Pion Hadron Production in NA61

Alessandro Bravar
(Université de Genève)
for the NA61 Collaboration
NA61 Physics Program

Physics of strongly interacting matter in heavy ion collisions
Search of the QCD critical point (AA and pA collisions)

Hadron production measurements on the T2K target (p+C) to characterize the T2K neutrino beam soon also measurements for NuMI

Measurement of hadron production in p+C interactions needed for the description of cosmic-ray air showers (Pierre Auger Observatory and KASCADE experiments)
NA61/SHINE – unique multipurpose facility:

hadron production in $h + p$ (20 – 350 GeV/c), [$h = p, \pi^+, \pi^-$]
h + A (20 – 350 GeV/c), [$A = \text{Be}, \text{C}, \text{Al}, \text{Fe}, \text{Pb}, \ldots$]
A + A (13A - 150A GeV/c)
The NA61 Detector

large acceptance spectrometer for charged particles

4 large volume TPCs as main tracking devices

2 dipole magnets with bending power of max 9 Tm over 7 m length (T2K runs: \(\int Bdl \approx 1.14 \text{Tm} \))

high momentum resolution

good particle identification: \(\sigma(\text{ToF-L/R}) \approx 100 \text{ ps} \), \(\sigma(dE/dx)/<dE/dx> \approx 0.04 \), \(\sigma(m_{\text{inv}}) \approx 5 \text{ MeV} \)

new ToF-F to entirely cover T2K acceptance (\(\sigma(\text{ToF-F}) \approx 100 \text{ ps} \), \(1 < p < 5 \text{ GeV/c} \), \(\theta < 250 \text{ mrad} \))

several additional upgrades are under way
Particle Identification in NA61

Energy loss in TPCs

Time of Flight measurements

Combined ToF + dE/dx

dE/dx

m^2

$2 < p \ [GeV/c] < 3$
The Off-Axis T2K ν Beam

2.5° off-axis neutrino beam

- Neutrino beam energy “tuned” to oscillation maximum
- Very narrow energy spectrum (narrow band)
- Neutrino beam energy almost independent of parent pion energy

Neutrino source created by interactions of 30 GeV protons on a 90 cm long graphite rod

Neutrino beam predictions rely on modeling the proton interactions and hadron production in the target

Horn focusing cancels partially the p_T dependence of the parent pion

Precise hadron production measurements allow to reduce uncertainties on neutrino flux prediction
Required Acceptance for ν Flux Calculations

T2K ν parent hadron phase space
30 GeV proton beam on the 90 cm long T2K graphite target

π^+, K^+, and p distributions shown

- Note: this is not a cross section
- It shows the distributions of π, K, and contributing to the ν flux at SK

Need to cover this kinematical region and identify the outgoing hadrons
- K component important for ν_e appearance signal

Requires detector with large acceptance
- With excellent particle ID capabilities
- With high rate capabilities to accumulate sufficient statistics
The NA61 Targets

2 different graphite (carbon) targets

Thin Carbon Target
- length=2 cm, cross section 2.5 x 2.5 cm²
- $\rho = 1.84$ g/cm³
- $\sim 0.04 \lambda_{\text{int}}$

T2K Replica Target
- length = 90 cm, Ø=2.6 cm
- $\rho = 1.83$ g/cm³
- $\sim 1.9 \lambda_{\text{int}}$

2007 pilot run
Thin target: ~660k triggers
(⇒ 200 k π^+ tracks in T2K acc.)

2009 run
Replica target: ~230k triggers
~6 M triggers

2010 run
~2 M triggers
~10 M triggers
Analysis Methods

Different analysis procedures adopted depending on the kinematical region covered:

1) negative hadrons: at this beam energy (31 GeV/c) most (> 90%) negative hadrons are π^- with small K^- contamination (< 5%) pure tracking with no PID, large acceptance, global MC correction

2) $p < 1$ GeV/c PID based on dE/dx only (below cross-over region in dE/dx)

3) $p > 0.8$ GeV/c PID combined ToF – dE/dx analysis ($\pi / K / p$ separation) particles must reach the ToF, reduced acc.; factorize all corrections (i.e. acc., recon. eff., decays, etc.), some corrections estimated directly from data, rely less on MC

raw measured particle spectra corrected for:
 geometrical acceptance
 reconstruction efficiency
 non-pion contributions
 weak decays (feed-down)
 trigger bias
NA61 $p + C \rightarrow \pi^{+/−} + X @ 31 \text{ GeV/c}$

Relative uncertainty in the T2K region $\sim 4\%$
NA61 p + C → K^{+/-} + X @ 31 GeV/c

Relative uncertainty in the T2K region ~ 15%
NA61 p + C → p / Λ + X @ 31 GeV/c
NA61 $p + C \rightarrow \pi^+ + X$ Uncertainties (dN/dp)

Compared to 2007 data:
- statistical uncertainty improved by ~ 3
- systematical uncertainty reduced by ~ 2

NA61 preliminary
Already Published NA61 Data

Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c

Measurement of production properties of positively charged kaons in proton-carbon interactions at 31 GeV/c

Pion emission from the T2K replica target: Method, results and application
Nucl. Inst. and Meth. A 701 (2013) 99–114

