institute of Technology and Fermilab August 12, 2015*

Outline

- Introduction
- High-intensity muon beams
	- Target
	- Front end
- High-brightness muon beams
	- Initial cooling
	- 6D cooling (VCC and HCC)
	- Final cooling
- Summary

Ionization cooling

$$
\frac{d\epsilon_N}{ds} \approx -\frac{1}{\beta^2} \left\langle \frac{dE_\mu}{ds} \right\rangle \frac{\epsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 GeV)^2}{2\beta^3 E_\mu m_\mu X_0}
$$

- $d\varepsilon_n/ds$ is the rate of normalized emittance change within the absorber; βc, E_{u} , and m_{u} are the muon velocity, energy, and mass; $β_⊥$ is the lattice betatron function at the absorber; and X_0 the radiation length of the absorber material. Need low β_1 , large X_0 .
- 1. Energy loss in material (all three components of the particle's momentum are affected).
- 2. Unavoidable multiple scattering (can be minimized by choosing the material with large X_0 , hence, low Z.
- 3. Re-accelerate to restore energy lost in material. Only the longitudinal component of momentum is affected.

6D cooling via emittance exchange

- Emittance exchange principle: instead of letting the beam with zero dispersion through a flat absorber, introduce dispersion and let the particles with higher momentum pass through more material, thus reducing the beam spread in the longitudinal direction.
- Another option would be to control particle trajectory length in a continuous absorber (gas-filled channel).

Emittance evolution diagram

Target and Front End

High-intensity muon source

- Captures muons that result from the decay of pions that are produced by a high intensity proton beam impacting a target
- Performs initial phase space manipulation of these muons to make them well-suited to subsequent accelerator systems

Main components:

- Target (topic of a dedicated talk by Kirk McDonald on Friday at 14:30)
- Chicane (to eliminate high energy protons)
- Drift channel (π to μ decay) with a proton absorber (for low energy protons)
- Buncher and phase rotator for producing a train of bunches

Initial Cooling

Initial cooling, contd.

One period of the HFOFO lattice (top), magnetic field for muon momentum 230 MeV/c (second from top), μ^+ equilibrium orbit and dispersion (two bottom plots).

- Focusing field is created by alternating solenoids, inclined in rotating planes (0°, 120°, 240°, etc.)
- µ⁻ and µ⁺ orbits have the same form with longitudinal shift by half period.
	- $RF: f=325 \text{ MHz}, E_{\text{max}}=25 \text{ MV/m}.$
- LiH wedge absorbers + highpressure gas-filled RF cavities.
- 6D emittance reduced from 6.2 (μ^+) and 5.6 (μ^-) cm³ to 51 mm³.
- $\frac{1}{400}$ $\frac{1}{2}$ (cm) Transmission is 68% (μ^+) and 67% (µ⁻).
	- Channel length, L=125 m.

Initial cooling

- Initial cooling channel:
	- Get into 6D cooling mode right away.
	- Capable of cooling both charges simultaneously (cost reduction).
	- Preliminary design concepts for both vacuum and gasfilled RF cavities (documented, along with lattice files).
	- Improved matching from Initial Cooling section to Helical Cooling Channel (HCC).

Helical Cooling Channel (HCC)

Helical Cooling Channel (HCC)

- Dense hydrogen gas distributed homogeneously in a continuous dispersion lattice (no periodic lattice)
- Particle tracking in HCC:
	- red: reference particle
	- particle motions (blue) are periodic by coupling in xyz planes
		- Complete linear dynamics: Ya.S. Derbenev & R.P. Johnson, PRSTAB 8 041002 (2005)

- Innovate helical beam line element:
	- Hydrogen gas-filled RF cavity
		- GH2 is the best cooling material
		- GH2 suppresses RF breakdown
	- Helical solenoid coil
	- Magnetron (great energy efficiency)

HCC, contd.

HCC segment 1 - 1 m helical period, 325 MHz cavities, 10 cavities per period

front view

H-field

- High-pressure RF helical cooling channel (HCC):
	- Lattices + start-to-end simulations.
	- Lattice is optimized to increase transmission efficiency.
	- Studies of gas-plasma interactions and plasma chemistry are ongoing.
	- Dielectric loaded HPRF test, helical $Nb₃Sn$ coil test, and RF window study were carried out.

HCC, contd.

- Matching: transmission improved 56 % \rightarrow 72%
- 6D HCC:
	- RF parameters:
		- \cdot E = 20 MV/m,
		- $f = 325$ & 650 MHz
	- gas pressure:
		- 160 atm at 300 K,
		- 43 atm at 80 K
	- magnetic fields:
		- $B_z = 4-12$ T
- Equilibrium emittance
	- $e_T = 0.6$ mm
		- (goal: 0.3 mm)
	- $-$ e_l = 0.9 mm
		- (goal: 1.5 mm)

- Transmission (one cooling section): ~60%
- Channel length (one cooling section): 380 $m \rightarrow 280$ m

HCC cryomodule

Use the pressure sealing technology to connect adjacent module which has been developed in the gas-filled RF cavity project

RF power & gas inlet & coolant & current conductor access from each end plate

Beam-plasma interaction in gas-filled RF cavities

J. Ellison

Edge effect from uniform cylinder

Rectilinear Vacuum Cooling Channel (VCC) and Hybrid Cooling Channel

Vacuum RF cooling channel (VCC)

- Vacuum RF cooling channel (VCC):
	- Lattices + start-to-end simulations.
	- Lattices optimized and achieved emittance goals specified by MAP.
	- Progress on bunch merge.
	- Investigation of window effects.
	- Thermal & mechanical analysis of RF windows.
	- Magnet design.
	- Significant improvement in the final stage of 6D cooling.

VCC, contd.

Emittance evolution plot: reaching 0.28 mm in transverse emittance and 1.57 mm in longitudinal emittance

Emittance evolution after bunch recombination: black markers are theoretical predictions

- RF: f=325 & 650 MHz; field: B_z =2.3-13.6 T; cooling section length, L=490 m.
- Transmission: 55% before recombination, 40% after recombination.

Hybrid cooling channel

- One area of concern: breakdown of RF cavities in high magnetic fields.
	- Experiments at MTA have demonstrated that $\sum_{0}^{0.27}$ using cavities filled with high-pressure gas can prevent breakdown.
- An important recent conceptual development: reconsideration of a hybrid cooling channel
	- rectilinear channel beam line components,
	- external absorbers,
	- cavities filled with medium pressure gas.
- Potential: control RF breakdown in high magnetic fields while maintaining the relative simplicity of rectilinear channel designs.
- See the next talk by Diktys Stratakis.

Bunch Merge

Bunch Merge

- Longitudinal merge: 21 to 7 bunches
- Transverse merge: 7 bunches to 1
	- kicker magnet sending each bunch one of the...
	- trombones of different length...
	- so that all the bunches arrive at the same time;
	- followed by a funnel and a matching section
- End-to-end simulation by Yu Bao (UC Riverside)

Final Cooling

Final cooling

Early stages: RF inside transport solenoid coils

Late stages: transport solenoid coils inside induction linac

- Final cooling channel design with 30-25 T focusing field.
- Complete design of a high field cooling channel: transverse emittance 55 µm (40 T could reach 25 µm), longitudinal ≈75 mm.
- For details and alternative approaches see talk by Mark Palmer later in the session.

Summary

Thank you!