Measurement of negatively charged pion spectra in inelastic p+p interactions at $p_{\text{lab}} = 20, 31, 40, 80$ and 158 GeV/c

Measurements of production properties of K^0_S mesons and hyperons in proton-carbon interactions at 31 GeV/c
π^- Spectra in $p + p \rightarrow \pi^- + X$ Energy Scan

$p_{\text{lab}} = 20, 30, 40, 80, 158 \text{ GeV}/c$

$p + p$ symmetric in rapidity (and x_F) negative y (x_F) by reflection

$(y = 0 \rightarrow x_F = 0)$
Transverse Mass Spectra at Mid-Rapidity

\[p + p \rightarrow h + X @ 158 \text{ GeV/c} \]

transverse mass: \[m_T^2 = m_0^2 + p_T^2 \]

mid-rapidity: \[y = 0 \ (x_F = 0) \]

Transverse mass spectra are approximately exponential in \(p + p \) interactions

NA61, EPJC 74 (2014) 2794
$p + p \rightarrow h + X : \text{dn/dy (Energy Scan)}$

NA61 preliminary
π Multiplicities and K/π Ratios

Fermi energy

$$F \equiv \left[\frac{(\sqrt{s_{NN}} - 2m_N)^3}{\sqrt{s_{NN}}} \right]^{1/4}$$

NA61, EPJC 74 (2014) 2794

NA61 preliminary
Charged π spectra in $\pi^- + C$ Interactions

$\pi^- + C \rightarrow \pi^+ + X$ @ 350 GeV/c

$\pi^- + C \rightarrow \pi^- + X$ @ 350 GeV/c
Some Observations

p + p and p + C data is unexpectedly interesting

None of the hadroproduction models describes satisfactorily ensemble of the p + C → h + X hadroproduction data

Models do not describe well the NA61/SHINE data on p + p interactions

High precision NA61/SHINE data presents a challenge for models and allow for significant improvement of models

Even in p + p the energy dependence of the K⁺/π⁺ ratio exhibits rapid changes in the SPS energy range

Soon p + C data at different energies (60 GeV/c, 120 GeV/c)
Also Be, Al, Pb

Soon comparison of p + p and p + A hadroproduction data
→ A dependence
→ energy dependence

Input to hadroproduction models → improvements?
Neutrino Source Production

direct contribution:
secondary hadrons exit the target
and decay into ν

target contribution:
secondary and tertiary hadrons exiting
the target and decaying into ν

non-target contribution:
re-interaction in the target surrounding material

We see only particles coming out of the target.
We do not see what happens inside the target.

\[\nu_\mu \text{ composition at SK} \]
- 90 %
- 60 %

\[\nu_e \text{ composition at SK} \]
- 90 %
- 60 %
Hadron multiplicities are measured at the target surface in bins of \(\{p, \theta, z\}\).

Tracks are extrapolated backwards to the target surface (point of closest approach).

The target is sliced in 5 bins in \(z\) + downstream exit face.

No interaction vertex reconstruction can study also as a function of \(r\).

Statistical precision \(\sim 5\%\).

Systematic error \(\sim 5\%\).
π^+ Spectra on Target Surface

beam

$\times 10^{-3}$

$\times 10^{-3}$

$\times 10^{-3}$

NA61 preliminary
Perform hadron production measurements to characterize the NuMI ν beam using the NA61 detector at CERN mainly US groups.

Data taking to start this fall.

<table>
<thead>
<tr>
<th>proton+pion event totals</th>
<th>Incident proton/pion beam momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>120 GeV/c 60 GeV/c 30 GeV/c</td>
</tr>
<tr>
<td>NuMI (spare) replica</td>
<td>(future)</td>
</tr>
<tr>
<td>LBNE replica</td>
<td>(future)</td>
</tr>
<tr>
<td>thin graphite (< 0.05λ₁)</td>
<td>3M 3M (T2K data)</td>
</tr>
<tr>
<td>thin aluminum (< 0.05λ₁)</td>
<td>3M (future)</td>
</tr>
<tr>
<td>thin steel (< 0.05λ₁)</td>
<td>(future) (future)</td>
</tr>
<tr>
<td>thin beryllium (< 0.05λ₁)</td>
<td>3M 3M (future)</td>
</tr>
</tbody>
</table>

Upgrades:
- add forward tracking
- forward calorimetry (neutrons)
- new DAQ based on the DRS
- better trigger

2 new Forward TPCs
Conclusions

NA61 is providing valuable data to constrain the T2K neutrino flux

NA61 initial goals for T2K:
- 5% error on absolute neutrino fluxes
- 3% error on the far-to-near ratio

Hadroproduction measurements require
- large acceptance detectors with PID over whole kinematical range
- large statistics
- different targets to study various particle production effects

Hadroproduction of $\pi^{+/-}$, $K^{+/-}$, p, K^0_s, Λ in $p + p$ and $p + C$ interactions at different energies

Soon also on Be, Al, and Pb targets
- comparison of $p + p$ and $p + A$ data
- A dependence

Hadroproduction measurements also with π beams

High precision NA61/SHINE data presents a challenge for hadroproduction models

NA61 to continue with hadron production measurements for NuMI, starting this fall